PDF (3.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

Liquid-based electronic materials for bioelectronics: current trends and challenges

Kijun ParkaSangwoo ParkaYejin Joa,bSoo A. KimaTae Young KimaSangwon KimaJungmok Seoa,b ()
School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
Lynk Solutec Inc., Seoul 03722, Republic of Korea
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Liquid-based materials have emerged as promising soft materials for bioelectronics due to their defectfree nature, conformability, robust mechanical properties, self-healing, conductivity, and stable interfaces. A liquid is infiltrated into a structuring material endowing the material with a liquid-like behavior. Liquidbased electronics with favorable features are being designed and engineered to meet requirements of practical applications. In this review, various types of liquid-based electronic materials and the recent progress on bioelectronics in multiple applications are summarized. Liquid-based electronic materials include ionic liquid hydrogel, nanomaterial-incorporated hydrogel, liquid metal, liquid-infused encapsulation, and liquid-based adhesive. These materials are demonstrated via electronic applications, including strain sensor, touch sensor, implantable stimulator, encapsulation, and adhesive as necessary components comprising electronics. Finally, the current challenges and future perspective of liquid-based electronics are discussed.

References

1

S. H. Byun, J. Y. Sim, K. C. Agno and J. W. Jeong, Materials and manufacturing strategies for mechanically transformative electronics, Mater. Today Adv., 2020, 7, 100089.

2

S. Liu, Y. Rao, H. Jang, P. Tan and N. Lu, Strategies for body-conformable electronics, Matter, 2022, 5, 1104–1136.

3

W. Gao, J. Huang, J. He, R. Zhou, Z. Li, Z. Chen, Y. Zhang and C. Pan, Recent advances in ultrathin materials and their applications in e-skin, InfoMat, 2023, 5, e12426.

4

Z. Xue, H. Song, J. A. Rogers, Y. Zhang and Y. Huang, Mechanically-Guided Structural Designs in Stretchable Inorganic Electronics, Adv. Mater., 2020, 32, 1902254.

5

K. W. Cho, S.-H. Sunwoo, Y. J. Hong, J. H. Koo, J. H. Kim, S. Baik, T. Hyeon and D.-H. Kim, Soft Bioelectronics Based on Nanomaterials, Chem. Rev., 2022, 122, 5068–5143.

6

D.-H. Kim, R. Ghaffari, N. Lu and J. A. Rogers, Flexible and Stretchable Electronics for Biointegrated Devices, Annu. Rev. Biomed. Eng., 2012, 14, 113–128.

7

J.-K. Song, K. Do, J. H. Koo, D. Son and D.-H. Kim, Nanomaterials-based flexible and stretchable bioelectronics, MRS Bull., 2019, 44, 643–656.

8

Y. R. Jeong, G. Lee, H. Park and J. S. Ha, Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring, Acc. Chem. Res., 2018, 52, 91–99.

9

W. B. Han, G.-J. Ko, T.-M. Jang and S.-W. Hwang, Materials, devices, and applications for wearable and implantable electronics, ACS Appl. Electron. Mater., 2021, 3, 485–503.

10

A. Chortos, J. Liu and Z. Bao, Pursuing prosthetic electronic skin, Nat. Mater., 2016, 15, 937–950.

11

A. J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine, J. T. Reeder, W. J. Jeang, A. J. Aranyosi, S. P. Lee, J. B. Model, R. Ghaffari, C.-J. Su, J. P. Leshock, T. Ray, A. Verrillo, K. Thomas, V. Krishnamurthi, S. Han, J. Kim, S. Krishnan, T. Hang and J. A. Rogers, Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat, Sci. Adv., 2019, 5, eaav3294.

12

S. Wang, Y. Fang, H. He, L. Zhang, C. A. Li and J. Ouyang, Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring, Adv. Funct. Mater., 2021, 31, 2007495.

13

J. W. Salatino, K. A. Ludwig, T. D. Y. Kozai and E. K. Purcell, Glial responses to implanted electrodes in the brain, Nat. Biomed. Eng., 2017, 1, 862–877.

14

S. Gong, L. W. Yap, B. Zhu and W. Cheng, Multiscale soft–hard interface design for flexible hybrid electronics, Adv. Mater., 2020, 32, 1902278.

15

Y. Li, N. Li, W. Liu, A. Prominski, S. Kang, Y. Dai, Y. Liu, H. Hu, S. Wai and S. Dai, Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design, Nat. Commun., 2023, 14, 4488.

16

R. Feiner and T. Dvir, Tissue–electronics interfaces: from implantable devices to engineered tissues, Nat. Rev. Mater., 2017, 3, 17076.

17

R. Herbert, J.-H. Kim, Y. S. Kim, H. M. Lee and W.-H. Yeo, Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces, Materials, 2018, 11, 187.

18

H.-R. Lim, H. S. Kim, R. Qazi, Y.-T. Kwon, J.-W. Jeong and W.-H. Yeo, Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment, Adv. Mater., 2020, 32, 1901924.

19

İ. Baylakoğlu, A. Fortier, S. Kyeong, R. Ambat, H. Conseil-Gudla, M. H. Azarian and M. G. Pecht, The detrimental effects of water on electronic devices, e-Prime - Advances in Electrical Engineering, Electronics and Energy, 2021, 1, 100016.

20
A. Stacy, M. Gilaki, E. Sahraei and D. Soudbakhsh, Investigating the Effects of Mechanical Damage on Electrical Response of Li-Ion Pouch Cells, 2020 American Control Conference (ACC), 2020.
21

Y. Zhao, A. Kim, G. Wan and B. C. K. Tee, Design and applications of stretchable and self-healable conductors for soft electronics, Nano Convergence, 2019, 6, 25.

22

J. A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang and J. A. Rogers, Fractal design concepts for stretchable electronics, Nat. Commun., 2014, 5, 3266.

23

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson and G. M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature, 1998, 393, 146–149.

24

W. Wu, L. Li, Z. Li, J. Sun and L. Wang, Extensible Integrated System for Real-Time Monitoring of Cardiovascular Physiological Signals and Limb Health, Adv. Mater., 2023, 35, 2304596.

25

J. Hubertus, J. Neu, S. Croce, G. Rizzello, S. Seelecke and G. Schultes, Nanoscale Nickel-Based Thin Films as Highly Conductive Electrodes for Dielectric Elastomer Applications with Extremely High Stretchability up to 200%, ACS Appl. Mater. Interfaces, 2021, 13, 39894–39904.

26

Y. Chan, M. Skreta, H. McPhee, S. Saha, R. Deus and L. Soleymani, Solution-processed wrinkled electrodes enable the development of stretchable electrochemical biosensors, Analyst, 2019, 144, 172–179.

27

Y. Zhang and X. Hou, Liquid-based materials, National Science Open, 2022, 1, 20220035.

28

Y. Cao, Y. J. Tan, S. Li, W. W. Lee, H. Guo, Y. Cai, C. Wang and B. C. K. Tee, Self-healing electronic skins for aquatic environments, Nat. Electron., 2019, 2, 75–82.

29

H.-R. Lee, C.-C. Kim and J.-Y. Sun, Stretchable Ionics – A Promising Candidate for Upcoming Wearable Devices, Adv. Mater., 2018, 30, 1704403.

30

J.-Y. Sun, C. Keplinger, G. M. Whitesides and Z. Suo, Ionic skin, Adv. Mater., 2014, 26, 7608–7614.

31

Y. Cao, T. G. Morrissey, E. Acome, S. I. Allec, B. M. Wong, C. Keplinger and C. Wang, A Transparent, Self-Healing, Highly Stretchable Ionic Conductor, Adv. Mater., 2017, 29, 1605099.

32

Y. Wu, Y. Zhou, W. Asghar, Y. Liu, F. Li, D. Sun, C. Hu, Z. Wu, J. Shang, Z. Yu, R.-W. Li and H. Yang, Liquid Metal-Based Strain Sensor with Ultralow Detection Limit for Human–Machine Interface Applications, Advanced Intelligent Systems, 2021, 3, 2000235.

33

J. Park, Y. Lee, T. Y. Kim, S. Hwang and J. Seo, Functional Bioelectronic Materials for Long-Term Biocompatibility and Functionality, ACS Appl. Electron. Mater., 2022, 4, 1449–1468.

34

Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim, S. Niu, H. Wang, X. Wang, A. M. Foudeh, J. B. H. Tok and Z. Bao, Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation, Nat. Biomed. Eng., 2019, 3, 58–68.

35

V. R. Feig, H. Tran, M. Lee and Z. Bao, Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue, Nat. Commun., 2018, 9, 2740.

36

Q. Gui, Y. He and Y. Wang, Soft Electronics Based on Liquid Conductors, Adv. Electron. Mater., 2021, 7, 2000780.

37

L. Guan, A. Nilghaz, B. Su, L. Jiang, W. Cheng and W. Shen, Stretchable-Fiber-Confined Wetting Conductive Liquids as Wearable Human Health Monitors, Adv. Funct. Mater., 2016, 26, 4511–4517.

38

R. Tong, Z. Ma, P. Gu, R. Yao, T. Li, M. Zeng, F. Guo, L. Liu and J. Xu, Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors, Int. J. Biol. Macromol., 2023, 246, 125683.

39

S. H. Cho, S. W. Lee, S. Yu, H. Kim, S. Chang, D. Kang, I. Hwang, H. S. Kang, B. Jeong, E. H. Kim, S. M. Cho, K. L. Kim, H. Lee, W. Shim and C. Park, Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity, ACS Appl. Mater. Interfaces, 2017, 9, 10128–10135.

40

K. Parida, V. Kumar, W. Jiangxin, V. Bhavanasi, R. Bendi and P. S. Lee, Highly Transparent, Stretchable, and Self-Healing Ionic-Skin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications, Adv. Mater., 2017, 29, 1702181.

41

Y. Lee, S. Lim, W. J. Song, S. Lee, S. J. Yoon, J.-M. Park, M.-G. Lee, Y.-L. Park and J.-Y. Sun, Triboresistive Touch Sensing: Grid-Free Touch-Point Recognition Based on Monolayered Ionic Power Generators, Adv. Mater., 2022, 34, 2108586.

42

V. R. Feig, H. Tran, M. Lee, K. Liu, Z. Huang, L. Beker, D. G. Mackanic and Z. Bao, An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels, Adv. Mater., 2019, 31, e1902869.

43

J. Deng, H. Yuk, J. Wu, C. E. Varela, X. Chen, E. T. Roche, C. F. Guo and X. Zhao, Electrical bioadhesive interface for bioelectronics, Nat. Mater., 2021, 20, 229–236.

44

W. Huang, Y. Zhang, Q. You, P. Huang, Y. Wang, Z. N. Huang, Y. Ge, L. Wu, Z. Dong, X. Dai, Y. Xiang, J. Li, X. Zhang and H. Zhang, Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions, Small, 2019, 15, 1900902.

45

H. Pan, H. Chu, Y. Li, Z. Pan, J. Zhao, S. Zhao, W. Huang and D. Li, Bismuthene quantum dots integrated D-shaped fiber as saturable absorber for multi-type soliton fiber lasers, J. Mater., 2023, 9, 183–190.

46

W. Huang, J. Zhu, M. Wang, L. Hu, Y. Tang, Y. Shu, Z. Xie and H. Zhang, Emerging Mono-Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications, Adv. Funct. Mater., 2021, 31, 2007584.

47

Y. Zi, Y. Hu, J. Pu, M. Wang and W. Huang, Recent Progress in Interface Engineering of Nanostructures for Photoelectrochemical Energy Harvesting Applications, Small, 2023, 19, 2208274.

48

Y. Zi, J. Zhu, M. Wang, L. Hu, Y. Hu, S. Wageh, O. A. Al-Hartomy, A. Al-Ghamdi, W. Huang and H. Zhang, CdS@CdSe Core/Shell Quantum Dots for Highly Improved Self-Powered Photodetection Performance, Inorg. Chem., 2021, 60, 18608–18613.

49

H. Xu, Y. Lv, D. Qiu, Y. Zhou, H. Zeng and Y. Chu, An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring, Nanoscale, 2019, 11, 1570–1578.

50

Y. Ohm, C. Pan, M. J. Ford, X. Huang, J. Liao and C. Majidi, An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics, Nat. Electron., 2021, 4, 185–192.

51

Y. Liu, X. Shi, S. Liu, H. Li, H. Zhang, C. Wang, J. Liang and Y. Chen, Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor, Nano Energy, 2019, 63, 103898.

52

J. Lv, C. Kong, C. Yang, L. Yin, I. Jeerapan, F. Pu, X. Zhang, S. Yang and Z. Yang, Wearable, stable, highly sensitive hydrogel–graphene strain sensors, Beilstein J. Nanotechnol., 2019, 10, 475–480.

53

F. B. Kadumudi, M. Hasany, M. K. Pierchala, M. Jahanshahi, N. Taebnia, M. Mehrali, C. F. Mitu, M.-A. Shahbazi, T.-G. Zsurzsan, A. Knott, T. L. Andresen and A. Dolatshahi-Pirouz, The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk–Graphene Hydrogels, Adv. Mater., 2021, 33, 2100047.

54

M. Atif, I. Afzaal, H. Naseer, M. Abrar and R. Bongiovanni, Review—Surface Modification of Carbon Nanotubes: A Tool to Control Electrochemical Performance, ECS J. Solid State Sci. Technol., 2020, 9, 041009.

55

S. Xia, S. Song, F. Jia and G. Gao, A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring, J. Mater. Chem. B, 2019, 7, 4638–4648.

56

L. Han, K. Liu, M. Wang, K. Wang, L. Fang, H. Chen, J. Zhou and X. Lu, Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance, Adv. Funct. Mater., 2018, 28, 1704195.

57

J. Park, J. Y. Kim, J. H. Heo, Y. Kim, S. A. Kim, K. Park, Y. Lee, Y. Jin, S. R. Shin, D. W. Kim and J. Seo, Intrinsically Nonswellable Multifunctional Hydrogel with Dynamic Nanoconfinement Networks for Robust Tissue-Adaptable Bioelectronics, Adv. Sci., 2023, 10, 2207237.

58

S. A. Kim, Y. Lee, K. Park, J. Park, S. An, J. Oh, M. Kang, Y. Lee, Y. Jo, S. W. Cho and J. Seo, 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers, Int. J. Bioprint., 2023, 9, 765.

59

J. He, S. Liang, F. Li, Q. Yang, M. Huang, Y. He, X. Fan and M. Wu, Recent Development in Liquid Metal Materials, ChemistryOpen, 2021, 10, 360–372.

60

L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang, Q. Zhang, L. Shu, X. Qiu, M. Kam, A. Javey and Z. Fan, A biomimetic eye with a hemispherical perovskite nanowire array retina, Nature, 2020, 581, 278–282.

61

G. Yun, S.-Y. Tang, S. Sun, D. Yuan, Q. Zhao, L. Deng, S. Yan, H. Du, M. D. Dickey and W. Li, Liquid metal-filled magnetorheological elastomer with positive piezoconductivity, Nat. Commun., 2019, 10, 1300.

62

M. D. Dickey, Stretchable and Soft Electronics using Liquid Metals, Adv. Mater., 2017, 29, 1606425.

63

H. Chang, P. Zhang, R. Guo, Y. Cui, Y. Hou, Z. Sun and W. Rao, Recoverable Liquid Metal Paste with Reversible Rheological Characteristic for Electronics Printing, ACS Appl. Mater. Interfaces, 2020, 12, 14125–14135.

64

P. Won, C. S. Valentine, M. Zadan, C. Pan, M. Vinciguerra, D. K. Patel, S. H. Ko, L. M. Walker and C. Majidi, 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials, ACS Appl. Mater. Interfaces, 2022, 14, 55028–55038.

65

C. Ladd, J.-H. So, J. Muth and M. D. Dickey, 3D Printing of Free Standing Liquid Metal Microstructures, Adv. Mater., 2013, 25, 5081–5085.

66

R. Xing, J. Yang, D. Zhang, W. Gong, T. V. Neumann, M. Wang, R. Huang, J. Kong, W. Qi and M. D. Dickey, Metallic gels for conductive 3D and 4D printing, Matter, 2023, 6, 2248–2262.

67

F.-M. Allioux, J. Han, J. Tang, S. Merhebi, S. Cai, J. Tang, R. Abbasi, F. Centurion, M. Mousavi, C. Zhang, W. Xie, M. Mayyas, M. A. Rahim, M. B. Ghasemian and K. Kalantar-Zadeh, Nanotip Formation from Liquid Metals for Soft Electronic Junctions, ACS Appl. Mater. Interfaces, 2021, 13, 43247–43257.

68

Q. Wu, F. Zhu, Z. Wu, Y. Xie, J. Qian, J. Yin and H. Yang, Suspension printing of liquid metal in yield-stress fluid for resilient 3D constructs with electromagnetic functions, npj Flexible Electron., 2022, 6, 50.

69

Y. Wu, Y. Li, Y. Zou, W. Rao, Y. Gai, J. Xue, L. Wu, X. Qu, Y. Liu, G. Xu, L. Xu, Z. Liu and Z. Li, A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring, Nano Energy, 2022, 92, 106715.

70

Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng, F. Xiong, C. Zhang, L. C. Tai, P. Zhao, R. S. Fearing and A. Javey, Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring, Adv. Mater., 2017, 29, 1701985.

71

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz and G. M. Whitesides, Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature, Adv. Funct. Mater., 2008, 18, 1097–1104.

72

Y. R. Jeong, J. Kim, Z. Xie, Y. Xue, S. M. Won, G. Lee, S. W. Jin, S. Y. Hong, X. Feng, Y. Huang, J. A. Rogers and J. S. Ha, A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities, NPG Asia Mater., 2017, 9, e443–e443.

73

S. Handschuh-Wang, T. Gan, T. Wang, F. J. Stadler and X. Zhou, Surface Tension of the Oxide Skin of Gallium-Based Liquid Metals, Langmuir, 2021, 37, 9017–9025.

74

G.-H. Lee, Y. R. Lee, H. Kim, D. A. Kwon, H. Kim, C. Yang, S. Q. Choi, S. Park, J.-W. Jeong and S. Park, Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics, Nat. Commun., 2022, 13, 2643.

75

R. Abbasi, M. Mayyas, M. B. Ghasemian, F. Centurion, J. Yang, M. Saborio, F.-M. Allioux, J. Han, J. Tang, M. J. Christoe, K. M. Mohibul Kabir, K. Kalantar-Zadeh and M. A. Rahim, Photolithography–enabled direct patterning of liquid metals, J. Mater. Chem. C, 2020, 8, 7805–7811.

76

L. Johnston, J. Yang, J. Han, K. Kalantar-Zadeh and J. Tang, Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics, J. Mater. Chem. C, 2022, 10, 921–931.

77

M. Baharfar, M. Mayyas, M. Rahbar, F.-M. Allioux, J. Tang, Y. Wang, Z. Cao, F. Centurion, R. Jalili, G. Liu and K. Kalantar-Zadeh, Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing, ACS Nano, 2021, 15, 19661–19671.

78

Y. Wang, S. Wang, H. Chang and W. Rao, Galvanic Replacement of Liquid Metal/Reduced Graphene Oxide Frameworks, Adv. Mater. Interfaces, 2020, 7, 2000626.

79

G.-H. Lee, D. H. Lee, W. Jeon, J. Yoon, K. Ahn, K. S. Nam, M. Kim, J. K. Kim, Y. H. Koo, J. Joo, W. Jung, J. Lee, J. Nam, S. Park, J.-W. Jeong and S. Park, Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics, Nat. Commun., 2023, 14, 4173.

80

M. G. Saborio, S. Cai, J. Tang, M. B. Ghasemian, M. Mayyas, J. Han, M. J. Christoe, S. Peng, P. Koshy, D. Esrafilzadeh, R. Jalili, C. H. Wang and K. Kalantar-Zadeh, Liquid Metal Droplet and Graphene Co-Fillers for Electrically Conductive Flexible Composites, Small, 2020, 16, 1903753.

81

M. Li, D. Chen, X. Deng, B. Xu, M. Li, H. Liang, M. Wang, G. Song, T. Zhang and Y. Liu, Graded Mxene-Doped Liquid Metal as Adhesion Interface Aiming for Conductivity Enhancement of Hybrid Rigid-Soft Interconnection, ACS Appl. Mater. Interfaces, 2023, 15, 14948–14957.

82
Y.-N. Z. Yip, Z. Zhu and Y.-C. Chan, Reliability of wearable electronics – Case of water proof tests on smartwatch, 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, 2017, pp. 1–5.
83

D.-S. Kim, Y. W. Choi, A. Shanmugasundaram, Y.-J. Jeong, J. Park, N.-E. Oyunbaatar, E.-S. Kim, M. Choi and D.-W. Lee, Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility, Nat. Commun., 2020, 11, 535.

84

K. Li, X. Cheng, F. Zhu, L. Li, Z. Xie, H. Luan, Z. Wang, Z. Ji, H. Wang, F. Liu, Y. Xue, C. Jiang, X. Feng, L. Li, J. A. Rogers, Y. Huang and Y. Zhang, A Generic Soft Encapsulation Strategy for Stretchable Electronics, Adv. Funct. Mater., 2019, 29, 1806630.

85
P. Lall, K. Dornala, J. Suhling, J. Deep and R. Lowe, Fatigue Delamination Crack Growth of Potting Compounds in PCB/ Epoxy Interfaces Under Flexure Loading, ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, 2019.
86

R. Wen, J. Huo, J. Lv, Z. Liu and Y. Yu, Effect of silicone resin modification on the performance of epoxy materials for LED encapsulation, J. Mater. Sci.: Mater. Electron., 2017, 28, 14522–14535.

87

L. A. Blaylock, R. Ruibal and K. Platt-Aloia, Skin structure and wiping behavior of phyllomedusine frogs, Copeia, 1976, 283–295.

88

T.-S. Wong, S. H. Kang, S. K. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal and J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 2011, 477, 443–447.

89

A. K. Epstein, T.-S. Wong, R. A. Belisle, E. M. Boggs and J. Aizenberg, Liquid-infused structured surfaces with exceptional anti-biofouling performance, Proc. Natl. Acad. Sci., 2012, 109, 13182–13187.

90

S. Kolle, O. Ahanotu, A. Meeks, S. Stafslien, M. Kreder, L. Vanderwal, L. Cohen, G. Waltz, C. S. Lim, D. Slocum, E. M. Greene, K. Hunsucker, G. Swain, D. Wendt, S. L.-M. Teo and J. Aizenberg, On the mechanism of marine fouling-prevention performance of oil-containing silicone elastomers, Sci. Rep., 2022, 12, 11799.

91

D. Zhao, X.-D. Xu, S.-S. Yuan, S.-J. Yan, X.-H. Wang, S.-F. Luan and J.-H. Yin, Fouling-resistant behavior of liquid-infused porous slippery surfaces, Chin. J. Polym. Sci., 2017, 35, 887–896.

92

J. Liu, X. Xu, Y. Lei, M. Zhang, Z. Sheng, H. Wang, M. Cao, J. Zhang and X. Hou, Liquid Gating Meniscus-Shaped Deformable Magnetoelastic Membranes with Self-Driven Regulation of Gas/Liquid Release, Adv. Mater., 2022, 34, 2107327.

93

Z. Guo, D. Boylan, L. Shan and X. Dai, Hydrophilic reentrant SLIPS enabled flow separation for rapid water harvesting, Proc. Natl. Acad. Sci., 2022, 119, e2209662119.

94

K. Maji, A. Das, M. Dhar and U. Manna, Synergistic chemical patterns on a hydrophilic slippery liquid infused porous surface (SLIPS) for water harvesting applications, J. Mater. Chem. A, 2020, 8, 25040–25046.

95

C. Wang, S. Wang, H. Pan, L. Min, H. Zheng, H. Zhu, G. Liu, W. Yang, X. Chen and X. Hou, Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties, Sci. Adv., 2020, 6, eabb4700.

96

K. Chae, W. Y. Jang, K. Park, J. Lee, H. Kim, K. Lee, C. K. Lee, Y. Lee, S. H. Lee and J. Seo, Antibacterial infection and immune-evasive coating for orthopedic implants, Sci. Adv., 2020, 6, eabb0025.

97

K. Park, S. Kim, Y. Jo, J. Park, I. Kim, S. Hwang, Y. Lee, S. Y. Kim and J. Seo, Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications, Bioact. Mater., 2023, 25, 555–568.

98

D. C. Leslie, A. Waterhouse, J. B. Berthet, T. M. Valentin, A. L. Watters, A. Jain, P. Kim, B. D. Hatton, A. Nedder, K. Donovan, E. H. Super, C. Howell, C. P. Johnson, T. L. Vu, D. E. Bolgen, S. Rifai, A. R. Hansen, M. Aizenberg, M. Super, J. Aizenberg and D. E. Ingber, A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling, Nat. Biotechnol., 2014, 32, 1134–1140.

99

H. Sun, R. Li, H. Li, Z. Weng, G. Wu, P. Kerns, S. Suib, X. Wang and Y. Zhang, Bioinspired Oil-Infused Slippery Surfaces with Water and Ion Barrier Properties, ACS Appl. Mater. Interfaces, 2021, 13, 33464–33476.

100

B. Lemaire, Y. Yu, N. Molinari, H. Wu, Z. A. H. Goodwin, F. Stricker, B. Kozinsky and J. Aizenberg, Flexible fluid-based encapsulation platform for water-sensitive materials, Proc. Natl. Acad. Sci., 2023, 120, e2308804120.

101
H. Carrion, S. Joshi, R. Shirwaiker and S. Fonash, A novel fabrication method for embedding metal structures into polymers for flexible electronics, 62nd IIE Annual Conference and Expo 2012, 2012, pp. 3212–3221.
102

S. Walker, J. Rueben, T. V. Volkenburg, S. Hemleben, C. Grimm, J. Simonsen and Y. Mengüç, Using an environmentally benign and degradable elastomer in soft robotics, Int. J. Intell. Robot. Appl., 2017, 1, 124–142.

103

J. Yang, J. Steck, R. Bai and Z. Suo, Topological adhesion Ⅱ. Stretchable adhesion, Extreme Mech. Lett., 2020, 40, 100891.

104

E. Petrie, Cyanoacrylate Adhesives in Surgical Applications, Rev. Adhes. Adhes., 2014, 2, 253–310.

105

E. A. S. Marques, L. F. M. da Silva, M. D. Banea and R. J. C. Carbas, Adhesive Joints for Low- and High-Temperature Use: An Overview, J. Adhes., 2015, 91, 556–585.

106

K. Pan, X. Zeng, H. Li and X. Lai, Synthesis of silane oligomers containing vinyl and epoxy group for improving the adhesion of addition-cure silicone encapsulant, J. Adhes. Sci. Technol., 2016, 30, 1131–1142.

107

D. G. Barrett, G. G. Bushnell and P. B. Messersmith, Mechanically robust, negative-swelling, mussel-inspired tissue adhesives, Adv. Healthcare Mater., 2013, 2, 745–755.

108

D. Gan, W. Xing, L. Jiang, J. Fang, C. Zhao, F. Ren, L. Fang, K. Wang and X. Lu, Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry, Nat. Commun., 2019, 10, 1487.

109

X. Wei, K. Ma, Y. Cheng, L. Sun, D. Chen, X. Zhao, H. Lu, B. Song, K. Yang and P. Jia, Adhesive, Conductive, Self-Healing, and Antibacterial Hydrogel Based on Chitosan–Polyoxometalate Complexes for Wearable Strain Sensor, ACS Appl. Polym. Mater., 2020, 2, 2541–2549.

110

R. Liu, Y. Li, J. Chen, X. Zhang, Z. Niu and Y. Sun, The preparation of multifunction chitosan adhesive hydrogel by “one- step” method, J. Biomater. Sci., Polym. Ed., 2020, 31, 1925–1940.

111

X. Shi and P. Wu, A Smart Patch with On-Demand Detachable Adhesion for Bioelectronics, Small, 2021, 17, 2101220.

112

W. Liu, R. Xie, J. Zhu, J. Wu, J. Hui, X. Zheng, F. Huo and D. Fan, A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors, npj Flexible Electron., 2022, 6, 68.

113

X. Jiang, F. Zeng, L. Zhang, A. Yu and A. Lu, Engineered Injectable Cell-Laden Chitin/Chitosan Hydrogel with Adhesion and Biodegradability for Calvarial Defect Regeneration, ACS Appl. Mater. Interfaces, 2023, 15, 20761–20773.

114

Y. Zhang, Y. Dai, F. Xia and X. Zhang, Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting, Nano Energy, 2022, 104, 107977.

115

X. Peng, X. Xu, Y. Deng, X. Xie, L. Xu, X. Xu, W. Yuan, B. Yang, X. Yang, X. Xia, L. Duan and L. Bian, Ultrafast Self-Gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing, Adv. Funct. Mater., 2021, 31, 33.

Industrial Chemistry & Materials
Pages 361-377
Cite this article:
Park K, Park S, Jo Y, et al. Liquid-based electronic materials for bioelectronics: current trends and challenges. Industrial Chemistry & Materials, 2024, 2(3): 361-377. https://doi.org/10.1039/d3im00122a
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return