PDF (8.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

Recent progress in metal–organic frameworks (MOFs) for electrocatalysis

Cha LiaHao ZhangaMing LiuaFei-Fan LangaJiandong Panga,b ()Xian-He Bua,b,c ()
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P.R. China
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Electrocatalytic technology opens a new path to solve the existing problems in fossil fuel consumption and environmental pollution as well as efficient energy use. Metal–organic frameworks (MOFs), a class of crystalline porous materials with high specific surface area, high porosity and customizable structures, have emerged as promising electrocatalysts. However, their inherently low electrical conductivity and stability greatly hinder their further applications. Therefore, strategies such as synthesizing two-dimensional conductive MOFs, designing unsaturated metal sites, and building MOF nanoarrays have been developed to enhance the conductivity and catalytic reaction transfer rates of MOFs, accompanied by the rational designs of MOFs for improving their stability. In this review, the applications of MOF-based electrocatalysts in the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and nitrogen reduction reaction (NRR) are presented in detail with the classification of monometallic MOFs, bimetallic MOFs, MOF-based composites and MOFs as supports. In addition, the relationship between the structure and performance is discussed through DFT calculations used in related work. Finally, future challenges and application prospects of MOFs in electrocatalysis are highlighted.

References

1

H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C. P. Li and M. Du, Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall Water splitting at high current densities, Adv. Funct. Mater., 2020, 30, 1910596.

2

C. L. Fu, Y. Wang and J. H. Huang, Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction, Chin. J. Struct. Chem., 2020, 39, 1807–1816.

3

Y. R. Wang, H. M. Ding, S. N. Sun, J. W. Shi, Y. L. Yang, Q. Li, Y. Chen, S. L. Li and Y.-Q. Lan, Light, heat and electricity Integrated energy conversion system: photothermal-assisted Co-electrolysis of CO2 and methanol, Angew. Chem., Int. Ed., 2022, 61, e202212162.

4

Q. Huang, Q. Li, J. Liu, Y. R. Wang, R. Wang, L. Z. Dong, Y. H. Xia, J. L. Wang and Y.-Q. Lan, Disclosing CO2 activation mechanism by hydroxyl-induced crystalline structure transformation in electrocatalytic process, Matter, 2019, 1, 1656–1668.

5

Y. Zhang, J. Li, X. Yang, P. Zhang, J. Pang, B. Li and H. C. Zhou, A mesoporous NNN-pincer-based metal-organic framework scaffold for the preparation of noble-metal-free catalysts, Chem. Commun., 2019, 55, 2023–2026.

6

L. Yang, P. Cai, L. Zhang, X. Xu, A. A. Yakovenko, Q. Wang, J. Pang, S. Yuan, X. Zou, N. Huang, Z. Huang and H. C. Zhou, Ligand-directed conformational control over porphyrinic zirconium metal-organic frameworks for size-selective catalysis, J. Am. Chem. Soc., 2021, 143, 12129–12137.

7

G. Y. Qiao, S. Yuan, J. Pang, H. Rao, C. T. Lollar, D. Dang, J. S. Qin, H. C. Zhou and J. Yu, Functionalization of zirconium-based metal-organic layers with tailored pore environments for heterogeneous catalysis, Angew. Chem., Int. Ed., 2020, 59, 18224–18228.

8

O. M. Yaghi, G. Li and H. Li, Selective binding and removal of guests in a microporous metal–organic framework, Nature, 1995, 378, 703–706.

9

J. Pang, M. Wu, J.-S. Qin, C. Liu, C. T. Lollar, D. Yuan, M. Hong and H.-C. Zhou, Solvent-assisted, thermally triggered structural transformation in flexible mesoporous metal–organic frameworks, Chem. Mater., 2019, 31, 8787–8793.

10

B. Li, Y. M. Zhao, A. Kirchon, J. D. Pang, X. Y. Yang, G. L. Zhuang and H. C. Zhou, Unconventional method for fabricating valence tautomeric materials: integrating redox center within a metal-organic framework, J. Am. Chem. Soc., 2019, 141, 6822–6826.

11

Q. Chen, S. Xian, X. Dong, Y. Liu, H. Wang, D. H. Olson, L. J. Williams, Y. Han, X.-H. Bu and J. Li, High-efficiency separation of n-hexane by a dynamic Metal-organic framework with reduced energy consumption, Angew. Chem., Int. Ed., 2021, 60, 10593–10597.

12

W.-G. Cui, T.-L. Hu and X.-H. Bu, Metal-organic framework materials for the separation and purification of light hydrocarbons, Adv. Mater., 2020, 32, 1806445.

13

X.-T. Liu, K. Wang, Z. Chang, Y.-H. Zhang, J. Xu, Y. S. Zhao and X.-H. Bu, Engineering donor-acceptor heterostructure metal-organic framework crystals for photonic logic computation, Angew. Chem., Int. Ed., 2019, 58, 13890–13896.

14

M.-H. Yu, B. Space, D. Franz, W. Zhou, C. He, L. Li, R. Krishna, Z. Chang, W. Li, T.-L. Hu and X.-H. Bu, Enhanced gas uptake in a microporous metal-organic framework via a sorbate induced-fit mechanism, J. Am. Chem. Soc., 2019, 141, 17703–17712.

15

Z. Di, C. Liu, J. Pang, C. Chen, F. Hu, D. Yuan, M. Wu and M. Hong, Cage-like porous materials with simultaneous high C2H2 storage and excellent C2H2/CO2 separation performance, Angew. Chem., Int. Ed., 2021, 60, 10828–10832.

16

W. Q. Xu, S. He, C. C. Lin, X. J. Liu, L. C. Jiang and J. J. Jiang, MOF-derived Cu2O/Cu NPs on N-doped porous carbon as a multifunctional sensor for mercury(II) and glucose with wide detection range, Chin. J. Struct. Chem., 2020, 39, 1522–1530.

17

L. J. Kong, M. Liu, H. Huang, Y. H. Xu and X. H. Bu, Metal/covalent-organic framework based cathodes for metal-ion batteries, Adv. Energy Mater., 2022, 12, 2100172.

18

J. He, N. Li, Z. G. Li, M. Zhong, Z. X. Fu, M. Liu, J. C. Yin, Z. Shen, W. Li, J. Zhang, Z. Chang and X. H. Bu, Strategic defect engineering of metal–organic frameworks for optimizing the fabrication of single-atom catalysts, Adv. Funct. Mater., 2021, 31, 2103597.

19

N. Li, Z. Chang, M. Zhong, Z.-X. Fu, J. Luo, Y.-F. Zhao, G.-B. Li and X.-H. Bu, Functionalizing MOF with redox-active tetrazine moiety for improving the performance as cathode of Li–O2 batteries, CCS Chem., 2021, 3, 1297–1305.

20

L. Kong, M. Zhong, W. Shuang, Y. Xu and X.-H. Bu, Electrochemically active sites inside crystalline porous materials for energy storage and conversion, Chem. Soc. Rev., 2020, 49, 2378–2407.

21

W. Wang, X. Xu, W. Zhou and Z. Shao, Recent Progress in Metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting, Adv. Sci., 2017, 4, 1600371.

22

Z. Li, R. Gao, M. Feng, Y. P. Deng, D. Xiao, Y. Zheng, Z. Zhao, D. Luo, Y. Liu, Z. Zhang, D. Wang, Q. Li, H. Li, X. Wang and Z. Chen, Modulating metal–organic frameworks as advanced oxygen electrocatalysts, Adv. Energy Mater., 2021, 11, 2003291.

23

X. Liu, T. Yue, K. Qi, Y. Qiu, B. Y. Xia and X. Guo, Metal-organic framework membranes: from synthesis to electrocatalytic applications, Chin. Chem. Lett., 2020, 31, 2189–2201.

24

L. Jiao, Y. Wang, H. L. Jiang and Q. Xu, Metal-organic frameworks as platforms for catalytic applications, Adv. Mater., 2018, 30, 1703663.

25

Q. Wang and D. Astruc, State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis, Chem. Rev., 2020, 120, 1438–1511.

26

X. Xiao, L. Zou, H. Pang and Q. Xu, Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications, Chem. Soc. Rev., 2020, 49, 301–331.

27

A. Morozan and F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci., 2012, 5, 9269–9290.

28

X. Long, J. Meng, J. Gu, L. Ling, Q. Li, N. Liu, K. Wang and Z. Li, Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting, Chin. J. Struct. Chem., 2022, 41, 2204046–2204053.

29

H. Sun, Z. Yan, C. Tian, C. Li, X. Feng, R. Huang, Y. Lan, J. Chen, C. P. Li, Z. Zhang and M. Du, Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution, Nat. Commun., 2022, 13, 3857.

30

Y. Zhao, X. Wang, Z. Li, P. Zhao, C. Tao, G. Cheng and W. Luo, Enhanced catalytic activity of Ru through N modification toward alkaline hydrogen electrocatalysis, Chin. Chem. Lett., 2022, 33, 1065–1069.

31

C.-P. Wang, L.-J. Kong, H. Sun, M. Zhong, H.-J. Cui, Y.-H. Zhang, D.-H. Wang, J. Zhu and X.-H. Bu, Carbon layer coated Ni3S2/MoS2 nanohybrids as efficient bifunctional electrocatalysts for overall water splitting, ChemElectroChem, 2019, 6, 5603–5609.

32

W. Zhao, B. Jin, L. Wang, C. Ding, M. Jiang, T. Chen, S. Bi, S. Liu and Q. Zhao, Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction, Chin. Chem. Lett., 2022, 33, 557–561.

33

H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng and J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater., 2020, 32, 1806326.

34

J. Xu, G. Shao, X. Tang, F. Lv, H. Xiang, C. Jing, S. Liu, S. Dai, Y. Li, J. Luo and Z. Zhou, Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution, Nat. Commun., 2022, 13, 2193.

35

J. C. McGlynn, T. Dankwort, L. Kienle, N. A. G. Bandeira, J. P. Fraser, E. K. Gibson, I. Cascallana-Matias, K. Kamaras, M. D. Symes, H. N. Miras and A. Y. Ganin, The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction, Nat. Commun., 2019, 10, 4916.

36

S. Hu and W. X. Li, Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts, Science, 2021, 374, 1360–1365.

37

S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li and H. C. Zhou, Stable metal-organic frameworks: design, synthesis, and applications, Adv. Mater., 2018, 30, 1704303.

38

Y. P. Wu, W. Zhou, J. Zhao, W. W. Dong, Y. Q. Lan, D. S. Li, C. Sun and X. Bu, Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction, Angew. Chem., Int. Ed., 2017, 56, 13001–13005.

39

H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng and S. Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis, Chem. Rev., 2018, 118, 6337–6408.

40

C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 2017, 117, 6225–6331.

41

B. Geng, F. Yan, X. Zhang, Y. He, C. Zhu, S. L. Chou, X. Zhang and Y. Chen, Conductive CuCo-based bimetal organic framework for efficient hydrogen evolution, Adv. Mater., 2021, 33, 2106781.

42

Y. Luo, X. Yang, L. He, Y. Zheng, J. Pang, L. Wang, R. Jiang, J. Hou, X. Guo and L. Chen, Structural and electronic modulation of iron-based bimetallic metal-organic framework bifunctional electrocatalysts for efficient overall water splitting in alkaline and seawater environment, ACS Appl. Mater. Interfaces, 2022, 14, 46374–46385.

43

R. Z. Zhang, L. L. Lu, Z. H. Chen, X. Zhang, B. Y. Wu, W. Shi and P. Cheng, Bimetallic cage-based metal-organic frameworks for electrochemical hydrogen evolution reaction with enhanced activity, Chem. – Eur. J., 2022, 28, e202200401.

44

W. Cheng, H. Zhang, D. Luan and X. W. D. Lou, Exposing unsaturated Cu1-O2 sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution, Sci. Adv., 2021, 7, eabg2580.

45

L. Wang, L. Song, Z. Yang, Y. M. Chang, F. Hu, L. Li, L. Li, H. Y. Chen and S. Peng, Electronic modulation of metal–organic frameworks by interfacial bridging for efficient pH-universal hydrogen evolution, Adv. Funct. Mater., 2022, 2210322.

46

D. Zhu, J. Liu, Y. Zhao, Y. Zheng and S. Z. Qiao, Engineering 2D metal-organic framework/MoS2 interface for enhanced alkaline hydrogen evolution, Small, 2019, 15, 1805511.

47

L. Deng, F. Hu, M. Ma, S. C. Huang, Y. Xiong, H. Y. Chen, L. Li and S. Peng, Electronic modulation caused by interfacial Ni-O-M (M=Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics, Angew. Chem., Int. Ed., 2021, 60, 22276–22282.

48

K. Rui, G. Zhao, M. Lao, P. Cui, X. Zheng, X. Zheng, J. Zhu, W. Huang, S. X. Dou and W. Sun, Direct hybridization of noble metal nanostructures on 2D metal-organic framework nanosheets to catalyze hydrogen evolution, Nano Lett., 2019, 19, 8447–8453.

49

S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang and Y. Li, Chemical synthesis of single atomic site catalysts, Chem. Rev., 2020, 120, 11900–11955.

50

A. Wang, J. Li and T. Zhang, Heterogeneous single-atom catalysis, Nat. Rev. Chem., 2018, 2, 65–81.

51

C. Xia, Y. Qiu, Y. Xia, P. Zhu, G. King, X. Zhang, Z. Wu, J. Y. T. Kim, D. A. Cullen, D. Zheng, P. Li, M. Shakouri, E. Heredia, P. Cui, H. N. Alshareef, Y. Hu and H. Wang, General synthesis of single-atom catalysts with high metal loading using graphene quantum dots, Nat. Chem., 2021, 13, 887–894.

52

Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li, K. Liu, Y. Lin, M. Liu, G. Li and C. Y. Su, Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution, Nat. Commun., 2021, 12, 1369.

53

J. Zhou, Y. Dou, X. Q. Wu, A. Zhou, L. Shu and J. R. Li, Alkali-etched Ni(II)-based metal-organic framework nanosheet arrays for electrocatalytic overall water splitting, Small, 2020, 16, 1906564.

54

F. Shahbazi Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-Amal, R. B. Kaner and M. F. Mousavi, Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications, J. Am. Chem. Soc., 2022, 144, 3411–3428.

55

M. Gu, S. C. Wang, C. Chen, D. Xiong and F. Y. Yi, Iron-based metal-organic framework system as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions, Inorg. Chem., 2020, 59, 6078–6086.

56

L. Zhang, S. Li, C. J. Gomez-Garcia, H. Ma, C. Zhang, H. Pang and B. Li, Two novel polyoxometalate-encapsulated metal-organic nanotube frameworks as stable and highly efficient electrocatalysts for hydrogen evolution reaction, ACS Appl. Mater. Interfaces, 2018, 10, 31498–31504.

57

W. Zhou, Z. Xue, Q. Liu, Y. Li, J. Hu and G. Li, Trimetallic MOF-74 films grown on Ni foam as bifunctional electrocatalysts for overall water splitting, ChemSusChem, 2020, 13, 5647–5653.

58

J. Duan, S. Chen and C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nat. Commun., 2017, 8, 15341.

59

W. Ni, T. Wang, F. Heroguel, A. Krammer, S. Lee, L. Yao, A. Schuler, J. S. Luterbacher, Y. Yan and X. Hu, An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells, Nat. Mater., 2022, 21, 804–810.

60

J. Li, S. Ghoshal, M. K. Bates, T. E. Miller, V. Davies, E. Stavitski, K. Attenkofer, S. Mukerjee, Z. F. Ma and Q. Jia, Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media, Angew. Chem., Int. Ed., 2017, 56, 15594–15598.

61

Y. Men, X. Su, P. Li, Y. Tan, C. Ge, S. Jia, L. Li, J. Wang, G. Cheng, L. Zhuang, S. Chen and W. Luo, Oxygen-inserted top-surface layers of Ni for boosting alkaline hydrogen oxidation electrocatalysis, J. Am. Chem. Soc., 2022, 144, 12661–12672.

62

Y. Yang, X. Sun, G. Han, X. Liu, X. Zhang, Y. Sun, M. Zhang, Z. Cao and Y. Sun, Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a Nickel-based metal-organic framework, Angew. Chem., Int. Ed., 2019, 58, 10644–10649.

63

Q. Zhang, Y. Wang, Y. Wang, S. Yang, X. Wu, B. Lv, N. Wang, Y. Gao, X. Xu, H. Lei and R. Cao, Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction, Chin. Chem. Lett., 2021, 32, 3807–3810.

64

Q. Mou, X. Wang, Z. Xu, P. Zul, E. Li, P. Zhao, X. Liu, H. Li and G. Cheng, A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation, Chin. Chem. Lett., 2022, 33, 562–566.

65

Q. Huang, Q. Niu, X.-F. Li, J. Liu, S.-N. Sun, L.-Z. Dong, S.-L. Li, Y.-P. Cai and Y.-Q. Lan, Demystifying the roles of single metal site and cluster in CO2 reduction via light and electric dual-responsive polyoxometalate-based metal-organic frameworks, Sci. Adv., 2022, 8, eadd5598.

66

Z. Xin, Y.-R. Wang, Y. Chen, W.-L. Li, L.-Z. Dong and Y.-Q. Lan, Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction, Nano Energy, 2020, 67, 104233.

67

W. Zheng, M. Liu and L. Y. S. Lee, Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites, ACS Catal., 2019, 10, 81–92.

68

S. Zhao, C. Tan, C.-T. He, P. An, F. Xie, S. Jiang, Y. Zhu, K.-H. Wu, B. Zhang, H. Li, J. Zhang, Y. Chen, S. Liu, J. Dong and Z. Tang, Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction, Nat. Energy, 2020, 5, 881–890.

69

J.-T. Ren, C.-Y. Wan, T.-Y. Pei, X.-W. Lv and Z.-Y. Yuan, Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms, Appl. Catal., B, 2020, 266, 118633.

70

C. Zhang, Q. Qi, Y. Mei, J. Hu, M. Sun, Y. Zhang, B. Huang, L. Zhang and S. Yang, Rationally reconstructed metal-organic frameworks as robust oxygen evolution electrocatalysts, Adv. Mater., 2022, e2208904, DOI: 10.1002/adma.202208904.

71

C.-P. Wang, H.-Y. Liu, G. Bian, X. Gao, S. Zhao, Y. Kang, J. Zhu and X.-H. Bu, Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution, Small, 2019, 15, 1906086.

72

M. Liu, L. J. Kong, X. M. Wang, J. He, J. J. Zhang, J. Zhu and X. H. Bu, Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media, Nano Res., 2021, 14, 4680–4688.

73

S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao and Z. Tang, Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution, Nat. Energy, 2016, 1, 16184.

74

S. Kandambeth, V. S. Kale, D. Fan, J. A. Bau, P. M. Bhatt, S. Zhou, A. Shkurenko, M. Rueping, G. Maurin, O. Shekhah and M. Eddaoudi, Unveiling chemically robust bimetallic squarate-based metal-organic frameworks for electrocatalytic oxygen evolution reaction, Adv. Energy Mater., 2022, 2202964.

75

C.-P. Wang, Y. Feng, H. Sun, Y. Wang, J. Yin, Z. Yao, X.-H. Bu and J. Zhu, Self-optimized metal-organic framework electrocatalysts with structural stability and high current tolerance for water oxidation, ACS Catal., 2021, 11, 7132–7143.

76

M. Jahan, Z. Liu and K. P. Loh, A graphene oxide and copper-centered metal organic Framework composite as a tri-functional catalyst for HER, OER, and ORR, Adv. Funct. Mater., 2013, 23, 5363–5372.

77

Y. Wang, B. Liu, X. Shen, H. Arandiyan, T. Zhao, Y. Li, M. Garbrecht, Z. Su, L. Han, A. Tricoli and C. Zhao, Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation, Adv. Energy Mater., 2021, 11, 2003759.

78

L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai, Z. Wang, S. Zhao, M. Han, K. Gao, M. Lu, X. Xie, B. Chen, Z. Liu, X. Wang, H. Zhang, H. Li, J. Liu, H. Zhang, X. Huang and W. Huang, Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic exygen evolution, ACS Nano, 2017, 11, 5800–5807.

79

Z. Gao, Y. Lai, L. Gong, L. Zhang, S. Xi, J. Sun, L. Zhang and F. Luo, Robust Th-MOF-supported semirigid single-metal-site catalyst for an efficient acidic oxygen evolution reaction, ACS Catal., 2022, 12, 9101–9113.

80

W. Zhang, Y. Wang, H. Zheng, R. Li, Y. Tang, B. Li, C. Zhu, L. You, M. R. Gao, Z. Liu, S. H. Yu and K. Zhou, Embedding ultrafine metal oxide nanoparticles in monolayered metal-organic framework nanosheets enables efficient electrocatalytic oxygen evolution, ACS Nano, 2020, 14, 1971–1981.

81

L. Zhang, J. Wang, K. Jiang, Z. Xiao, Y. Gao, S. Lin and B. Chen, Self-reconstructed metal-organic framework heterojunction for switchable oxygen evolution reaction, Angew. Chem., Int. Ed., 2022, e202214794.

82

M. Liu, L. Kong, X. Wang, J. He and X.-H. Bu, Engineering bimetal synergistic electrocatalysts based on metal-organic frameworks for efficient oxygen evolution, Small, 2019, 15, 1903410.

83

Z. Xue, Y. Li, Y. Zhang, W. Geng, B. Jia, J. Tang, S. Bao, H.-P. Wang, Y. Fan, Z.-w. Wei, Z. Zhang, Z. Ke, G. Li and C.-Y. Su, Modulating electronic structure of metal-organic framework for efficient electrocatalytic oxygen evolution, Adv. Energy Mater., 2018, 8, 1801564.

84

M. Zhang, B. Yang, T. Yang, Y. Yang and Z. Xiang, A ferric citrate derived Fe-N-C electrocatalyst with stepwise pyrolysis for highly efficient oxygen reduction reaction, Chin. Chem. Lett., 2022, 33, 362–367.

85

Y. Q. Cui, J. X. Xu, M. L. Wang and L. H. Guan, Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity, Chin. J. Struct. Chem., 2020, 40, 533–539.

86

M. Liu, N. Li, S. Cao, X. Wang, X. Lu, L. Kong, Y. Xu and X. H. Bu, A “Pre-Constrained Metal Twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis, Adv. Mater., 2022, 34, 2107421.

87

J. Mao, L. Yang, P. Yu, X. Wei and L. Mao, Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks, Electrochem. Commun., 2012, 19, 29–31.

88

R. Iqbal, S. Ali, G. Yasin, S. Ibraheem, M. Tabish, M. Hamza, H. Chen, H. Xu, J. Zeng and W. Zhao, A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction, Chem. Eng. J., 2022, 430, 132642.

89

M. O. Cichocka, Z. Liang, D. Feng, S. Back, S. Siahrostami, X. Wang, L. Samperisi, Y. Sun, H. Xu, N. Hedin, H. Zheng, X. Zou, H. C. Zhou and Z. Huang, A porphyrinic zirconium metal-organic framework for oxygen reduction reaction: tailoring the spacing between active-sites through chain-based inorganic building units, J. Am. Chem. Soc., 2020, 142, 15386–15395.

90

M. Liu, H. Su, W. Cheng, F. Yu, Y. Li, W. Zhou, H. Zhang, X. Sun, X. Zhang, S. Wei and Q. Liu, Synergetic dual-ion centers boosting metal organic framework alloy catalysts toward efficient two electron oxygen reduction, Small, 2022, 18, e2202248.

91

X. Chen, B. Shao, M.-J. Tang, X.-L. He, F.-J. Yang, Z.-P. Guo, Z. Zhang, C.-T. He, F.-P. Huang and J. Huang, Accurately metal-modulated bimetallic metal–organic frameworks as advanced trifunctional electrocatalysts, J. Mater. Chem. A, 2021, 9, 14682–14690.

92

H. Yoon, S. Lee, S. Oh, H. Park, S. Choi and M. Oh, Synthesis of bimetallic conductive 2D metal–organic framework (CoxNiy-CAT) and its mass production: enhanced electrochemical oxygen reduction activity, Small, 2019, 15, 1805232.

93

M. Jahan, Q. Bao and K. P. Loh, Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction, J. Am. Chem. Soc., 2012, 134, 6707–6713.

94

W. Cheng, X. F. Lu, D. Luan and X. W. D. Lou, NiMn-based bimetal-organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis, Angew. Chem., Int. Ed., 2020, 59, 18234–18239.

95

H. Zhong, K. H. Ly, M. Wang, Y. Krupskaya, X. Han, J. Zhang, J. Zhang, V. Kataev, B. Buchner, I. M. Weidinger, S. Kaskel, P. Liu, M. Chen, R. Dong and X. Feng, A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction, Angew. Chem., Int. Ed., 2019, 58, 10677–10682.

96

X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding, X. Liu, J. Wang, W. Hu and C. Zhong, Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries, ACS Appl. Mater. Interfaces, 2019, 11, 15662–15669.

97

K. Cho, S. H. Han and M. P. Suh, Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction, Angew. Chem., Int. Ed., 2016, 55, 15301–15305.

98

Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang, H. Lei, W. Zhang, H. Zheng, U. P. Apfel and R. Cao, Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction, Angew. Chem., Int. Ed., 2021, 60, 8472–8476.

99

W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang and Q. Liu, Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis, Nat. Energy, 2019, 4, 115–122.

100

C. Li, M. Wang, L. Ren and H. Sun, Promoting the formation of oxygen vacancies in ceria multishelled hollow microspheres by doping iron for enhanced ambient ammonia electrosynthesis, Inorg. Chem. Front., 2022, 9, 1467–1473.

101

H. He, H.-M. Wen, H.-K. Li and H.-W. Zhang, Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia, Coord. Chem. Rev., 2022, 471, 214761.

102

Y. Wang, M. Batmunkh, H. Mao, H. Li, B. Jia, S. Wu, D. Liu, X. Song, Y. Sun and T. Ma, Low-overpotential electrochemical ammonia synthesis using BiOCl-modified 2D titanium carbide MXene, Chin. Chem. Lett., 2022, 33, 394–398.

103

C. Li, Z. Qiu, H. Sun, Y. Yang and C. P. Li, Recent progress in covalent organic frameworks (COFs) for electrocatalysis, Chin. J. Struct. Chem., 2022, 41, 2211084–2211099.

104

X. Yi, X. He, F. Yin, T. Yang, B. Chen and G. Li, NH2–MIL-88B–Fe for electrocatalytic N2 fixation to NH3 with high Faradaic efficiency under ambient conditions in neutral electrolyte, J. Mater. Sci., 2020, 55, 12041–12052.

105

Y. Cao, P. Li, T. Wu, M. Liu and Y. Zhang, Electrocatalysis of N2 to NH3 by HKUST-1 with high NH3 yield, Chem. – Asian J., 2020, 15, 1272–1276.

106

H. He, H.-K. Li, Q.-Q. Zhu, C.-P. Li, Z. Zhang and M. Du, Hydrophobicity modulation on a ferriporphyrin-based metal–organic framework for enhanced ambient electrocatalytic nitrogen fixation, Appl. Catal., B, 2022, 316, 121673.

107

J. Duan, Y. Sun, S. Chen, X. Chen and C. Zhao, A zero-dimensional nickel, iron–metal–organic framework (MOF) for synergistic N2 electrofixation, J. Mater. Chem. A, 2020, 8, 18810–18815.

108

W. Li, W. Fang, C. Wu, K. N. Dinh, H. Ren, L. Zhao, C. Liu and Q. Yan, Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction, J. Mater. Chem. A, 2020, 8, 3658–3666.

109

X. Liang, X. Ren, Q. Yang, L. Gao, M. Gao, Y. Yang, H. Zhu, G. Li, T. Ma and A. Liu, A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction, Nanoscale, 2021, 13, 2843–2848.

110

Y. Lv, Y. Wang, M. Yang, Z. Mu, S. Liu, W. Ding and M. Ding, Nitrogen reduction through confined electro-catalysis with carbon nanotube inserted metal–organic frameworks, J. Mater. Chem. A, 2021, 9, 1480–1486.

111

W.-Y. Xu, C. Li, F.-L. Li, J.-Y. Xue, W. Zhang, H. Gu, B. F. Abrahams and J.-P. Lang, A hybrid catalyst for efficient electrochemical N2 fixation formed by decorating amorphous MoS3 nanosheets with MIL-101(Fe) nanodots, Sci. China: Chem., 2022, 65, 885–891.

112

H. He, Q.-Q. Zhu, Y. Yan, H.-W. Zhang, Z.-Y. Han, H. Sun, J. Chen, C.-P. Li, Z. Zhang and M. Du, Metal–organic framework supported Au nanoparticles with organosilicone coating for high-efficiency electrocatalytic N2 reduction to NH3, Appl. Catal., B, 2022, 302, 120840.

113

Y. Yang, S. Q. Wang, H. Wen, T. Ye, J. Chen, C. P. Li and M. Du, Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation, Angew. Chem., Int. Ed., 2019, 58, 15362–15366.

114

X. Zhao, F. Yin, N. Liu, G. Li, T. Fan and B. Chen, Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure, J. Mater. Sci., 2017, 52, 10175–10185.

115

X. He, F. Yin, X. Yi, T. Yang, B. Chen, X. Wu, S. Guo, G. Li and Z. Li, Defective UiO-66-NH2 functionalized with stable superoxide radicals toward electrocatalytic nitrogen reduction with high Faradaic efficiency, ACS Appl. Mater. Interfaces, 2022, 14, 26571–26586.

116

Y. Sun, B. Xia, S. Ding, L. Yu, S. Chen and J. Duan, Rigid two-dimensional indium metal–organic frameworks boosting nitrogen electroreduction at all pH values, J. Mater. Chem. A, 2021, 9, 20040–20047.

Industrial Chemistry & Materials
Pages 9-38
Cite this article:
Li C, Zhang H, Liu M, et al. Recent progress in metal–organic frameworks (MOFs) for electrocatalysis. Industrial Chemistry & Materials, 2023, 1(1): 9-38. https://doi.org/10.1039/d2im00063f
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return