High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have the unique advantages of fast electrode reaction kinetics, high CO tolerance, and simple water and thermal management at their operating temperature (120–300 ℃), which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal. The catalysts in HT-PEMFCs are mainly Pt-based catalysts, which have good catalytic activity in the oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). However, in HT-PEMFCs, the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid (PA) on the platinum surface on activity expression leads to high cost, insufficient activity, decreased activity under long-term operation and carrier corrosion. The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts, systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs, and unveils the structure–activity relationship and anti-PA poisoning mechanism. The current challenges and opportunities faced by HT-PEMFCs are discussed, as well as possible future solutions. It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts.
B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 2001, 414, 345–352.
L. Yan, P. Li, Q. Zhu, A. Kumar, K. Sun, S. Tian and X. Sun, Atomically precise electrocatalysts for oxygen reduction reaction, Chem, 2023, 9, 280–342.
Y. Gu, Y. Liu and X. Cao, Evolving strategies for tumor immunotherapy: Enhancing the enhancer and suppressing the suppressor, Natl. Sci. Rev., 2017, 4, 161–163.
X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. Lou and B. Y. Xia, Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells, Science, 2019, 366, 850–856.
X. X. Wang, M. T. Swihart and G. Wu, Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation, Nat. Catal., 2019, 2, 578–589.
M. Zhou, H.-L. Wang and S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials, Chem. Soc. Rev., 2016, 45, 1273–1307.
D. Aili, D. Henkensmeier, S. Martin, B. Singh, Y. Hu, J. O. Jensen, L. N. Cleemann and Q. Li, Polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells: New insights and recent progress, Electrochem. Energy Rev., 2020, 3, 793–845.
E. Quartarone, S. Angioni and P. Mustarelli, Polymer and composite membranes for proton-conducting, high-temperature fuel cells: A critical review, Materials, 2017, 10, 687.
R. K. Abdul Rasheed, Q. Liao, Z. Caizhi and S. H. Chan, A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs), Int. J. Hydrogen Energy, 2017, 42, 3142–3165.
S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-t. Lau and J. H. Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Prog. Polym. Sci., 2011, 36, 813–843.
S.-F. Lu, S.-K. Peng and Y. Xiang, Perspectives on the research progress of bipolar interfacial polyelectrolyte membrane fuel cell, Acta Phys.-Chim. Sin., 2016, 32, 1859–1865.
Y. Oono, A. Sounai and M. Hori, Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells, J. Power Sources, 2009, 189, 943–949.
C. Wannek, I. Konradi, J. Mergel and W. Lehnert, Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells, Int. J. Hydrogen Energy, 2009, 34, 9479–9485.
G.-B. Jung, C.-C. Tseng, C.-C. Yeh and C.-Y. Lin, Membrane electrode assemblies doped with H3PO4 for high temperature proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2012, 37, 13645–13651.
P. Boillat, J. Biesdorf, P. Oberholzer, A. Kaestner and T. J. Schmidt, Evaluation of neutron imaging for measuring phosphoric acid distribution in high temperature pefcs, J. Electrochem. Soc., 2014, 161, F192–F198.
S. Liu, M. Rasinski, Y. Rahim, S. Zhang, K. Wippermann, U. Reimer and W. Lehnert, Influence of operating conditions on the degradation mechanism in high-temperature polymer electrolyte fuel cells, J. Power Sources, 2019, 439, 227090.
X. Xu, H. Wang, S. Lu, Z. Guo, S. Rao, R. Xiu and Y. Xiang, A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone)blend membrane for high-temperature proton exchange membrane fuel cells, J. Power Sources, 2015, 286, 458–463.
F. Zhou, D. Singdeo and S. K. Kær, Investigation of the effect of humidity level of H2 on cell performance of a HT-PEM fuel cell, Fuel Cells, 2019, 19, 2–9.
Z. Zhang, Z. Xia, J. Huang, F. Jing, X. Zhang, H. Li, S. Wang and G. Sun, Uneven phosphoric acid interfaces with enhanced electrochemical performance for high-temperature polymer electrolyte fuel cells, Sci. Adv., 2023, 9, 1194.
S. Y. Lim, S. Martin, G. Gao, Y. Dou, S. B. Simonsen, J. O. Jensen, Q. Li, K. Norrman, S. Jing and W. Zhang, Self-standing nanofiber electrodes with Pt-Co derived from electrospun zeolitic imidazolate framework for high temperature pem fuel cells, Adv. Funct. Mater., 2020, 31, 2006771.
Y. Liu, W. Lehnert, H. Janßen, R. C. Samsun and D. Stolten, A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles, J. Power Sources, 2016, 311, 91–102.
X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu and Y. Li, Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design, Chem, 2019, 5, 1486–1511.
V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas and N. M. Marković, Improved oxygen reduction activity on pt3Ni(111) via increased surface site availability, Science, 2007, 315, 493–497.
Y. Nie, L. Li and Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev., 2015, 44, 2168–2201.
J. Greeley, I. E. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff and J. K. Norskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nat. Chem., 2009, 1, 552–556.
J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, 2004, 108, 17886–17892.
S. Lu, X. Xu, J. Zhang, S. Peng, D. Liang, H. Wang and Y. Xiang, A self-anchored phosphotungstic acid hybrid proton exchange membrane achieved via one-step synthesis, Adv. Energy Mater., 2014, 4, 1400842.
V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 2007, 6, 241–247.
L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su and X. Huang, Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis, Science, 2016, 354, 1410–1414.
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang and Y. Li, Single-atom catalysts: Synthetic strategies and electrochemical applications, Joule, 2018, 2, 1242–1264.
M. Shao, Q. Chang, J. P. Dodelet and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev., 2016, 116, 3594–3657.
Y.-H. Chung, S. J. Kim, D. Y. Chung, H. Y. Park, Y.-E. Sung, S. J. Yoo and J. H. Jang, Third-body effects of native surfactants on Pt nanoparticle electrocatalysts in proton exchange fuel cells, Chem. Commun., 2015, 51, 2968–2971.
K. Miyabayashi, H. Nishihara and M. Miyake, Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction, Langmuir, 2014, 30, 2936–2942.
J. Tao, X. Wang, M. Xu, C. Liu, J. Ge and W. Xing, Non-noble metals as activity sites for ORR catalysts in proton exchange membrane fuel cells (PEMFCs), Ind. Chem. Mater., 2023, 1, 388–409.
V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley and J. K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chem., Int. Ed., 2006, 45, 2897–2901.
X. Zhu, X. Tan, K. H. Wu, S. C. Haw, C. W. Pao, B. J. Su, J. Jiang, S. C. Smith, J. M. Chen, R. Amal and X. Lu, Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning, Angew. Chem., Int. Ed., 2021, 60, 21911–21917.
M. Weber, F. C. Nart, I. R. de Moraes and T. Iwasita, Adsorption of phosphate species on Pt(111) and Pt(100) as studied by in situ ftir spectroscopy, J. Chem. Phys., 1996, 100, 19933–19938.
R. Gisbert, G. García and M. T. M. Koper, Adsorption of phosphate species on poly-oriented pt and Pt(111) electrodes over a wide range of pH, Electrochim. Acta, 2010, 55, 7961–7968.
A. Tanaka, R. Adzic and B. Nikolic, Oxygen reduction on single crystal platinum electrodes in phosphoric acid solutions, J. Serb. Chem. Soc., 1999, 64, 695–705.
Q. He, X. Yang, W. Chen, S. Mukerjee, B. Koel and S. Chen, Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals, Phys. Chem. Chem. Phys., 2010, 12, 12544–12555.
Q. He, B. Shyam, M. Nishijima, D. Ramaker and S. Mukerjee, Mitigating phosphate anion poisoning of cathodic Pt/C catalysts in phosphoric acid fuel cells, J. Phys. Chem. C, 2013, 117, 4877–4887.
Z. Xia and S. Guo, Strain engineering of metal-based nanomaterials for energy electrocatalysis, Chem. Soc. Rev., 2019, 48, 3265–3278.
M. Luo and S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater., 2017, 2, 17059.
W. Li, D. Wang, T. Liu, L. Tao, Y. Zhang, Y. C. Huang, S. Du, C. L. Dong, Z. Kong, Y. F. Li, S. Lu and S. Wang, Doping-modulated strain enhancing the phosphate tolerance on ptfe alloys for high-temperature proton exchange membrane fuel cells, Adv. Funct. Mater., 2021, 32, 2109244.
Y. Devrim, H. Devrim and I. Eroglu, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2016, 41, 10044–10052.
H. Wang, X. Li, X. Feng, Y. Liu, W. Kang, X. Xu, X. Zhuang and B. Cheng, Novel proton-conductive nanochannel membranes with modified SiO2 nanospheres for direct methanol fuel cells, J. Solid State Electrochem., 2018, 22, 3475–3484.
G. Huang, Y. Li, S. Du, Y. Wu, R. Chen, J. Zhang, Y. Cheng, S. Lu, L. Tao and S. Wang, Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells, Sci. China: Chem., 2021, 64, 2203–2211.
S. S. Chougule, A. A. Jeffery, S. Roy Chowdhury, J. Min, Y. Kim, K. Ko, B. Sravani and N. Jung, Antipoisoning catalysts for the selective oxygen reduction reaction at the interface between metal nanoparticles and the electrolyte, Carbon Energy, 2023, 5, e293.
H. Li, P. Wen, D. S. Itanze, Z. D. Hood, S. Adhikari, C. Lu, X. Ma, C. Dun, L. Jiang, D. L. Carroll, Y. Qiu and S. M. Geyer, Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways, Nat. Commun., 2020, 11, 3928.
Z. Pu, J. Zhao, I. S. Amiinu, W. Li, M. Wang, D. He and S. Mu, A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction, Energy Environ. Sci., 2019, 12, 952–957.
J. Kou, J. Zhu Chen, J. Gao, X. Zhang, J. Zhu, A. Ghosh, W. Liu, A. J. Kropf, D. Zemlyanov, R. Ma, X. Guo, A. K. Datye, G. Zhang, L. Guo and J. T. Miller, Structural and catalytic properties of isolated Pt2+ sites in platinum phosphide (PtP2), ACS Catal., 2021, 11, 13496–13509.
W. Tian, Y. Wang, W. Fu, J. Su, H. Zhang and Y. Wang, PtP2 nanoparticles on n,p doped carbon through a self-conversion process to core-shell Pt/PtP2 as an efficient and robust orr catalyst, J. Mater. Chem. A, 2020, 8, 20463–20473.
J.-H. Yu, K. P. Singh, S.-J. Kim, T.-H. Kang, K.-S. Lee, H. Kim, S. Ringe and J.-S. Yu, Active and stable PtP2-based electrocatalysts solve the phosphate poisoning issue of high temperature fuel cells, J. Mater. Chem. A, 2023, 11, 6413–6427.
Y. Li, L. Jiang, S. Wang and G. Sun, Influence of phosphoric anions on oxygen reduction reaction activity of platinum, and strategies to inhibit phosphoric anion adsorption, Chin. J. Catal., 2016, 37, 1134–1141.
D. Strmcnik, M. Escudero-Escribano, K. Kodama, V. R. Stamenkovic, A. Cuesta and N. M. Marković, Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide, Nat. Chem., 2010, 2, 880–885.
Y.-H. Chung, D. Y. Chung, N. Jung and Y.-E. Sung, Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction, J. Phys. Chem. Lett., 2013, 4, 1304–1309.
Q. Li, G. Wu, D. A. Cullen, K. L. More, N. H. Mack, H. T. Chung and P. Zelenay, Phosphate-tolerant oxygen reduction catalysts, ACS Catal., 2014, 4, 3193–3200.
H. Yin, P. Yuan, B.-A. Lu, H. Xia, K. Guo, G. Yang, G. Qu, D. Xue, Y. Hu, J. Cheng, S. Mu and J.-N. Zhang, Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium, ACS Catal., 2021, 11, 12754–12762.
G. Wu, K. L. More, C. M. Johnston and P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, 2011, 332, 443–447.
Y. Hu, J. O. Jensen, C. Pan, L. N. Cleemann, I. Shypunov and Q. Li, Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions, Appl. Catal., B, 2018, 234, 357–364.
R. Gokhale, T. Asset, G. Qian, A. Serov, K. Artyushkova, B. C. Benicewicz and P. Atanassov, Implementing pgm-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells, Electrochem. Commun., 2018, 93, 91–94.
F. Razmjooei, J.-H. Yu, H.-Y. Lee, B.-J. Lee, K. P. Singh, T.-H. Kang, H.-J. Kim and J.-S. Yu, Single-atom iron-based electrocatalysts for high-temperature polymer electrolyte membrane fuel cell: Organometallic precursor and pore texture tailoring, ACS Appl. Energy Mater., 2020, 3, 11164–11176.
A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda and F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials, Nat. Mater., 2015, 14, 937–942.
P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu and Y. Xie, Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions, Angew. Chem., Int. Ed., 2017, 56, 610–614.
Y. J. Sa, D.-J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T.-Y. Kim and S. H. Joo, A general approach to preferential formation of active Fe-Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction, J. Am. Chem. Soc., 2016, 138, 15046–15056.
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang and Y. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction, Angew. Chem., Int. Ed., 2017, 56, 6937–6941.
L. Jiao, G. Wan, R. Zhang, H. Zhou, S. H. Yu and H. L. Jiang, From metal-organic frameworks to single-atom fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media, Angew. Chem., Int. Ed., 2018, 57, 8525–8529.
Y. Cheng, J. Zhang, X. Wu, C. Tang, S.-Z. Yang, P. Su, L. Thomsen, F. Zhao, S. Lu, J. Liu and S. P. Jiang, A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells, Nano Energy, 2021, 80, 105534.
Y. Cheng, M. Wang, S. Lu, C. Tang, X. Wu, J.-P. Veder, B. Johannessen, L. Thomsen, J. Zhang, S.-Z. Yang, S. Wang and S. P. Jiang, First demonstration of phosphate enhanced atomically dispersed bimetallic fecu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells, Appl. Catal., B, 2021, 284, 119717.
Y. Cheng, S. He, S. Lu, J. P. Veder, B. Johannessen, L. Thomsen, M. Saunders, T. Becker, R. De Marco, Q. Li, S. Z. Yang and S. P. Jiang, Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells, Adv. Sci., 2019, 6, 1802066.
E. O. Eren, N. Özkan and Y. Devrim, Development of non-noble Co-N-C electrocatalyst for high-temperature proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2020, 45, 33957–33967.
R. Haider, Y. Wen, Z.-F. Ma, D. P. Wilkinson, L. Zhang, X. Yuan, S. Song and J. Zhang, High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies, Chem. Soc. Rev., 2021, 50, 1138–1187.
B. Hopfenmüller, R. Zorn, O. Holderer, O. Ivanova, W. Lehnert, W. Lüke, G. Ehlers, N. Jalarvo, G. J. Schneider, M. Monkenbusch and D. Richter, Fractal diffusion in high temperature polymer electrolyte fuel cell membranes, J. Chem. Phys., 2018, 148, 204906.
T. Lazaridis, B. M. Stühmeier, H. A. Gasteiger and H. A. El-Sayed, Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts, Nat. Catal., 2022, 5, 363–373.
A. J. Appleby, Oxygen reduction on active platinum in 85% orthophosphoric acid, J. Electrochem. Soc., 1970, 117, 641–645.
S. J. Clouser, J. C. Huang and E. Yeager, Temperature dependence of the tafel slope for oxygen reduction on platinum in concentrated phosphoric acid, J. Appl. Electrochem., 1993, 23, 597–605.
Y. Hu, Y. Jiang, J. O. Jensen, L. N. Cleemann and Q. Li, Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures, J. Power Sources, 2018, 375, 77–81.
M. J. Fleige, G. K. H. Wiberg and M. Arenz, Rotating disk electrode system for elevated pressures and temperatures, Rev. Sci. Instrum., 2015, 86, 064101.
C. M. Zalitis, D. Kramer and A. R. Kucernak, Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport, Phys. Chem. Chem. Phys., 2013, 15, 4329–4340.
H. Lin, Z. Hu, K. H. Lim, S. Wang, L. Q. Zhou, L. Wang, G. Zhu, K. Okubo, C. Ling, Y. S. Kim and H. Jia, High-temperature rotating disk electrode study of platinum bimetallic catalysts in phosphoric acid, ACS Catal., 2023, 13, 5635–5642.
R. Vellacheri, S. M. Unni, S. Nahire, U. K. Kharul and S. Kurungot, Pt-MOOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature polymer electrolyte membrane fuel cell applications, Electrochim. Acta, 2010, 55, 2878–2887.