PDF (3.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

Lithium-mediated electrochemical dinitrogen reduction reaction

Muhammad Saqlain Iqbalb,Yukun Ruana,Ramsha IftikharcFaiza Zahid KhandWeixiang LiaLeiduan Haoa()Alex W. RobertsoneGianluca PercocofZhenyu Suna()
State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy
School of Chemistry, University of New South Wales, 2033 Sydney, Australia
Institute of Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
Department of Physics, University of Warwick, Coventry CV4 7AL, UK
Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy

† These authors contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

View original image Download original image

Abstract

The Haber–Bosch process is the dominant approach for NH3 production today, but the process has to be maintained at energy-intensive high temperatures and pressures. Li-mediated electrocatalytic dinitrogen reduction reaction (eN2RR) could instead enable sustainable and green NH3 production at ambient conditions. Lithium mediators realize the synthesis of NH3 via the formation of Li3N, and thus lower the energy required for the direct cleavage of N2. There has now been a surge of interest in devising approaches to optimize the NH3 yield rate and faradaic efficiency of the eN2RR process by employing different catalysts as well as electrolytes. This review discusses the recent advances in the field of the Li-mediated eN2RR along with the latest insights into the proposed catalytic mechanisms. Moreover, it also highlights the state-of-the-art reported electrocatalysts and electrolytes that have revolutionized the field of the Li-mediated eN2RR. In addition to the above, our review provides a critical overview of certain limitations and a future prospectus that will provide a way forward to explore this area.

References

1

J. M. McEnaney, A. R. Singh, J. A. Schwalbe, J. Kibsgaard, J. C. Lin, M. Cargnello, T. F. Jaramillo and J. K. Nørskov, Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure, Energy Environ. Sci., 2017, 10, 1621–1630.

2
Ammonia Market (By Product Form: Liquid, Gas, Powder; By Application: Fertilizers, Refrigerants, Pharmaceuticals, Textile, Others) – Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2022–2030.
3

G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu and H. Wang, Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy, J. Am. Chem. Soc., 2017, 139, 9771–9774.

4

S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three-phase reactor, ACS Sustainable Chem. Eng., 2017, 5, 7393–7400.

5

F. Fichter, P. Girard and H. Erlenmeyer, Elektrolytische bindung von komprimiertem stickstoff bei gewöhnlicher temperatur, Helv. Chim. Acta, 1930, 13, 1228–1236.

6

A. Tsuneto, A. Kudo and T. Sakata, Lithium-mediated electrochemical reduction of high pressure N2 to NH3, J. Electroanal. Chem., 1994, 367, 183–188.

7

H. K. Lee, C. S. L. Koh, Y. H. Lee, C. Liu, I. Y. Phang, X. Han, C.-K. Tsung and X. Y. Ling, Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach, Sci. Adv., 2018, 4, eaar3208.

8

K. Kim, H. Cho, S. H. Jeon, S. J. Lee, C.-Y. Yoo, J.-N. Kim, J. W. Choi, H. C. Yoon and J.-I. Han, Lithium-Mediated ammonia electro-synthesis: effect of CsClO4 on lithium plating efficiency and ammonia synthesis, J. Electrochem. Soc., 2018, 165, F1027–F1031.

9

Q. Wang, J. Guo and P. Chen, Recent progress towards mild-condition ammonia synthesis, J. Energy Chem., 2019, 36, 25–36.

10

V. S. Marakatti and E. M. Gaigneaux, Recent advances in heterogeneous catalysis for ammonia synthesis, ChemCatChem, 2020, 12, 5838–5857.

11

N. Lazouski, Z. J. Schiffer, K. Williams and K. Manthiram, Understanding continuous lithium-mediated electrochemical nitrogen reduction, Joule, 2019, 3, 1127–1139.

12

R. Sažinas, K. Li, S. Z. Andersen, M. Saccoccio, S. Li, J. B. Pedersen, J. Kibsgaard, P. C. K. Vesborg, D. Chakraborty and I. Chorkendorff, Oxygen-enhanced chemical stability of lithium-mediated electrochemical ammonia synthesis, J. Phys. Chem. Lett., 2022, 13, 4605–4611.

13

K. Krempl, J. B. Pedersen, J. Kibsgaard, P. C. K. Vesborg and I. Chorkendorff, Electrolyte acidification from anode reactions during lithium mediated ammonia synthesis, Electrochem. Commun., 2022, 134, 107186.

14

Z. Zhang, Y. Zhao, B. Sun, J. Xu, Q. Jin, H. Lu, N. Lyu, Z.-M. Dang and Y. Jin, Copper particle-enhanced lithium-mediated synthesis of green ammonia from water and nitrogen, ACS Appl. Mater. Interfaces, 2022, 14, 19419–19425.

15

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic and N. M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li +-Ni(OH)2-Pt interfaces, Science, 2011, 334, 1256–1260.

16

A. Guha, S. Narayanaru and T. N. Narayanan, Tuning the hydrogen evolution reaction on metals by lithium salt, ACS Appl. Energy Mater., 2018, 1, 7116–7122.

17

M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan and Q. Jiang, Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution, Adv. Energy Mater., 2018, 8, 1800124.

18

L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies, Adv. Mater., 2018, 30, 1800191.

19

E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson and J. K. Nørskov, A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction, Phys. Chem. Chem. Phys., 2012, 14, 1235–1245.

20

B. H. R. Suryanto, C. S. M. Kang, D. Wang, C. Xiao, F. Zhou, L. M. Azofra, L. Cavallo, X. Zhang and D. R. MacFarlane, Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions, ACS Energy Lett., 2018, 3, 1219–1224.

21

J. Yang, W. Weng and W. Xiao, Electrochemical synthesis of ammonia in molten salts, J. Energy Chem., 2020, 43, 195–207.

22

N. Lazouski, M. Chung, K. Williams, M. L. Gala and K. Manthiram, Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen, Nat. Catal., 2020, 3, 463–469.

23

L. Gao, Y. Cao, C. Wang, X. Yu, W. Li, Y. Zhou, B. Wang, Y. Yao, C. Wu, W. Luo and Z. Zou, Domino effect: Gold electrocatalyzing lithium reduction to accelerate nitrogen fixation, Angew. Chem., 2021, 133, 5317–5321.

24

B. H. R. Suryanto, K. Matuszek, J. Choi, R. Y. Hodgetts, H.-L. Du, J. M. Bakker, C. S. M. Kang, P. V. Cherepanov, A. N. Simonov and D. R. MacFarlane, Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle, Science, 2021, 372, 1187–1191.

25

A. Jain, H. Miyaoka, S. Kumar, T. Ichikawa and Y. Kojima, A new synthesis route of ammonia production through hydrolysis of metal–nitrides, Int. J. Hydrogen Energy, 2017, 42, 24897–24903.

26

T. Yamaguchi, K. Shinzato, K. Yamamoto, Y. Wang, Y. Nakagawa, S. Isobe, T. Ichikawa, H. Miyaoka and T. Ichikawa, Pseudo catalytic ammonia synthesis by lithium–tin alloy, Int. J. Hydrogen Energy, 2020, 45, 6806–6812.

27

F. Chang, Y. Guan, X. Chang, J. Guo, P. Wang, W. Gao, G. Wu, J. Zheng, X. Li and P. Chen, Alkali and alkaline earth hydrides-driven N2 activation and transformation over Mn nitride catalyst, J. Am. Chem. Soc., 2018, 140, 14799–14806.

28

Y. Gong, H. Li, J. Wu, X. Song, X. Yang, X. Bao, X. Han, M. Kitano, J. Wang and H. Hosono, Unique catalytic mechanism for Ru-loaded ternary intermetallic electrides for ammonia synthesis, J. Am. Chem. Soc., 2022, 144, 8683–8692.

29

P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He and P. Chen, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nat. Chem., 2017, 9, 64–70.

30

W. Gao, J. Guo, P. Wang, Q. Wang, F. Chang, Q. Pei, W. Zhang, L. Liu and P. Chen, Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers, Nat. Energy, 2018, 3, 1067–1075.

31

A. Sclafani, V. Augugliaro and M. Schiavello, Dinitrogen electrochemical reduction to ammonia over Iron cathode in aqueous medium, J. Electrochem. Soc., 1983, 130, 734–736.

32

S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst, Angew. Chem., Int. Ed., 2017, 56, 2699–2703.

33

M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages, Nano Energy, 2018, 49, 316–323.

34

Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang, F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A. Cullen, H. M. Meyer, B. G. Sumpter and A. J. Rondinone, A physical catalyst for the electrolysis of nitrogen to ammonia, Sci. Adv., 2018, 4, e1700336.

35

H. Mikosch, E. L. Uzunova and G. St. Nikolov, Interaction of molecular nitrogen and oxygen with extraframework cations in zeolites with double six-membered rings of oxygen-bridged silicon and aluminum atoms: A DFT study, J. Phys. Chem. B, 2005, 109, 11119–11125.

36

S. Giddey, S. P. S. Badwal and A. Kulkarni, Review of electrochemical ammonia production technologies and materials, Int. J. Hydrogen Energy, 2013, 38, 14576–14594.

37

Z. Yu, Y. Cui and Z. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes, Cell Rep. Phys. Sci., 2020, 1, 100119.

38

S. Z. Andersen, M. J. Statt, V. J. Bukas, S. G. Shapel, J. B. Pedersen, K. Krempl, M. Saccoccio, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. Nørskov and I. Chorkendorff, Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction, Energy Environ. Sci., 2020, 13, 4291–4300.

39

J. H. Montoya, C. Tsai, A. Vojvodic and J. K. Nørskov, The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations, ChemSusChem, 2015, 8, 2180–2186.

40

X. Cai, C. Fu, H. Iriawan, F. Yang, A. Wu, L. Luo, S. Shen, G. Wei, Y. Shao-Horn and J. Zhang, Lithium-mediated electrochemical nitrogen reduction: Mechanistic insights to enhance performance, iScience, 2021, 24, 103105.

41

J. A. Schwalbe, M. J. Statt, C. Chosy, A. R. Singh, B. A. Rohr, A. C. Nielander, S. Z. Andersen, J. M. McEnaney, J. G. Baker, T. F. Jaramillo, J. K. Norskov and M. Cargnello, A combined theory-experiment analysis of the surface species in lithiu-mediated NH3 Electrosynthesis, ChemElectroChem, 2020, 7, 1542–1549.

42

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, 2004, 108, 17886–17892.

43

O. Westhead, M. Spry, Z. Shen, A. Bagger, H. Yadegari, S. Favero, R. Tort, M. Titirici, M. Ryan, R. Jervis, A. Aguadero, J. Douglas, A. Regoutz, A. Grimaud and I. E. L. Stephens, Solvation and stability in lithium-mediated nitrogen reduction, Meet. Abstr., 2022, MA2022-02, 1929.

44

O. Westhead, M. Spry, A. Bagger, Z. Shen, H. Yadegari, S. Favero, R. Tort, M. Titirici, M. P. Ryan, R. Jervis, Y. Katayama, A. Aguadero, A. Regoutz, A. Grimaud and I. E. L. Stephens, The role of ion solvation in lithium mediated nitrogen reduction, J. Mater. Chem. A, 2023, DOI: 10.1039/D2TA07686A.

45

D. Ma, Z. Zeng, L. Liu, X. Huang and Y. Jia, Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers, J. Phys. Chem. C, 2019, 123, 19066–19076.

46

H. Dong, W. Xu, J. Xie, Y. Ding, Q. Wang and L. Zhou, Computational screening on two-dimensional metal-embedded poly-phthalocyanine as cathode catalysts in lithium-nitrogen batteries, Appl. Surf. Sci., 2022, 604, 154507.

47

D. Maniscalco, D. A. Rudolph, E. Nadimi and I. Frank, The first reaction steps of lithium-mediated ammonia synthesis: Ab Initio Simulation, Nitrogen, 2022, 3, 404–413.

48

H. Tachikawa, Mechanism of dissolution of a lithium salt in an electrolytic solvent in a lithium ion secondary battery: A direct Ab Initio molecular dynamics (AIMD) study, ChemPhysChem, 2014, 15, 1604–1610.

49

E. Carrasco, M. A. Brown, M. Sterrer, H.-J. Freund, K. Kwapien, M. Sierka and J. Sauer, Thickness-dependent hydroxylation of MgO(001) thin films, J. Phys. Chem. C, 2010, 114, 18207–18214.

50

V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros and M. Stoukides, Progress in the electrochemical synthesis of ammonia, Catal. Today, 2017, 286, 2–13.

51

Y. Abghoui and E. Skúlason, Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts, Catal. Today, 2017, 286, 69–77.

52

X. Yang, S. Kattel, J. Nash, X. Chang, J. H. Lee, Y. Yan, J. G. Chen and B. Xu, Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride, Angew. Chem., Int. Ed., 2019, 58, 13768–13772.

53

X. Cui, C. Tang and Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions, Adv. Energy Mater., 2018, 8, 1800369.

54

A. Seggio, F. Chevallier, M. Vaultier and F. Mongin, Lithium-mediated zincation of pyrazine, pyridazine, pyrimidine, and quinoxaline, J. Org. Chem., 2007, 72, 6602–6605.

55

Y. Sun, Y. Wang, H. Li, W. Zhang, X.-M. Song, D.-M. Feng, X. Sun, B. Jia, H. Mao and T. Ma, Main group metal elements for ambient-condition electrochemical nitrogen reduction, J. Energy Chem., 2021, 62, 51–70.

56

D. Yao, C. Tang, P. Wang, H. Cheng, H. Jin, L.-X. Ding and S.-Z. Qiao, Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction, Chem. Eng. Sci., 2022, 257, 117735.

57

X. Fu, J. Zhang and Y. Kang, Electrochemical reduction of CO2 towards multi-carbon products via a two-step process, React. Chem. Eng., 2021, 6, 612–628.

58

K. Li, S. G. Shapel, D. Hochfilzer, J. B. Pedersen, K. Krempl, S. Z. Andersen, R. Sažinas, M. Saccoccio, S. Li, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov and I. Chorkendorff, Increasing current density of li-mediated ammonia synthesis with high surface area copper electrodes, ACS Energy Lett., 2022, 7, 36–41.

59

K. Li, S. Z. Andersen, M. J. Statt, M. Saccoccio, V. J. Bukas, K. Krempl, R. Sa, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov and I. Chorkendorff, Enhancement of lithium-mediated ammonia synthesis by addition of oxygen, Science, 2021, 374, 1593–1597.

60

X. Ma, J. Li, H. Zhou and H. Sun, Continuous ammonia synthesis using Ru nanoparticles based on Li–N2 battery, Mater. Today Energy, 2022, 29, 101113.

61

A. Tsuneto, A. Kudo and T. Sakata, Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium, Chem. Lett., 1993, 22, 851–854.

62

Z. Tang, X. Meng, Y. Shi and X. Guan, Lithium-based loop for ambient-pressure ammonia synthesis in a liquid alloy-salt catalytic system, ChemSusChem, 2021, 14, 4697–4707.

63

A. Biswas, S. Kapse, B. Ghosh, R. Thapa and R. S. Dey, Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N2 activation issues on catalyst surface, Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2204638119.

64

Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei and J. Qiu, Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives, Energy Environ. Sci., 2021, 14, 1176–1193.

65

T. Goto and Y. Ito, Electrochemical reduction of nitrogen gas in a molten chloride system, Electrochim. Acta, 1998, 43, 3379–3384.

66

K. Kim, Y. Chen, J.-I. Han, H. C. Yoon and W. Li, Lithium-mediated ammonia synthesis from water and nitrogen: A membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system, Green Chem., 2019, 21, 3839–3845.

67

H.-L. Du, M. Chatti, R. Y. Hodgetts, P. V. Cherepanov, C. K. Nguyen, K. Matuszek, D. R. MacFarlane and A. N. Simonov, Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency, Nature, 2022, 609, 722–727.

68

N. Lazouski, K. J. Steinberg, M. L. Gala, D. Krishnamurthy, V. Viswanathan and K. Manthiram, Proton donors induce a differential transport effect for selectivity toward ammonia in lithium-mediated nitrogen reduction, ACS Catal., 2022, 12, 5197–5208.

69

R. Sažinas, S. Z. Andersen, K. Li, M. Saccoccio, K. Krempl, J. B. Pedersen, J. Kibsgaard, P. C. K. Vesborg, D. Chakraborty and I. Chorkendorff, Towards understanding of electrolyte degradation in lithium-mediated non-aqueous electrochemical ammonia synthesis with gas chromatography-mass spectrometry, RSC Adv., 2021, 11, 31487–31498.

70

L. Li, C. Tang, H. Jin, K. Davey and S.-Z. Qiao, Main-group elements boost electrochemical nitrogen fixation, Chem, 2021, 7, 3232–3255.

71

J. M. McEnaney, S. J. Blair, A. C. Nielander, J. A. Schwalbe, D. M. Koshy, M. Cargnello and T. F. Jaramillo, Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode, ACS Sustainable Chem. Eng., 2020, 8, 2672–2681.

72

X. Fu, J. B. Pedersen, Y. Zhou, M. Saccoccio, S. Li, R. Sažinas, K. Li, S. Z. Andersen, A. Xu, N. H. Deissler, J. B. V. Mygind, C. Wei, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov and I. Chorkendorff, Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation, Science, 2023, 379, 707–712.

73

D. Krishnamurthy, N. Lazouski, M. L. Gala, K. Manthiram and V. Viswanathan, Closed-loop electrolyte design for lithium-mediated ammonia synthesis, ACS Cent. Sci., 2021, 7, 2073–2082.

74

P. V. Cherepanov, M. Krebsz, R. Y. Hodgetts, A. N. Simonov and D. R. MacFarlane, Understanding the factors determining the faradaic efficiency and rate of the lithium redox-mediated N2 reduction to ammonia, J. Phys. Chem. C, 2021, 125, 11402–11410.

75

S. J. Blair, M. Doucet, J. F. Browning, K. Stone, H. Wang, C. Halbert, J. Avilés Acosta, J. A. Zamora Zeledón, A. C. Nielander, A. Gallo and T. F. Jaramillo, Lithium-mediated electrochemical nitrogen reduction: tracking electrode–electrolyte interfaces via time-resolved neutron reflectometry, ACS Energy Lett., 2022, 7, 1939–1946.

76

X. Zhao, G. Hu, G. Chen, H. Zhang, S. Zhang and H. Wang, Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction, Adv. Mater., 2021, 33, 2007650.

77

H. Tao, C. Lian, H. Jiang, C. Li, H. Liu and R. Roij, Enhancing electrocatalytic N2 reduction via tailoring the electric double layers, AIChE J., 2021, 68, 17549.

78

Q. Qin and M. Oschatz, Overcoming chemical inertness under ambient conditions: A critical view on recent developments in ammonia synthesis via electrochemical N2 reduction by asking five questions, ChemElectroChem, 2020, 7, 878–889.

79

B. Lassalle-Kaiser, S. Gul, J. Kern, V. K. Yachandra and J. Yano, In situ/operando studies of electrocatalysts using hard X-ray spectroscopy, J. Electron Spectrosc. Relat. Phenom., 2017, 221, 18–27.

80

Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces, J. Am. Chem. Soc., 2018, 140, 1496–1501.

81

M. Nazemi and M. A. El-Sayed, Managing the nitrogen cycle via plasmonic (photo)electrocatalysis: toward circular economy, Acc. Chem. Res., 2021, 54, 4294–4304.

82

C. MacLaughlin, Role for standardization in electrocatalytic ammonia synthesis: A conversation with Leo Liu, Lauren Greenlee, and Douglas MacFarlane, ACS Energy Lett., 2019, 4, 1432–1436.

83

C. Lee and Q. Yan, Electrochemical reduction of nitrogen to ammonia: Progress, challenges and future outlook, Curr. Opin. Electrochem., 2021, 29, 100808.

84

C. Li, T. Wang and J. Gong, Alternative strategies toward sustainable ammonia synthesis, Trans. Tianjin Univ., 2020, 26, 67–91.

85

C. Guo, J. Ran, A. Vasileff and S.-Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions, Energy Environ. Sci., 2018, 11, 45–56.

86

J. Choi, B. H. R. Suryanto, D. Wang, H.-L. Du, R. Y. Hodgetts, F. M. Ferrero Vallana, D. R. MacFarlane and A. N. Simonov, Identification and elimination of false positives in electrochemical nitrogen reduction studies, Nat. Commun., 2020, 11, 5546.

87

F. Chang, W. Gao, J. Guo and P. Chen, Emerging materials and methods toward ammonia-based energy storage and conversion, Adv. Mater., 2021, 33, 2005721.

Industrial Chemistry & Materials
Pages 563-581
Cite this article:
Iqbal MS, Ruan Y, Iftikhar R, et al. Lithium-mediated electrochemical dinitrogen reduction reaction. Industrial Chemistry & Materials, 2023, 1(4): 563-581. https://doi.org/10.1039/d3im00006k
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return