AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Structure and function of the membrane microdomains in osteoclasts

Jialong Hou1,2,Jian Liu1,2,Zhixian Huang1,2Yining Wang1,2Hanbing Yao2Zhenxin Hu3Chengge Shi2Jiake Xu4,5 ( )Qingqing Wang1,2( )
Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

These authors contributed equally: Jialong Hou, Jian Liu

Show Author Information

Abstract

The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.

References

1

Ng, P. Y., Brigitte Patricia Ribet, A. & Pavlos, N. J. Membrane trafficking in osteoclasts and implications for osteoporosis. Biochem. Soc. Trans. 47, 639–650 (2019).

2

Michigami, T. & Ozono, K. Roles of phosphate in skeleton. Front. Endocrinol. (Lausanne) 10, 180 (2019).

3

Chen, K. et al. Steroid-induced osteonecrosis of the femoral head reveals enhanced reactive oxygen species and hyperactive osteoclasts. Int. J. Biol. Sci. 16, 1888–1900 (2020).

4

Guo, Q. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6, 15 (2018).

5

Krajewska-Wlodarczyk, M. et al. Role of microparticles in the pathogenesis of inflammatory joint diseases. Int. J. Mol. Sci. 20, 5453 (2019).

6

Wada, T., Nakashima, T., Hiroshi, N. & Penninger, J. M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25 (2006).

7

Lacey, D. L. et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401–419 (2012).

8

Drake, M. T., Clarke, B. L. & Khosla, S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin. Proc. 83, 1032–1045 (2008).

9

Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

10

Konrad, S. S. & Ott, T. Molecular principles of membrane microdomain targeting in plants. Trends Plant Sci. 20, 351–361 (2015).

11

Kusumi, A. et al. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci. 36, 604–615 (2011).

12

Kusumi, A. et al. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin. Cell Dev. Biol. 23, 126–144 (2012).

13

Liu, Y. et al. Osteoclast differentiation and function in aquaglyceroporin AQP9-null mice. Biol. Cell 101, 133–140 (2009).

14

Oikawa, T., Kuroda, Y. & Matsuo, K. Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol. Life Sci. 70, 3341–3353 (2013).

15

Wang, Q. et al. Suppression of osteoclast multinucleation via a posttranscriptional regulation-based spatiotemporally selective delivery system. Sci. Adv. 8, eabn3333 (2022).

16

Zhou, Y. et al. Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. Sci. Adv. 7, eabl6432 (2021).

17

Qin, A. et al. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int. J. Biochem. Cell Biol. 44, 1422–1435 (2012).

18

Farina, C. & Gagliardi, S. Selective inhibition of osteoclast vacuolar H(+)-ATPase. Curr. Pharm. Des. 8, 2033–2048 (2002).

19

Matsubara, T. et al. Cbp recruitment of Csk into lipid rafts is critical to c-Src kinase activity and bone resorption in osteoclasts. J. Bone Min. Res. 25, 1068–1076 (2010).

20

Levental, I., Levental, K. R. & Heberle, F. A. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol. 30, 341–353 (2020).

21

Liao, H. J. et al. TRAIL inhibits RANK signaling and suppresses osteoclast activation via inhibiting lipid raft assembly and TRAF6 recruitment. Cell Death Dis. 10, 77 (2019).

22

Lee, J. H. et al. Lipid raft-associated stomatin enhances cell fusion. FASEB J. 31, 47–59 (2017).

23

Hada, N. et al. Receptor activator of NF-kappaB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. Bone 50, 226–236 (2012).

24

Sorci-Thomas, M. G. & Thomas, M. J. Microdomains, inflammation, and atherosclerosis. Circ. Res. 118, 679–691 (2016).

25

Sonnino, S. & Prinetti, A. Membrane domains and the “lipid raft” concept. Curr. Med. Chem. 20, 4–21 (2013).

26

Ayuyan, A. G. & Cohen, F. S. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys. J. 91, 2172–2183 (2006).

27

Singh, P., Paila, Y. D. & Chattopadhyay, A. Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin(1A) receptor: implications in SLOS. Biochem. Biophys. Res. Commun. 358, 495–499 (2007).

28

Levental, I., Grzybek, M. & Simons, K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49, 6305–6316 (2010).

29

Scheiblich, H. et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184, 5089–5106 e21 (2021).

30

Bertacchi, G., Posch, W. & Wilflingseder, D. HIV-1 trans infection via TNTs is impeded by targeting C5aR. Biomolecules 12, 313 (2022).

31

Takahashi, A. et al. Tunneling nanotube formation is essential for the regulation of osteoclastogenesis. J. Cell Biochem. 114, 1238–1247 (2013).

32

Buccione, R., Orth, J. D. & McNiven, M. A. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat. Rev. Mol. Cell Biol. 5, 647–657 (2004).

33

Domon, T. et al. Three-dimensional distribution of the clear zone of migrating osteoclasts on dentin slices in vitro. Tissue Cell 34, 326–336 (2002).

34

Akisaka, T., Yoshida, H., Inoue, S. & Shimizu, K. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. J. Bone Min. Res. 16, 1248–1255 (2001).

35

Leithner, A. et al. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nat. Cell Biol. 18, 1253–1259 (2016).

36

Tehrani, S. et al. Cortactin has an essential and specific role in osteoclast actin assembly. Mol. Biol. Cell 17, 2882–2895 (2006).

37

Adams, J. C. Molecular organisation of cell-matrix contacts: essential multiprotein assemblies in cell and tissue function. Expert Rev. Mol. Med. 4, 1–24 (2002).

38

Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

39

Nagafusa, T. et al. Mechanical fragmentation and transportation of calcium phosphate substrate by filopodia and lamellipodia in a mature osteoclast. Cell Biol. Int. 31, 1150–1159 (2007).

40

Kage, F. et al. Lamellipodia-like actin networks in cells lacking WAVE regulatory complex. J. Cell Sci. 135, jcs260364 (2022).

41

Mylvaganam, S., Freeman, S. A. & Grinstein, S. The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. 31, R619–R632 (2021).

42

Boujemaa-Paterski, R. et al. Talin-activated vinculin interacts with branched actin networks to initiate bundles. Elife 9, e53990 (2020).

43

Geiger, B. et al. The actin network interfacing diverse integrin-mediated adhesions. Biomolecules 13, 294 (2023).

44

Mun, S. H., Park, P. S. U. & Park-Min, K. H. The M-CSF receptor in osteoclasts and beyond. Exp. Mol. Med. 52, 1239–1254 (2020).

45

Gyori, D. S. & Mocsai, A. Osteoclast signal transduction during bone metastasis formation. Front. Cell Dev. Biol. 8, 507 (2020).

46

Chellaiah, M. A. Regulation of podosomes by integrin alphavbeta3 and Rho GTPase-facilitated phosphoinositide signaling. Eur. J. Cell Biol. 85, 311–317 (2006).

47

Fukunaga, T., Zou, W., Warren, J. T. & Teitelbaum, S. L. Vinculin regulates osteoclast function. J. Biol. Chem. 289, 13554–13564 (2014).

48

Zambonin-Zallone, A. et al. Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp. Cell Res. 182, 645–652 (1989).

49

Zhu, J. et al. EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J. Biol. Chem. 282, 26656–26665 (2007).

50

Yi, T. et al. Epidermal growth factor receptor regulates osteoclast differentiation and survival through cross-talking with RANK signaling. J. Cell Physiol. 217, 409–422 (2008).

51

Rapraeger, A. C. Syndecans and their synstatins: Targeting an organizer of receptor tyrosine kinase signaling at the cell-matrix interface. Front. Oncol. 11, 775349 (2021).

52

Ivaska, J. & Heino, J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu. Rev. Cell Dev. Biol. 27, 291–320 (2011).

53

Araujo, J. C. et al. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation. Cancer Biol. Ther. 8, 2153–2159 (2009).

54

Montero, J. C., Seoane, S., Ocana, A. & Pandiella, A. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin. Cancer Res. 17, 5546–5552 (2011).

55

Abu Taha, A., Taha, M., Seebach, J. & Schnittler, H. J. ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol. Biol. Cell 25, 245–256 (2014).

56

Gavard, J. et al. Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J. Cell Sci. 117, 257–270 (2004).

57

Ozawa, M. et al. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J. Cell Biol. 219, e202006196 (2020).

58

Akisaka, T. & Yoshida, A. Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets. Cell Tissue Res. 360, 347–362 (2015).

59

Takito, J. & Nakamura, M. Precursors linked via the zipper-like structure or the filopodium during the secondary fusion of osteoclasts. Commun. Integr. Biol. 5, 453–457 (2012).

60

Dufrancais, O. et al. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cell Mol. Life Sci. 78, 6087–6104 (2021).

61

Takito, J. & Nakamura, M. Heterogeneity and actin cytoskeleton in osteoclast and macrophage multinucleation. Int. J. Mol. Sci. 21, 6629 (2020).

62

Jansen, I. D. et al. Osteoclast fusion and fission. Calcif. Tissue Int. 90, 515–522 (2012).

63

Goodman, S. et al. Macrophage polarization impacts tunneling nanotube formation and intercellular organelle trafficking. Sci. Rep. 9, 14529 (2019).

64

McCoy-Simandle, K., Hanna, S. J. & Cox, D. Exosomes and nanotubes: Control of immune cell communication. Int. J. Biochem Cell Biol. 71, 44–54 (2016).

65

Dupont, M. et al. Tunneling nanotubes: Intimate communication between myeloid cells. Front. Immunol. 9, 43 (2018).

66

Chen, E. H., Grote, E., Mohler, W. & Vignery, A. Cell-cell fusion. FEBS Lett. 581, 2181–2193 (2007).

67

Chen, E. H. & Olson, E. N. Unveiling the mechanisms of cell-cell fusion. Science 308, 369–373 (2005).

68

Kukita, T., Takahashi, A., Zhang, J. Q. & Kukita, A. Membrane nanotube formation in osteoclastogenesis. Methods Mol. Biol. 1313, 193–202 (2015).

69

Faust, J. J. et al. An actin-based protrusion originating from a podosome-enriched region initiates macrophage fusion. Mol. Biol. Cell 30, 2254–2267 (2019).

70

Pennanen, P. et al. Diversity of actin architecture in human osteoclasts: Network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Mol. Cell Biochem. 432, 131–139 (2017).

71

Miyamoto, T. STATs and macrophage fusion. JAKSTAT 2, e24777 (2013).

72

Helming, L., Winter, J. & Gordon, S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J. Cell Sci. 122, 453–459 (2009).

73

Zappitelli, T. & Aubin, J. E. The “connexin” between bone cells and skeletal functions. J. Cell Biochem. 115, 1646–1658 (2014).

74

Tasca, A. et al. Regulation of osteoclast differentiation by myosin X. Sci. Rep. 7, 7603 (2017).

75

McCullough, B. R. et al. Cofilin-linked changes in actin filament flexibility promote severing. Biophys. J. 101, 151–159 (2011).

76

Dagar, S. et al. Nucleolin regulates 14-3-3zeta mRNA and promotes cofilin phosphorylation to induce tunneling nanotube formation. FASEB J. 35, e21199 (2021).

77

Soe, K. Osteoclast fusion: physiological regulation of multinucleation through heterogeneity-potential implications for drug sensitivity. Int. J. Mol. Sci. 21, 7717 (2020).

78

Takito, J. et al. Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion. Biol. Open 6, 1104–1114 (2017).

79

Balabiyev, A. et al. Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells. Mol. Biol. Cell 31, 2002–2020 (2020).

80

Takito, J. et al. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts. J. Cell Sci. 125, 662–672 (2012).

81

Meddens, M. B. et al. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nat. Commun. 7, 13127 (2016).

82

Abrahams, I. L. et al. Structural study of the copper and zinc sites in metallothioneins by using extended X-ray-absorption fine structure. Biochem. J. 236, 585–589 (1986).

83

Stenbeck, G. Formation and function of the ruffled border in osteoclasts. Semin. Cell Dev. Biol. 13, 285–292 (2002).

84

Lange, P. F., Wartosch, L., Jentsch, T. J. & Fuhrmann, J. C. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440, 220–223 (2006).

85

Mulari, M. T., Zhao, H., Lakkakorpi, P. T. & Vaananen, H. K. Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic 4, 113–125 (2003).

86

Shen, S. et al. Leucine repeat rich kinase 1 controls osteoclast activity by managing lysosomal trafficking and secretion. Biol. (Basel) 12, 511 (2023).

87

Mulari, M., Vaaraniemi, J. & Vaananen, H. K. Intracellular membrane trafficking in bone resorbing osteoclasts. Microsc. Res. Tech. 61, 496–503 (2003).

88

Salo, J. et al. Removal of osteoclast bone resorption products by transcytosis. Science 276, 270–273 (1997).

89

Futai, M. et al. Vacuolar-type ATPase: a proton pump to lysosomal trafficking. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95, 261–277 (2019).

90

Zhao, H. Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases. Traffic 13, 1307–1314 (2012).

91

van Meel, E. et al. Disruption of the Man-6-P targeting pathway in mice impairs osteoclast secretory lysosome biogenesis. Traffic 12, 912–924 (2011).

92

Meagher, J., Zellweger, R. & Filgueira, L. Functional dissociation of the basolateral transcytotic compartment from the apical phago-lysosomal compartment in human osteoclasts. J. Histochem. Cytochem. 53, 665–670 (2005).

93

Matsumoto, N. & Nakanishi-Matsui, M. Proton pumping V-ATPase inhibitor bafilomycin A1 affects Rab7 lysosomal localization and abolishes anterograde trafficking of osteoclast secretory lysosomes. Biochem. Biophys. Res. Commun. 510, 421–426 (2019).

94

Nakanishi-Matsui, M. & Matsumoto, N. V-ATPase a3 subunit in secretory lysosome trafficking in osteoclasts. Biol. Pharm. Bull. 45, 1426–1431 (2022).

95

Xu, J. et al. Structure and function of V-ATPases in osteoclasts: potential therapeutic targets for the treatment of osteolysis. Histol. Histopathol. 22, 443–454 (2007).

96

Lee, S. H. et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403–1409 (2006).

97

Breton, S. & Brown, D. New insights into the regulation of V-ATPase-dependent proton secretion. Am. J. Physiol. Ren. Physiol. 292, F1–F10 (2007).

98

Xu, J. et al. Effects of Bafilomycin A1: an inhibitor of vacuolar H (+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. J. Cell Biochem. 88, 1256–1264 (2003).

99

Zou, W. & Teitelbaum, S. L. Integrins, growth factors, and the osteoclast cytoskeleton. Ann. N. Y. Acad. Sci. 1192, 27–31 (2010).

100

Muller, M. A. et al. Cytoplasmic salt bridge formation in integrin alphavss3 stabilizes its inactive state affecting integrin-mediated cell biological effects. Cell Signal 26, 2493–2503 (2014).

101

Yang, D. Q. et al. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption. J. Bone Min. Res. 27, 1695–1707 (2012).

102

Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 8, 124–136 (2006).

103

Matsumoto, N. et al. The lysosomal V-ATPase a3 subunit is involved in localization of Mon1-Ccz1, the GEF for Rab7, to secretory lysosomes in osteoclasts. Sci. Rep. 12, 8455 (2022).

104

Sun, Y. et al. Possible role of direct Rac1-Rab7 interaction in ruffled border formation of osteoclasts. J. Biol. Chem. 280, 32356–32361 (2005).

105

Matsumoto, N. et al. Essential role of the a3 Isoform of V-ATPase in secretory lysosome trafficking via Rab7 recruitment. Sci. Rep. 8, 6701 (2018).

106

Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010).

107

Delaisse, J. M. et al. The mechanism switching the osteoclast from short to long duration bone resorption. Front. Cell Dev. Biol. 9, 644503 (2021).

108

Coxon, F. P. & Taylor, A. Vesicular trafficking in osteoclasts. Semin. Cell Dev. Biol. 19, 424–433 (2008).

109

Nesbitt, S. A. & Horton, M. A. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276, 266–269 (1997).

110

Yamaki, M. et al. Transcytosis of calcium from bone by osteoclast-like cells evidenced by direct visualization of calcium in cells. Arch. Biochem. Biophys. 440, 10–17 (2005).

111

Stenbeck, G. & Horton, M. A. A new specialized cell-matrix interaction in actively resorbing osteoclasts. J. Cell Sci. 113, 1577–1587 (2000).

112

Han, G., Zuo, J. & Holliday, L. S. Specialized roles for actin in osteoclasts: Unanswered questions and therapeutic opportunities. Biomolecules 9, 17 (2019).

113

Withers, G. S. & Wallace, C. S. Transient lamellipodia predict sites of dendritic branch formation in hippocampal neurons. Cell Tissue Res. 381, 35–42 (2020).

114

Machesky, L. M. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett. 582, 2102–2111 (2008).

115

Velasquez, J. T., St John, J. A., Nazareth, L. & Ekberg, J. A. K. Schwann cell lamellipodia regulate cell-cell interactions and phagocytosis. Mol. Cell Neurosci. 88, 189–200 (2018).

116

Fregno, I. & Molinari, M. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Crit. Rev. Biochem. Mol. Biol. 54, 153–163 (2019).

117

Barnea-Zohar, M. et al. An SNX10-dependent mechanism downregulates fusion between mature osteoclasts. J. Cell Sci. 134, jcs254979 (2021).

118

Ribet, A. B. P., Ng, P. Y. & Pavlos, N. J. Membrane transport proteins in osteoclasts: The Ins and outs. Front. Cell Dev. Biol. 9, 644986 (2021).

119

Lee, B. S. Myosins in osteoclast formation and function. Biomolecules 8, 157 (2018).

120

Moller, A. M., Delaisse, J. M. & Soe, K. Osteoclast fusion: time-lapse reveals involvement of CD47 and syncytin-1 at different stages of nuclearity. J. Cell Physiol. 232, 1396–1403 (2017).

121

Faccio, R. et al. Localization and possible role of two different alpha v beta 3 integrin conformations in resting and resorbing osteoclasts. J. Cell Sci. 115, 2919–2929 (2002).

122

Teitelbaum, S. L. The osteoclast and its unique cytoskeleton. Ann. N.Y. Acad. Sci. 1240, 14–17 (2011).

123

Epple, H. et al. Phospholipase Cgamma2 modulates integrin signaling in the osteoclast by affecting the localization and activation of Src kinase. Mol. Cell Biol. 28, 3610–3622 (2008).

124

Koduru, S. V. et al. The contribution of cross-talk between the cell-surface proteins CD36 and CD47-TSP-1 in osteoclast formation and function. J. Biol. Chem. 293, 15055–15069 (2018).

125

Kartner, N. et al. Inhibition of osteoclast bone resorption by disrupting vacuolar H+-ATPase a3-B2 subunit interaction. J. Biol. Chem. 285, 37476–37490 (2010).

126

Colacurcio, D. J. & Nixon, R. A. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res. Rev. 32, 75–88 (2016).

127

Kartner, N. & Manolson, M. F. Novel techniques in the development of osteoporosis drug therapy: the osteoclast ruffled-border vacuolar H(+)-ATPase as an emerging target. Expert Opin. Drug Discov. 9, 505–522 (2014).

128

Kikuta, J. & Ishii, M. Osteoclast migration, differentiation and function: novel therapeutic targets for rheumatic diseases. Rheumatol. (Oxf.) 52, 226–234 (2013).

129

McDonald, M. M., Kim, A. S., Mulholland, B. S. & Rauner, M. New insights into osteoclast biology. JBMR 5, e10539 (2021).

Bone Research
Article number: 61
Cite this article:
Hou J, Liu J, Huang Z, et al. Structure and function of the membrane microdomains in osteoclasts. Bone Research, 2023, 11: 61. https://doi.org/10.1038/s41413-023-00294-5

101

Views

1

Downloads

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 10 January 2023
Revised: 07 September 2023
Accepted: 18 September 2023
Published: 21 November 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return