Electroreduction of small molecules such as CO2, N2, and NO3− is one of the promising routes to produce sustainable chemicals and fuels and store renewable energy, which could contribute to our carbon neutrality goal. Emerging multicomponent electrocatalysts, integrating the advantages of individual components of catalysts, are of great importance to achieve efficient electroreduction of small molecules via activation of inert bonds and multistep transformation. In this review, some basic issues in the electroreduction of small molecules including CO2, N2, and NO3− are briefly introduced. We then discuss our fundamental understanding of the rule of interaction in multicomponent electrocatalysts, and summarize three models for multicomponent catalysts, including type I, “a non-catalytically active component can activate or protect another catalytic component”; type II, “all catalytic components provide active intermediates for electrochemical conversion”; and type III, “one component provides the substrate for the other through conversion or adsorption”. Additionally, an outlook was considered to highlight the future directions of multicomponent electrocatalysts toward industrial applications.
M. He, Y. Sun and B. Han, Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling, Angew. Chem., Int. Ed., 2013, 52, 9620–9633.
M. He, Y. Sun and B. Han, Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality, Angew. Chem., Int. Ed., 2022, 61, e202112835.
P. Gao, L. Zhong, B. Han, M. He and Y. Sun, Green carbon science: Keeping the pace in practice, Angew. Chem., Int. Ed., 2022, 61, e202210095.
S. Jia, X. Ma, X. Sun and B. Han, Electrochemical transformation of CO2 to value-added chemicals and fuels, CCS Chem., 2022, 4, 3213–3229.
X. Song, S. Jia, L. Xu, J. Feng, L. He, X. Sun and B. Han, Towards sustainable CO2 electrochemical transformation via coupling design strategy, Mater. Today Sustain., 2022, 19, 100179.
L. Wu, W. Guo, X. Sun and B. Han, Rational design of nanocatalysts for ambient ammonia electrosynthesis, Pure Appl. Chem., 2021, 93, 777–797.
Y. Kawamata and P. S. Baran, Electrosynthesis: Sustainability is not enough, Joule, 2020, 4, 701–704.
X. Tan, X. Sun and B. Han, Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation, Natl. Sci. Rev., 2021, 9, nwab022.
X. Song, W. Guo, X. Ma, L. Xu, X. Tan, L. Wu, S. Jia, T. Wu, J. Ma, F. Zhang, J. Jia, X. Sun and B. Han, Boosting CO2 electroreduction over Co nanoparticles supported on N,B-co-doped graphitic carbon, Green Chem., 2022, 24, 1488–1493.
X. Tan, W. Guo, S. Liu, S. Jia, L. Xu, J. Feng, X. Yan, C. Chen, Q. Zhu, X. Sun and B. Han, A Sn-stabilized Cuδ+ electrocatalyst toward highly selective CO2-to-CO in a wide potential range, Chem. Sci., 2022, 13, 11918.
Y. Xu, H. Yang, X. Chang and B. Xu, Introduction to electrocatalytic kinetics, Acta Phys.-Chim. Sin., 2022, 39, 2210025.
J. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite catalysts, Chem. Rev., 2013, 113, 2139–2181.
L. Zhou and R. Lv, Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols, J. Energy Chem., 2022, 70, 310–331.
Y. Zhai, P. Han, Q. Yun, Y. Ge, X. Zhang, Y. Chen and H. Zhang, Phase engineering of metal nanocatalysts for electrochemical CO2 reduction, eScience, 2022, 2, 467–485.
D. D. Zhu, J. L. Liu and S. Z. Qiao, Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide, Adv. Mater., 2016, 28, 3423–3452.
S. Jin, Z. Hao, K. Zhang, Z. Yan and J. Chen, Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization, Angew. Chem., Int. Ed., 2021, 60, 20627–20648.
H. Shin, K. U. Hansen and F. Jiao, Techno-economic assessment of low-temperature carbon dioxide electrolysis, Nat. Sustain., 2021, 4, 911–919.
F. Chang, G. Zhan, Z. Wu, Y. Duan, S. Shi, S. Zeng, X. Zhang and S. Zhang, Technoeconomic Analysis and Process Design for CO2 Electroreduction to CO in Ionic Liquid Electrolyte, ACS Sustainable Chem. Eng., 2021, 9, 9045–9052.
M. Jouny, W. Luc and F. Jiao, General Techno-Economic Analysis of CO2 Electrolysis Systems, Ind. Eng. Chem. Res., 2018, 57, 2165–2177.
M. G. Kibria, J. P. Edwards, C. M. Gabardo, C.-T. Dinh, A. Seifitokaldani, D. Sinton and E. H. Sargent, Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design, Adv. Mater., 2019, 31, 1807166.
T. Xu, B. Ma, J. Liang, L. Yue, Q. Liu, T. Li, H. Zhao, Y. Luo, S. Lu and X. Sun, Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction, Acta Phys.-Chim. Sin., 2021, 37, 2009043.
Y. Wan, J. Xu and R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions, Mater. Today, 2019, 27, 69–90.
Y. Wu, Z. Jiang, Z. Lin, Y. Liang and H. Wang, Direct electrosynthesis of methylamine from carbon dioxide and nitrate, Nat. Sustain., 2021, 4, 725–730.
D. Wang, C. Chen and S. Wang, Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules, Sci. China: Chem., 2022, DOI: 10.1007/s11426-11022-11419-y.
H. Wan, A. Bagger and J. Rossmeisl, Electrochemical Nitric Oxide Reduction on Metal Surfaces, Angew. Chem., Int. Ed., 2021, 60, 21966–21972.
H. Zhang, Y. Li, C. Cheng, J. Zhou, P. Yin, H. Wu, Z. Liang, J. Zhang, Q. Yun, A.-L. Wang, L. Zhu, B. Zhang, W. Cao, X. Meng, J. Xia, Y. Yu and Q. Lu, Isolated electron-rich ruthenium atoms in intermetallic compounds for boosting electrochemical nitric oxide reduction to ammonia, Angew. Chem., Int. Ed., 2022, DOI: 10.1002/anie.202213351.
Y. Zhang, Y. Wang, L. Han, S. Wang, T. Cui, Y. Yan, M. Xu, H. Duan, Y. Kuang and X. Sun, Nitrite electroreduction to ammonia promoted by molecular carbon dioxide with near-unity faradaic efficiency, Angew. Chem., Int. Ed., 2022, DOI: 10.1002/anie.202213711.
S. E. Braley, J. Xie, Y. Losovyj and J. M. Smith, Graphite conjugation of a macrocyclic cobalt complex enhances nitrite electroreduction to ammonia, J. Am. Chem. Soc., 2021, 143, 7203–7208.
P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Huang and S.-Z. Qiao, Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling, Nat. Commun., 2022, 13, 3754.
Y. Li, F. Liu, Z. Chen, L. Shi, Z. Zhang, Y. Gong, Y. Zhang, X. Tian, Y. Zhang, X. Qiu, X. Ding, X. Bai, H. Jiang, Y. Zhu and J. Zhu, Perovskite-socketed sub-3 nm copper for enhanced CO2 electroreduction to C2+, Adv. Mater., 2022, 34, 2206002.
P. Li, J. Bi, J. Liu, Q. Zhu, C. Chen, X. Sun, J. Zhang and B. Han, In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts, Nat. Commun., 2022, 13, 1965.
F.-Y. Chen, Z.-Y. Wu, S. Gupta, D. J. Rivera, S. V. Lambeets, S. Pecaut, J. Y. T. Kim, P. Zhu, Y. Z. Finfrock, D. M. Meira, G. King, G. Gao, W. Xu, D. A. Cullen, H. Zhou, Y. Han, D. E. Perea, C. L. Muhich and H. Wang, Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst, Nat. Nanotechnol., 2022, 17, 759–767.
C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions, Angew. Chem., Int. Ed., 2018, 57, 6073–6076.
C. Yang, B. Huang, S. Bai, Y. Feng, Q. Shao and X. Huang, A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals, Adv. Mater., 2020, 32, 2001267.
W. Wang, Z. Wang, R. Yang, J. Duan, Y. Liu, A. Nie, H. Li, B. Y. Xia and T. Zhai, In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window, Angew. Chem., Int. Ed., 2021, 60, 22940–22947.
J. Duan, T. Liu, Y. Zhao, R. Yang, Y. Zhao, W. Wang, Y. Liu, H. Li, Y. Li and T. Zhai, Active and conductive layer stacked superlattices for highly selective CO2 electroreduction, Nat. Commun., 2022, 13, 2039.
K. Sun, K. Yu, J. Fang, Z. Zhuang, X. Tan, Y. Wu, L. Zeng, Z. Zhuang, Y. Pan and C. Chen, Nature-inspired design of molybdenum–selenium dual-single-atom electrocatalysts for CO2 reduction, Adv. Mater., 2022, 34, 2206478.
Y. Zhou, Y. Yao, R. Zhao, X. Wang, Z. Fu, D. Wang, H. Wang, L. Zhao, W. Ni, Z. Yang and Y.-M. Yan, Stabilization of Cu+ via strong electronic interaction for selective and stable CO2 electroreduction, Angew. Chem., Int. Ed., 2022, 61, e202205832.
Z.-H. Zhu, Z.-L. Liang, Z.-H. Jiao, X.-L. Jiang, Y. Xie, H. Xu and B. Zhao, A facile strategy to obtain low-cost and high-performance gold-based catalysts from artificial electronic waste by [Zr48Ni6] nano-cages in MOFs for CO2 electroreduction to CO, Angew. Chem., Int. Ed., 2022, 61, e202214243.
L. Xu, X. Ma, L. Wu, X. Tan, X. Song, Q. Zhu, C. Chen, Q. Qian, Z. Liu, X. Sun, S. Liu and B. Han, In situ periodic regeneration of catalyst during CO2 electroreduction to C2+ products, Angew. Chem., Int. Ed., 2022, 61, e202210375.
X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang and B. Han, Molybdenum–bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol, Angew. Chem., Int. Ed., 2016, 55, 6771–6775.
R. Wang, X. Wang, W. Weng, Y. Yao, P. Kidkhunthod, C. Wang, Y. Hou and J. Guo, Proton/electron donors enhancing electrocatalytic activity of supported conjugated microporous polymers for CO2 reduction, Angew. Chem., Int. Ed., 2022, 61, e202115503.
M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D.-H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C.-T. Dinh, Y. Wang, Y. Wang, D. Sinton and E. H. Sargent, Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen, Nat. Commun., 2019, 10, 5814.
G. Fan, W. Xu, J. Li, J.-L. Chen, M. Yu, Y. Ni, S. Zhu, X.-C. Su and F. Cheng, Nanoporous NiSb to enhance nitrogen electroreduction via tailoring competitive adsorption sites, Adv. Mater., 2021, 33, 2101126.
W. Guo, S. Liu, X. Tan, R. Wu, X. Yan, C. Chen, Q. Zhu, L. Zheng, J. Ma, J. Zhang, Y. Huang, X. Sun and B. Han, Highly efficient CO2 electroreduction to methanol through atomically dispersed Sn coupled with defective CuO catalysts, Angew. Chem., Int. Ed., 2021, 60, 21979–21987.
Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, Z. Bai, A. Yu and Z. Chen, “Two ships in a bottle” design for Zn–Ag–O catalyst enabling selective and long-lasting CO2 electroreduction, J. Am. Chem. Soc., 2021, 143, 6855–6864.
K.-Y. Wang, Z. Yang, J. Zhang, S. Banerjee, E. A. Joseph, Y.-C. Hsu, S. Yuan, L. Feng and H.-C. Zhou, Creating hierarchical pores in metal–organic frameworks via postsynthetic reactions, Nat. Protoc., 2022, DOI: 10.1038/s41596-41022-00759-41597.
W. Lin, H. Chen, G. Lin, S. Yao, Z. Zhang, J. Qi, M. Jing, W. Song, J. Li, X. Liu, J. Fu and S. Dai, Creating frustrated Lewis pairs in defective boron carbon nitride for electrocatalytic nitrogen reduction to ammonia, Angew. Chem., Int. Ed., 2022, 61, e202207807.
Y. Kong, Y. Li, X. Sang, B. Yang, Z. Li, S. Zheng, Q. Zhang, S. Yao, X. Yang, L. Lei, S. Zhou, G. Wu and Y. Hou, Atomically dispersed Zinc(I) active sites to accelerate nitrogen reduction kinetics for ammonia electrosynthesis, Adv. Mater., 2022, 34, 2103548.
Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Unveiling the Activity Origin of a Copper-based Electrocatalyst for Selective Nitrate Reduction to Ammonia, Angew. Chem., Int. Ed., 2020, 59, 5350.
Y. Ma, J. Yu, M. Sun, B. Chen, X. Zhou, C. Ye, Z. Guan, W. Guo, G. Wang, S. Lu, D. Xia, Y. Wang, Z. He, L. Zheng, Q. Yun, L. Wang, J. Zhou, P. Lu, J. Yin, Y. Zhao, Z. Luo, L. Zhai, L. Liao, Z. Zhu, R. Ye, Y. Chen, Y. Lu, S. Xi, B. Huang, C.-S. Lee and Z. Fan, Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction, Adv. Mater., 2022, 34, 2110607.
D. Chen, L.-H. Zhang, J. Du, H. Wang, J. Guo, J. Zhan, F. Li and F. Yu, A tandem strategyfor enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters, Angew. Chem., Int. Ed., 2021, 60, 24022–24027.
L. Lin, T. Liu, J. Xiao, H. Li, P. Wei, D. Gao, B. Nan, R. Si, G. Wang and X. Bao, Enhancing CO2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst, Angew. Chem. Int. Ed., 2020, 50, 22408–22413.
T. Zhang, J. C. Bui, Z. Li, A. T. Bell, A. Z. Weber and J. Wu, Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes, Nat. Catal., 2022, 5, 202–211.
W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira and W. Schuhmann, Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia, Nat. Commun., 2022, 13, 1129.
C. Chen, X. Yan, Y. Wu, S. Liu, X. Zhang, X. Sun, Q. Zhu, H. Wu and B. Han, Boosting the productivity of electrochemical CO2 reduction to multi-carbon products by enhancing CO2 diffusion through a porous organic cage, Angew. Chem., Int. Ed., 2022, 61, e202202607.
H. K. Lee, C. S. L. Koh, Y. H. Lee, C. Liu, I. Y. Phang, X. Han, C.-K. Tsung and X. Y. Ling, Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach, Sci. Adv., 2018, 4, eaar3208.
W.-J. Sun, H.-Q. Ji, L.-X. Li, H.-Y. Zhang, Z.-K. Wang, J.-H. He and J.-M. Lu, Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia, Angew. Chem., Int. Ed., 2021, 60, 22933–22939.
W. Qiu, X. Chen, Y. Liu, D. Xiao, P. Wang, R. Li, K. Liu, Z. Jin and P. Li, Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis, Appl. Catal., B, 2022, 315, 121548.
D. Yang, Q. Zhu and B. Han, Electroreduction of CO2 in ionic liquid-based electrolytes, The Innovation, 2020, 1, 100016.
Y. Zhong, H. Xiong, J. Low, R. Long and Y. Xiong, Recent progress in electrochemical C–N coupling reactions, eScience, 2022, DOI: 10.1016/j.esci.2022.1011.1002.
R. Wang, S. Jia, L. Wu, X. Sun and B. Han, CO2–involved electrochemical C–N coupling into value-added chemicals, Chem. J. Chin. Univ., 2022, 43, 20220395.
S. Wang, T. Feng, Y. Wang and Y. Qiu, Recent Advances in Electrocarboxylation with CO2, Chem. – Asian J., 2022, 17, e202200543.
Y. Wang, Z. Zhao, D. Pan, S. Wang, K. Jia, D. Ma, G. Yang, X.-S. Xue and Y. Qiu, Metal-free electrochemical carboxylation of organic halides in the presence of catalytic amounts of an organomediator, Angew. Chem., Int. Ed., 2022, 61, e202210201.
X. Sun, Q. Zhu, J. Hu, X. Kang, J. Ma, H. Liu and B. Han, N,N–Dimethylation of nitrobenzenes with CO2 and water by electrocatalysis, Chem. Sci., 2017, 8, 5669–5674.
Z.-H. Lyu, J. Fu, T. Tang, J. Zhang and J.-S. Hu, Design of ammonia oxidation electrocatalystsfor efficient direct ammonia fuel cells, EnergyChem, 2022, DOI: 10.1016/j.enchem.2022.100093.
D. Li, N. Xu, Y. Zhao, C. Zhou, L.-P. Zhang, L.-Z. Wu and T. Zhang, A Reliable and Precise Protocol for Urea Quantification in Photo/Electrocatalysis, Small Methods, 2022, 6, 2200561.
Y. Huang, Y. Wang, Y. Wu, Y. Yu and B. Zhang, Electrocatalytic construction of the C–N bond from the derivates of CO2 and N2, Sci. China: Chem., 2022, 65, 204–206.
X. Song, L. Xu, X. Sun and B. Han, In situ/operando characterization techniques for electrochemical CO2 reduction, Sci. China: Chem., 2022, DOI: 10.1007/s11426-021-1463-6.
Y. Zou and S. Wang, An Investigation of Active Sites for electrochemical CO2 Reduction Reactions: From In Situ Characterization to Rational Design, Adv. Sci., 2021, 8, 2003579.