AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms

Guizheng Wei1,2,3,Ke Lu2,3,Muhammad Umar2,3Zhenglin Zhu4William W. Lu3John R. Speakman5Yan Chen1( )Liping Tong2( )Di Chen2,3
Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

These authors contributed equally: Guizheng Wei and Ke Lu.

Show Author Information

Abstract

Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type Ⅱ diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.

References

1

Hu, Y. et al. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9, 20 (2021).

2

Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

3

Loeser, R. F. et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

4

Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).

5

Tong, L. et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 10, 60 (2022).

6

Scuderi, G. R. Complications after total knee arthroplasty: how to manage patients with osteolysis. J. Bone Jt. Surg. Am. 93, 2127–2135 (2011).

7

Grayson, C. W. & Decker, R. C. Total joint arthroplasty for persons with osteoarthritis. Phys. Med. Rehabil. 4, S97–S103 (2012).

8

Deveza, L. A. & Loeser, R. F. Is osteoarthritis one disease or a collection of many? Rheumatology. 57, iv34–iv42 (2018).

9

Bruyère, O. et al. Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on epidemiology and phenotype of osteoarthritis. Drugs Aging 32, 179–187 (2015).

10

Altman, R. et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 29, 1039–1049 (1986).

11

Courties, A., Sellam, J. & Berenbaum, F. Metabolic syndrome-associated osteoarthritis. Curr. Rheumatol. Rep. 29, 214–222 (2017).

12

Issa R. I. & Griffin T. M. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol. Aging Age Relat. Dis. 2, (2012).

13

Reyes, C. et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol. 68, 1869–1875 (2016).

14

Chang, J. et al. Systemic and local adipose tissue in knee osteoarthritis. Osteoarthr. Cartil. 26, 864–871 (2018).

15

Urban, H. & Little, C. B. The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology 57, iv10–iv21 (2018).

16

Thijssen, E., van Caam, A. & van der Kraan, P. M. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology 54, 588–600 (2015).

17

Wang, T. & He, C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44, 38–50 (2018).

18

Voinier, D. et al. Using cumulative load to explain how body mass index and daily walking relate to worsening knee cartilage damage over two years: the MOST study. Arthritis Rheumatol. 72, 957–965 (2020).

19

Lohmander, L. S. et al. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann. Rheum. Dis. 68, 490–496 (2009).

20

Plotz, B. et al. Current epidemiology and risk factors for the development of hand osteoarthritis. Curr. Rheumatol. Rep. 23, 61 (2021).

21

Giri, B. et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed. Pharmacother. 107, 306–328 (2018).

22

Veronese, N. et al. Type 2 diabetes mellitus and osteoarthritis. Semin. Arthritis Rheu. 49, 9–19 (2019).

23

Zhuo, Q. et al. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729–737 (2012).

24

So, M. W., Lee, S. & Kim, S. H. Association between dietary glycemic index and knee osteoarthritis: the Korean national health and nutrition examination survey 2010-2012. J. Acad. Nutr. Diet. 118, 1673–1686.e1672 (2018).

25

Veronese, N. et al. Adherence to a Mediterranean diet is associated with lower prevalence of osteoarthritis: data from the osteoarthritis initiative. Clin. Nutr. 36, 1609–1614 (2017).

26

Gandhi, R. et al. Metabolic syndrome and the functional outcomes of hip and knee arthroplasty. J. Rheumatol. 37, 1917–1922 (2010).

27

Yasuda, E. et al. Association between the severity of symptomatic knee osteoarthritis and cumulative metabolic factors. Aging Clin. Exp. Res. 30, 481–488 (2018).

28

Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation-United States, 2010-2012. MMWR Morb Mortal Wkly Rep. 62, 869–873 (2013).

29

Jorgensen, A. E., Kjaer, M. & Heinemeier, K. M. The Effect of aging and mechanical loading on the metabolism of articular cartilage. J. Rheumatol. 44, 410–417 (2017).

30

Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

31

Rasheed, Z., Akhtar, N. & Haqqi, T. M. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology 50, 838–851 (2011).

32

Steenvoorden, M. M. et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum. 54, 253–263 (2006).

33

DeGroot, J. et al. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthr. Cartil. 9, 720–726 (2001).

34

Huang, C. Y. et al. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes. Rheumatology 50, 1379–1389 (2011).

35

Yang, Q. et al. Advanced glycation end products-induced chondrocyte apoptosis through mitochondrial dysfunction in cultured rabbit chondrocyte. Fundam. Clin. Pharm. 29, 54–61 (2015).

36

Suzuki, A., Yabu, A. & Nakamura, H. Advanced glycation end products in musculoskeletal system and disorders. Methods 203, 179–186 (2022).

37

Gallo, J. et al. Inflammation and its resolution and the musculoskeletal system. J. Orthop. Transl. 10, 52–67 (2017).

38

Jrad, A. I. S. et al. Role of pro-inflammatory interleukins in osteoarthritis: a narrative review. Connect. Tissue Res. 64, 238–247 (2023).

39

Anderson, J. J. & Felson, D. T. Factors associated with osteoarthritis of the knee in the first national health and nutrition examination survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. Am. J. Epidemiol. 128, 179–189 (1988).

40

Rogero, M. M. & Calder, P. C. Obesity, inflammation, toll-Like receptor 4 and fatty acids. Nutrients 10, 432 (2018).

41

Conde, J. et al. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011, 203901 (2011).

42

Fain, J. N. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediat. Inflamm. 2010, 513948 (2010).

43

Guss, J. D. et al. The effects of metabolic syndrome, obesity, and the gut microbiome on load-induced osteoarthritis. Osteoarthr. Cartil. 27, 129–139 (2019).

44

Jiang, M. et al. Oral Administration of resveratrol alleviates osteoarthritis pathology in C57BL/6J mice model induced by a high-fat diet. Mediat. Inflamm. 2017, 7659023 (2017).

45

Liu, L. et al. Protective effect of resveratrol against IL-1β-induced inflammatory response on human osteoarthritic chondrocytes partly via the TLR4/MyD88/NF-κB signaling pathway: an “in vitro study”. Int. J. Mol. Sci. 15, 6925–6940 (2014).

46

de Silva, V. A. et al. Metformin in prevention and treatment of antipsychotic induced weight gain: a systematic review and meta-analysis. BMC Psychiatry 16, 341 (2016).

47

Yerevanian, A. & Soukas, A. A. Metformin: mechanisms in human obesity and weight loss. Curr. Obes. Rep. 8, 156–164 (2019).

48

Lu, C. H. et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. PLoS One 13, e0191242 (2018).

49

Li, J. et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann. Rheum. Dis. 79, 635–645 (2020).

50

Conrozier, T. How to treat osteoarthritis in obese patients? Curr. Rheumatol. Rev. 16, 99–104 (2020).

51

Matsuda, M. & Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pr. 7, E330–E341 (2013).

52

Niemann, B. et al. Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution part 3 of a 3-part series. J. Am. Coll. Cardiol. 70, 230–251 (2017).

53

Ahmed, B., Sultana, R. & Greene, M. W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 137, 111315 (2021).

54

Paneni, F. et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part Ⅰ. Eur. Heart J. 34, 2436–U2434 (2013).

55

de Mello, A. H. et al. Mitochondrial dysfunction in obesity. Life Sci. 192, 26–32 (2018).

56

Rendra, E. et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224, 242–253 (2019).

57

Ansari, M. Y., Ahmad, N. & Haqqi, T. M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed. Pharmacother. 129, 110452 (2020).

58

Lepetsos, P., Papavassiliou, K. A. & Papavassiliou, A. G. Redox and NF-κB signaling in osteoarthritis. Free Radic. Bio. Med. 132, 90–100 (2019).

59

Zhou, F. et al. Isorhamnetin attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through modulating reactive oxygen species homeostasis. J. Cell Mol. Med. 23, 4395–4407 (2019).

60

Bolduc, J. A., Collins, J. A. & Loeser, R. F. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic. Biol. Med. 132, 73–82 (2019).

61

Li, J. & Dong, S. The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells Int. 2016, 2470351 (2016).

62

Han, J. et al. Inhibition of NADPH oxidases prevents the development of osteoarthritis. Antioxidants 11, 2346 (2022).

63

Gui, T. et al. Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidant nanoparticles targeting synovium for osteoarthritis therapy. Biomaterials 283, 121437 (2022).

64

Lu, H. L. et al. Radical-scavenging and subchondral bone-regenerating nanomedicine for osteoarthritis treatment. ACS Nano 17, 6131–6146 (2023).

65

Reed, K. N. et al. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Mol. Cell Biochem. 397, 195–201 (2014).

66

Kang, D. et al. Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis. Nat. Commun. 13, 779 (2022).

67

Lee, S. H., Park, S. Y. & Choi, C. S. Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab. J. 46, 15–37 (2022).

68

Eymard, F. et al. Diabetes is a risk factor for knee osteoarthritis progression. Osteoarthr. Cartil. 23, 851–859 (2015).

69

Hamada, D. et al. Suppressive effects of insulin on tumor necrosis factor-dependent early osteoarthritic changes associated with obesity and type 2 diabetes mellitus. Arthritis Rheumatol. 68, 1392–1402 (2016).

70

Ribeiro, M. et al. Diabetes-accelerated experimental osteoarthritis is prevented by autophagy activation. Osteoarthr. Cartil. 24, 2116–2125 (2016).

71

Schett, G. et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 36, 403–409 (2013).

72

Qiao, L., Li, Y. & Sun, S. Insulin exacerbates inflammation in fibroblast-like synoviocytes. Inflammation 43, 916–936 (2020).

73

Blaney Davidson, E. N. et al. Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann. Rheum. Dis. 74, 1257–1264 (2015).

74

Courties, A. & Sellam, J. Osteoarthritis and type 2 diabetes mellitus: what are the links? Diabetes Res. Clin. Pr. 122, 198–206 (2016).

75

Chen, Y. J. et al. Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation. J. Orthop. Res. 34, 791–800 (2016).

76

Zhu, S. et al. The molecular structure and role of LECT2 or CHM-II in arthritis, cancer, and other diseases. J. Cell Physiol. 237, 480–488 (2022).

77

Willis, S. A. et al. Acute hyperenergetic, high-fat feeding increases circulating FGF21, LECT2, and Fetuin-A in healthy men. J. Nutr. 150, 1076–1085 (2020).

78

Ikeda, D. et al. iTRAQ-based proteomics reveals novel biomarkers of osteoarthritis. Biomarkers 18, 565–572 (2013).

79

Yang, Y. et al. Lipid metabolism in cartilage and its diseases: a concise review of the research progress. Acta Biochim. Biophys. Sin. 53, 517–527 (2021).

80

Dahaghin, S. et al. Do metabolic factors add to the effect of overweight on hand osteoarthritis? The rotterdam study. Ann. Rheum. Dis. 66, 916–920 (2007).

81

Gkretsi, V., Simopoulou, T. & Tsezou, A. Lipid metabolism and osteoarthritis: lessons from atherosclerosis. Prog. Lipid Res. 50, 133–140 (2011).

82

Puenpatom, R. A. & Victor, T. W. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad. Med. 121, 9–20 (2009).

83

Chang, H. W. et al. Blue mussel (Mytilus edulis) water extract ameliorates inflammatory responses and oxidative stress on osteoarthritis in obese rats. J. Pain. Res. 13, 1109–1119 (2020).

84

Sekar, S. et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci. Rep. 7, 46457 (2017).

85

Alvarez-Garcia, O. et al. Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1. Arthritis Rheumatol. 66, 1779–1788 (2014).

86

Sekar, S. et al. Saturated fatty acids promote chondrocyte matrix remodeling through reprogramming of autophagy pathways. Nutrition 54, 144–152 (2018).

87

Ma, H. et al. Myriocin alleviates Oleic/Palmitate induced chondrocyte degeneration via the suppression of ceramide. Eur. Rev. Med. Pharm. Sci. 24, 12938–12947 (2020).

88

Lu, B. et al. Dietary fat intake and radiographic progression of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Care Res. 69, 368–375 (2017).

89

Mustonen, A. M. et al. Anterior cruciate ligament transection alters the n-3/n-6 fatty acid balance in the lapine infrapatellar fat pad. Lipids Health Dis. 18, 67 (2019).

90

Bastiaansen-Jenniskens, Y. M. et al. Monounsaturated and saturated, but not n-6 polyunsaturated fatty acids decrease cartilage destruction under inflammatory conditions: a preliminary study. Cartilage 4, 321–328 (2013).

91

Van de Vyver, A. et al. Synovial fluid fatty acid profiles differ between osteoarthritis and healthy patients. Cartilage 11, 473–478 (2020).

92

Jiang, H. et al. Adiponectin, may be a potential protective factor for obesity-related osteoarthritis. Diabetes Metab. Syndr. Obes. 15, 1305–1319 (2022).

93

Loef, M. et al. Fatty acids and osteoarthritis: different types, different effects. Jt. Bone Spine 86, 451–458 (2019).

94

Frommer, K. W. et al. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann. Rheum. Dis. 74, 303–310 (2015).

95

Adler, N., Schoeniger, A. & Fuhrmann, H. Polyunsaturated fatty acids influence inflammatory markers in a cellular model for canine osteoarthritis. J. Anim. Physiol. N. 102, E623–E632 (2018).

96

Wu, C. L. et al. Serum and synovial fluid lipidomic profiles predict obesity-associated osteoarthritis, synovitis, and wound repair. Sci. Rep. 7, 44315 (2017).

97

Loef, M. et al. The association of plasma fatty acids with hand and knee osteoarthritis: the NEO study. Osteoarthr. Cartil. 28, 223–230 (2020).

98

Huang, M.-J. et al. Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice. Ann. Rheum. Dis. 73, 1719 (2014).

99

Zainal, Z. et al. Relative efficacies of omega-3 polyunsaturated fatty acids in reducing expression of key proteins in a model system for studying osteoarthritis. Osteoarthr. Cartil. 17, 896–905 (2009).

100

Sibille, K. T. et al. Omega-6: Omega-3 PUFA ratio, pain, functioning, and distress in adults with knee pain. Clin. J. Pain. 34, 182–189 (2018).

101

Hill, C. L. et al. Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose. Ann. Rheum. Dis. 75, 23–29 (2016).

102

Pousinis, P. et al. Lipidomic identification of plasma lipids associated with pain behaviour and pathology in a mouse model of osteoarthritis. Metabolomics 16, 32 (2020).

103

Zhao, W. et al. Label-free and continuous-flow ferrohydrodynamic separation of HeLa cells and blood cells in biocompatible ferrofluids. Adv. Funct. Mater. 26, 3990–3998 (2016).

104

Siodmiak, J. et al. Molecular dynamic analysis of hyaluronic acid and phospholipid interaction in tribological surgical adjuvant design for osteoarthritis. Molecules 22, 1436 (2017).

105

Rocha, B. et al. Identification of a distinct lipidomic profile in the osteoarthritic synovial membrane by mass spectrometry imaging. Osteoarthr. Cartil. 29, 750–761 (2021).

106

Kosinska, M. K. et al. A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum. 65, 2323–2333 (2013).

107

Zhai, G. et al. Activation of the phosphatidylcholine to lysophosphatidylcholine pathway is associated with osteoarthritis knee cartilage volume loss over time. Sci. Rep. 9, 9648 (2019).

108

Rocha, B. et al. Targeted phospholipidomic analysis of synovial fluid as a tool for osteoarthritis deep phenotyping. Osteoarthr. Cartil. Open 3, 100219 (2021).

109

Zhang, W. et al. Lysophosphatidylcholines to phosphatidylcholines ratio predicts advanced knee osteoarthritis. Rheumatology 55, 1566–1574 (2016).

110
Zhai G. Chapter Three - Clinical relevance of biochemical and metabolic changes in osteoarthritis. In: Makowski G. S. (ed). Advances in Clinical Chemistry, vol. 101. Elsevier, (2021), pp 95-120.
111

Zhai, G. J., Randell, E. W. & Rahman, P. Metabolomics of osteoarthritis: emerging novel markers and their potential clinical utility. Rheumatology 57, 2087–2095 (2018).

112

Pruzanski, W. et al. Enzymatic activity and distribution of phospholipase A2 in human cartilage. Life Sci. 48, 2457–2462 (1991).

113

Bomalaski, J. S. & Clark, M. A. Phospholipase A2 and arthritis. Arthritis Rheum. 36, 190–198 (1993).

114

Soccio, R. E. & Breslow, J. L. Intracellular cholesterol transport. Arterioscler Thromb. Vasc. Biol. 24, 1150–1160 (2004).

115

Wu, S. & De Luca, F. Role of cholesterol in the regulation of growth plate chondrogenesis and longitudinal bone growth. J. Biol. Chem. 279, 4642–4647 (2004).

116

Tsezou, A. et al. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes. J. Orthop. Res. 28, 1033–1039 (2010).

117

Wang, Q. et al. Fermentation supernatant of Staphylococcus aureus drives catabolism in chondrocytes via NF-κB signaling mediated increase of cholesterol metabolism. Exp. Cell Res. 410, 112952 (2022).

118

Wang, X. et al. Ultrasound-targeted simvastatin-loaded microbubble destruction promotes OA cartilage repair by modulating the cholesterol efflux pathway mediated by PPARγ in rabbits. Bone Jt. Res. 10, 693–703 (2021).

119

Kim, K. et al. RORα controls hepatic lipid homeostasis via negative regulation of PPARγ transcriptional network. Nat. Commun. 8, 162 (2017).

120

Sun, M. M. & Beier, F. Liver X receptor activation regulates genes involved in lipid homeostasis in developing chondrocytes. Osteoarthr. Cartil. Open 2, 100030 (2020).

121

Bougarne, N. et al. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 39, 760–802 (2018).

122

Ratneswaran, A. et al. Nuclear receptors regulate lipid metabolism and oxidative stress markers in chondrocytes. J. Mol. Med. 95, 431–444 (2017).

123

Xiao, J. et al. Activation of liver X receptors promotes inflammatory cytokine mRNA degradation by upregulation of tristetraprolin. Acta Biochim. Biophys. Sin. 49, 277–283 (2017).

124

Joseph, S. B. et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019–11025 (2002).

125

Kostopoulou, F. et al. MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes. Arthritis Res. Ther. 17, 42 (2015).

126

Collins-Racie, L. A. et al. Global analysis of nuclear receptor expression and dysregulation in human osteoarthritic articular cartilage: reduced LXR signaling contributes to catabolic metabolism typical of osteoarthritis. Osteoarthr. Cartil. 17, 832–842 (2009).

127

Joseph, S. B. et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213–219 (2003).

128

Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

129

He, H. et al. Vaspin regulated cartilage cholesterol metabolism through miR155/LXRα and participated in the occurrence of osteoarthritis in rats. Life Sci. 269, 119096 (2021).

130

Xing, H. et al. Metformin mitigates cholesterol accumulation via the AMPK/SIRT1 pathway to protect osteoarthritis chondrocytes. Biochem. Biophys. Res. Commun. 632, 113–121 (2022).

131

Lin, X. L. et al. Curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through AMPK-SIRT1-LXRα signaling in THP-1 macrophage-derived foam cells. DNA Cell Biol. 34, 561–572 (2015).

132

Zhu, Z. et al. AMPK activator decelerates osteoarthritis development by inhibition of β-catenin signaling in chondrocytes. J. Orthop. Transl. 38, 158–166 (2023).

133

Li, J. et al. Oral administration of berberine limits post-traumatic osteoarthritis development and associated pain via AMP-activated protein kinase (AMPK) in mice. Osteoarthr. Cartil. 30, 160–171 (2022).

134

Yi, D. et al. AMPK signaling in energy control, cartilage biology, and osteoarthritis. Front. Cell Dev. Biol. 9, 696602 (2021).

135

Liang, C. et al. Resveratrol improves the progression of osteoarthritis by regulating the SIRT1-FoxO1 pathway-mediated cholesterol metabolism. Mediat. Inflamm. 2023, 2936236 (2023).

136

Su, Z. et al. Lipid metabolism in cartilage development, degeneration, and regeneration. Nutrients 14, 3984 (2022).

137

Chambers, K. F. et al. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: a review. Nutrients 11, 2588 (2019).

138

Chen, L. et al. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 21, 1121–1139 (2022).

139

Triantaphyllidou, I. E. et al. Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet. Osteoarthr. Cartil. 21, 322–330 (2013).

140

Garcia-Gil, M. et al. Serum lipid levels and risk of hand osteoarthritis: the chingford prospective cohort study. Sci. Rep. 7, 3147 (2017).

141

Lu, K. et al. Defects in a liver-bone axis contribute to hepatic osteodystrophy disease progression. Cell Metab. 34, 441–457.e447 (2022).

142

Liu, Y. et al. The role of PPAR-δ in metabolism, inflammation, and cancer: many characters of a critical transcription factor. Int. J. Mol. Sci. 19, 3339 (2018).

143

Zhang, H. et al. Glucagon-like peptide-1 attenuated carboxymethyl lysine induced neuronal apoptosis via peroxisome proliferation activated receptor-γ. Aging 13, 19013–19027 (2021).

144

Nogueira-Recalde, U. et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. Ebiomedicine 45, 588–605 (2019).

145

Park, S. et al. PPARα-ACOT12 axis is responsible for maintaining cartilage homeostasis through modulating de novo lipogenesis. Nat. Commun. 13, 3 (2022).

146

Zhou, Y. et al. Chondroprotection of PPARα activation by WY14643 via autophagy involving Akt and ERK in LPS-treated mouse chondrocytes and osteoarthritis model. J. Cell Mol. Med. 23, 2782–2793 (2019).

147

Sabatini, M. et al. Effects of agonists of peroxisome proliferator-activated receptor gamma on proteoglycan degradation and matrix metalloproteinase production in rat cartilage in vitro. Osteoarthr. Cartil. 10, 673–679 (2002).

148

Vasheghani, F. et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann. Rheum. Dis. 74, 569–578 (2015).

149

Watters, J. W. et al. Inverse relationship between matrix remodeling and lipid metabolism during osteoarthritis progression in the STR/Ort mouse. Arthritis Rheum. 56, 2999–3009 (2007).

150

Wang, H. et al. GDF11 inhibits abnormal adipogenesis of condylar chondrocytes in temporomandibular joint osteoarthritis. Bone Jt. Res. 11, 453–464 (2022).

151

Huang, G. et al. Role of peroxisome proliferator-activated receptors in osteoarthritis (Review). Mol. Med. Rep. 23, 159 (2021).

152

Ratneswaran, A. et al. Peroxisome proliferator-activated receptor δ promotes the progression of posttraumatic osteoarthritis in a mouse model. Arthritis Rheumatol. 67, 454–464 (2015).

153

Choi, W. S. et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis. Nature 566, 254–258 (2019).

154

Gentili, C. et al. Cholesterol secretion and homeostasis in chondrocytes: a liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression. Matrix Biol. 24, 35–44 (2005).

155

Liang, T. et al. Inhibition of nuclear receptor RORα attenuates cartilage damage in osteoarthritis by modulating IL-6/STAT3 pathway. Cell Death Dis. 12, 886 (2021).

156

Li, X. C. et al. MicroRNA-10a-3p improves cartilage degeneration by regulating CH25H-CYP7B1-ROR alpha mediated cholesterol metabolism in knee osteoarthritis rats. Front. Pharm. 12, 690181 (2021).

157

Cao, C. et al. Cholesterol-induced LRP3 downregulation promotes cartilage degeneration in osteoarthritis by targeting Syndecan-4. Nat. Commun. 13, 7139 (2022).

158

Farnaghi, S. et al. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int. J. Rheum. Dis. 20, 131–140 (2017).

159

Pan, F. et al. Association between metabolic syndrome and knee structural change on MRI. Rheumatology 59, 185–193 (2020).

160

Meng, T. et al. Association of glucose homeostasis and metabolic syndrome with knee cartilage defects and cartilage volume in young adults. Semin. Arthritis Rheum. 50, 192–197 (2020).

161

Schwager, J. L. et al. Association of serum low-density lipoprotein, high-density lipoprotein, and total cholesterol with development of knee osteoarthritis. Arthrit Care Res. 74, 274–280 (2022).

162

Zhang, K. B. et al. High-density lipoprotein cholesterol and apolipoprotein A1 in synovial fluid: potential predictors of disease severity of primary knee osteoarthritis. Cartilage 13, 1465S–1473S (2021).

163

Luo, Q. L. et al. Effects of ultrasound therapy on the synovial fluid proteome in a rabbit surgery-induced model of knee osteoarthritis. Biomed. Eng. Online 18, 18 (2019).

164

Sánchez-Enríquez, S. et al. Increase levels of apo-A1 and apo B are associated in knee osteoarthritis: lack of association with VEGF-460 T/C and +405 C/G polymorphisms. Rheumatol. Int. 29, 63–68 (2008).

165

Meng, H. et al. Causal associations of circulating lipids with osteoarthritis: a bidirectional mendelian randomization study. Nutrients 14, 1327 (2022).

166

Kurano, M. et al. Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction. Inflamm. Res. 72, 263–280 (2023).

167

Bhatia, S. et al. Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer’s disease. Biochem. J. 442, 713–721 (2012).

168

Zhang, Y. et al. Antioxidant activities of recombinant amphioxus (Branchiostoma belcheri) apolipoprotein D. Mol. Biol. Rep. 38, 1847–1851 (2011).

169

Qin, Y. et al. Apolipoprotein D as a potential biomarker and construction of a transcriptional regulatory-immune network associated with osteoarthritis by weighted gene coexpression network analysis. Cartilage 13, 1702s–1717s (2021).

170

Li, B. et al. A novel serological biomarker are associated with disease severity in patients with osteoarthritis. J. Bone Min. Metab. 40, 1007–1013 (2022).

171

Farnaghi, S. et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis. Faseb J. 31, 356–367 (2017).

172

de Munter, W. et al. High LDL levels lead to increased synovial inflammation and accelerated ectopic bone formation during experimental osteoarthritis. Osteoarthr. Cartil. 24, 844–855 (2016).

173

Friedman, J. M. Leptin and the endocrine control of energy balance. Nat. Metab. 1, 754–764 (2019).

174

Hui, W. et al. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann. Rheum. Dis. 71, 455–462 (2012).

175

Bao, J. P. et al. Leptin plays a catabolic role on articular cartilage. Mol. Biol. Rep. 37, 3265–3272 (2010).

176

Abella, V. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 13, 100–109 (2017).

177

Stannus, O. P. et al. Cross-sectional and longitudinal associations between circulating leptin and knee cartilage thickness in older adults. Ann. Rheum. Dis. 74, 82–88 (2015).

178

Dumond, H. et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 48, 3118–3129 (2003).

179

Chen, T. H. et al. Evidence for a protective role for adiponectin in osteoarthritis. Biochim. Biophys. Acta 1762, 711–718 (2006).

180

Kang, E. H. et al. Adiponectin is a potential catabolic mediator in osteoarthritis cartilage. Arthritis Res. Ther. 12, R231 (2010).

181

Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).

182

Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339 (2007).

183

Koskinen, A. et al. Adiponectin associates with markers of cartilage degradation in osteoarthritis and induces production of proinflammatory and catabolic factors through mitogen-activated protein kinase pathways. Arthritis Res. Ther. 13, R184 (2011).

184

Hao, D. et al. Synovial fluid level of adiponectin correlated with levels of aggrecan degradation markers in osteoarthritis. Rheumatol. Int. 31, 1433–1437 (2011).

185

Sharma, L. Osteoarthritis of the knee. N. Engl. J. Med. 384, 51–59 (2021).

186

Bannuru, R. R. et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 27, 1578–1589 (2019).

187

Kolasinski, S. L. et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).

188

Fransen, M. et al. Exercise for osteoarthritis of the knee. Cochrane Database Syst. Rev. 1, Cd004376 (2015).

189

Juhl, C. et al. Impact of exercise type and dose on pain and disability in knee osteoarthritis: a systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol. 66, 622–636 (2014).

190

Messier, S. P. et al. Intentional weight loss in overweight and obese patients with knee osteoarthritis: is more better? Arthritis Care Res. 70, 1569–1575 (2018).

191

Hall, M. et al. Diet-induced weight loss alone or combined with exercise in overweight or obese people with knee osteoarthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 48, 765–777 (2019).

192

Heidari, B. Knee osteoarthritis diagnosis, treatment and associated factors of progression: part Ⅱ. Casp. J. Intern. Med. 2, 249–255 (2011).

193

Deyle, G. D. et al. Physical therapy versus glucocorticoid injection for osteoarthritis of the knee. N. Engl. J. Med. 382, 1420–1429 (2020).

194

Rutjes, A. W. et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann. Intern. Med. 157, 180–191 (2012).

195

Shan, L. et al. Intermediate and long-term quality of life after total knee replacement: a systematic review and meta-analysis. J. Bone Jt. Surg. Am. 97, 156–168 (2015).

196

Gai, Z. et al. Lipid accumulation and chronic kidney disease. Nutrients 11, 722 (2019).

197

Istvan, E. S. & Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001).

198

Saberianpour, S. et al. Therapeutic effects of statins on osteoarthritis: a review. J. Cell Biochem. 123, 1285–1297 (2022).

199

Oesterle, A., Laufs, U. & Liao, J. K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 120, 229–243 (2017).

200

Juybari, K. B., Hosseinzadeh, A. & Sharifi, A. M. Protective effects of atorvastatin against high glucose-induced nuclear factor-κB activation in cultured C28I2 chondrocytes. J. Recept Signal Transduct. Res. 39, 1–8 (2019).

201

Terabe, K. et al. Simvastatin promotes restoration of chondrocyte morphology and phenotype. Arch. Biochem. Biophys. 665, 1–11 (2019).

202

Wu, Y. P. et al. Pravastatin reduces matrix metalloproteinases expression and promotes cholesterol efflux in osteoarthritis chondrocytes. Evid.-Based Compl. Alt. 2022, 9666963 (2022).

203

Du, J. et al. Effect of high fat diet and excessive compressive mechanical force on pathologic changes of temporomandibular joint. Sci. Rep.-Uk 10, 17457 (2020).

204

Tanaka, T. et al. Attenuation of osteoarthritis progression in mice following intra-articular administration of simvastatin-conjugated gelatin hydrogel. J. Tissue Eng. Regen. Med. 13, 423–432 (2019).

205

Katole, N. T., Kale, J. S. & Salankar, H. V. Evaluation of the antinociceptive action of simvastatin in mice. Cureus 14, e26910–e26910 (2022).

206

Goto, N. et al. Single intra-articular injection of fluvastatin-PLGA microspheres reduces cartilage degradation in rabbits with experimental osteoarthritis. J. Orthop. Res 35, 2465–2475 (2017).

207

Zhou, B. et al. Proliferation of rabbit chondrocyte and inhibition of IL-1β-induced apoptosis through MEK/ERK signaling by statins. Vitr. Cell Dev.- 53, 124–131 (2017).

208

Clockaerts, S. et al. Statin use is associated with reduced incidence and progression of knee osteoarthritis in the Rotterdam study. Ann. Rheum. Dis. 71, 642–647 (2012).

209

Haj-Mirzaian, A. et al. Statin use and knee osteoarthritis outcome measures according to the presence of heberden nodes: results from the osteoarthritis initiative. Radiology 293, 396–404 (2019).

210

Loomba, R. et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (mozart trial). Hepatology 61, 1239–1250 (2015).

211

Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

212

Gierman, L. M. et al. Osteoarthritis development is induced by increased dietary cholesterol and can be inhibited by atorvastatin in APOE*3Leiden.CETP mice-a translational model for atherosclerosis. Ann. Rheum. Dis. 73, 921–927 (2014).

213

Szychlinska, M. A., Ravalli, S. & Musumeci, G. Pleiotropic effect of fibrates on senescence and autophagy in osteoarthritis. Ebiomedicine 45, 11–12 (2019).

214

Lalloyer, F. & Staels, B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb. Vasc. Biol. 30, 894–899 (2010).

215

Clockaerts, S. et al. Cytokine production by infrapatellar fat pad can be stimulated by interleukin 1 beta and inhibited by peroxisome proliferator activated receptor alpha agonist. Ann. Rheum. Dis. 71, 1012–1018 (2012).

216

Clockaerts, S. et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthr. Cartil. 18, 876–882 (2010).

217

Distel, E. et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum. 60, 3374–3377 (2009).

218

Shirinsky, I. V. & Shirinsky, V. S. Treatment of erosive osteoarthritis with peroxisome proliferator-activated receptor alpha agonist fenofibrate: a pilot study. Rheumatol. Int 34, 613–616 (2014).

219

Wei, W. et al. Statins and fibrates do not affect development of spontaneous cartilage damage in STR/Ort mice. Osteoarthr. Cartil. 22, 293–301 (2014).

220

van Gemert, Y. et al. Novel high-intensive cholesterol-lowering therapies do not ameliorate knee OA development in humanized dyslipidemic mice. Osteoarthr. Cartil. 29, 1314–1323 (2021).

221

Wu, C. L. et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Ann. Rheum. Dis. 74, 2076–2083 (2015).

222

Yu, H. et al. A low ratio of n-6/n-3 polyunsaturated fatty acids suppresses matrix metalloproteinase 13 expression and reduces adjuvant-induced arthritis in rats. Nutr. Res 35, 1113–1121 (2015).

223

Shen, C. L. et al. Decreased production of inflammatory mediators in human osteoarthritic chondrocytes by conjugated linoleic acids. Lipids 39, 161–166 (2004).

224

Tsubosaka, M. et al. Gelatin hydrogels with eicosapentaenoic acid can prevent osteoarthritis progression in vivo in a mouse model. J. Orthop. Res. 38, 2157–2169 (2020).

225

Stonehouse, W. et al. Krill oil improved osteoarthritic knee pain in adults with mild to moderate knee osteoarthritis: a 6-month multicenter, randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 116, 672–685 (2022).

226

MacFarlane, L. A. et al. The effects of vitamin d and marine omega-3 fatty acid supplementation on chronic knee pain in older us adults: results from a randomized trial. Arthritis Rheumatol. 72, 1836–1844 (2020).

Bone Research
Article number: 63
Cite this article:
Wei G, Lu K, Umar M, et al. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Research, 2023, 11: 63. https://doi.org/10.1038/s41413-023-00301-9

184

Views

1

Downloads

17

Crossref

15

Web of Science

17

Scopus

Altmetrics

Received: 06 September 2023
Revised: 11 October 2023
Accepted: 27 October 2023
Published: 06 December 2023
© The Author(s) 2023

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Return