AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Strategies to enable microsized alloy anodes for high-energy and long-life alkali-ion batteries

Amine Daalia,bRachid AminecWilkistar OtienobGui-Liang Xua ( )Khalil Aminea ( )
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
Department of Industrial and Manufacturing Engineering, College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
Show Author Information

Graphical Abstract

Abstract

Micro-sized anode materials demonstrate greater potential for practical applications than nanomaterials in the aspects of volumetric energy density, coulombic efficiency, fabrication process, and cost. However, the huge volume changes of alloy anodes (up to ∼500%) during repeated charge/discharge has led to a series of challenging issues including pulverization of active material particles and delamination from current collectors, formation of thick and fragile solid-electrolyte interphase (SEI) and depletion of electrolytes, eventually leading to rapid cell degradation. Herein, we review recent progress of rational strategies to enable the use of microsized alloy anodes (Si, P, Sb, Sn, etc.) including electrolyte modulation, binder design and architecture engineering. We also provide perspectives on future directions and remaining challenges of microsized anodes towards practical applications.

References

1

M. Winter, B. Barnett and K. Xu, Before Li ion batteries, Chem. Rev., 2018, 118, 11433–11456.

2

M. Li, J. Lu, Z. Chen and K. Amine, 30 Years of Lithium-ion batteries, Adv. Mater., 2018, 30, 1800561.

3

H. Zhang, I. Hasa and S. Passerini, Beyond insertion for na-ion batteries: Nanostructured alloying and conversion anode materials, Adv. Energy Mater., 2018, 8, 1702582.

4

H. Tan, D. Chen, X. Rui and Y. Yu, Peering into alloy anodes for sodium-ion batteries: Current trends, challenges, and opportunities, Adv. Funct. Mater., 2019, 29, 1808745.

5

S. Liang, Y.-J. Cheng, J. Zhu, Y. Xia and P. Müller-Buschbaum, A chronicle review of non-silicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes, Small Methods, 2020, 4, 2000218.

6

G. Li, S. Guo, B. Xiang, S. Mei, Y. Zheng, X. Zhang, B. Gao, P. K. Chu and K. Huo, Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries, Energy Mater., 2022, 2, 200020.

7

V. Aravindan, Y.-S. Lee and S. Madhavi, Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes, Adv. Energy Mater., 2015, 5, 1402225.

8

E. J. McShane, A. M. Colclasure, D. E. Brown, Z. M. Konz, K. Smith and B. D. McCloskey, Quantification of inactive lithium and solid–electrolyte interphase species on graphite electrodes after fast charging, ACS Energy Lett., 2020, 5, 2045–2051.

9

X. Deng, Z. Chen and Y. Cao, Transition metal oxides based on conversion reaction for sodium-ion battery anodes, Mater. Today Chem., 2018, 9, 114–132.

10

S. P. V. Nadimpalli, R. Tripuraneni and V. A. Sethuraman, Real-time stress measurements in germanium thin film electrodes during electrochemical lithiation/delithiation cycling, J. Electrochem. Soc., 2015, 162, A2840.

11

Q. Wang, C. Zhao, Y. Lu, Y. Li, Y. Zheng, Y. Qi, X. Rong, L. Jiang, X. Qi, Y. Shao, D. Pan, B. Li, Y.-S. Hu and L. Chen, Advanced nanostructured anode materials for sodium-ion batteries, Small, 2017, 13, 1701835.

12

S. Guo, Y. Feng, L. Wang, Y. Jiang, Y. Yu and X. Hu, Architectural engineering achieves high-performance alloying anodes for lithium and sodium ion batteries, Small, 2021, 17, 2005248.

13

B. L. Ellis, P. Knauth and T. Djenizian, Three-dimensional self-supported metal oxides for advanced energy storage, Adv. Mater., 2014, 26, 3368–3397.

14

K. Gerasopoulos, E. Pomerantseva, M. McCarthy, A. Brown, C. Wang, J. Culver and R. Ghodssi, Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining, ACS Nano, 2012, 6, 6422–6432.

15

J. W. Long, B. Dunn, D. R. Rolison and H. S. White, Three-dimensional battery architectures, Chem. Rev., 2004, 104, 4463–4492.

16

C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3, 31–35.

17

Y. Liu, N. Zhang, L. Jiao and J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries, Adv. Mater., 2015, 27, 6702–6707.

18

Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng and Y. Qian, Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries, ACS Nano, 2018, 12, 12932–12940.

19

S. Liu, H. Xu, X. Bian, J. Feng, J. Liu, Y. Yang, C. Yuan, Y. An, R. Fan and L. Ci, Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries, ACS Nano, 2018, 12, 7380–7387.

20

Y. An, Y. Tian, C. Wei, Y. Tao, B. Xi, S. Xiong, J. Feng and Y. Qian, Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage, Nano Today, 2021, 37, 101094.

21

Y. An, Y. Tian, C. Wei, H. Jiang, B. Xi, S. Xiong, J. Feng and Y. Qian, Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries, ACS Nano, 2019, 13, 13690–13701.

22

Y. An, Y. Tian, H. Wei, B. Xi, S. Xiong, J. Feng and Y. Qian, Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with mxene for lithium-metal anode, Adv. Funct. Mater., 2020, 30, 1908721.

23

J. Huang, X. Lin, H. Tan and B. Zhang, Bismuth microparticles as advanced anodes for potassium-ion battery, Adv. Energy Mater., 2018, 8, 1703496.

24

B. Zhang, G. Rousse, D. Foix, R. Dugas, D. A. D. Corte and J.-M. Tarascon, Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries, Adv. Mater., 2016, 28, 9824–9830.

25

N. Nitta, F. Wu, J. T. Lee and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 2015, 18, 252–264.

26

W. Zhai, Q. Ai, L. Chen, S. Wei, D. Li, L. Zhang, P. Si, J. Feng and L. Ci, Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes, Nano Res., 2017, 10, 4274–4283.

27

J. Huang, X. Guo, X. Du, X. Lin, J.-Q. Huang, H. Tan, Y. Zhu and B. Zhang, Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries, Energy Environ. Sci., 2019, 12, 1550–1557.

28

J. Wang and Y. Cui, Electrolytes for microsized silicon, Nat. Energy, 2020, 5, 361–362.

29

G. Zhu, D. Chao, W. Xu, M. Wu and H. Zhang, Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries, ACS Nano, 2021, 15, 15567–15593.

30

X. Du and B. Zhang, Robust solid electrolyte interphases in localized high concentration electrolytes boosting black phosphorus anode for potassium-ion batteries, ACS Nano, 2021, 15, 16851–16860.

31

X. Du, Y. Gao and B. Zhang, Building elastic solid electrolyte interphases for stabilizing microsized antimony anodes in potassium ion batteries, Adv. Funct. Mater., 2021, 31, 2102562.

32

R. Jain, A. S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani, R. A. Panchal, M. Kamble, F. Han, C. Wang and N. Koratkar, Nanostructuring versus microstructuring in battery electrodes, Nat. Rev. Mater., 2022, 7, 736–746.

33

Y.-F. Tian, G. Li, D.-X. Xu, Z.-Y. Lu, M.-Y. Yan, J. Wan, J.-Y. Li, Q. Xu, S. Xin, R. Wen and Y.-G. Guo, Micrometer-sized SiMgyOx with stable internal structure evolution for high-performance Li-ion battery anodes, Adv. Mater., 2022, 34, 2200672.

34

Y. Wu, H.-B. Huang, Y. Feng, Z.-S. Wu and Y. Yu, The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries, Adv. Mater., 2019, 31, 1901414.

35

H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li and L. Hu, Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir, Nano Lett., 2013, 13, 3093–3100.

36

Y. Gao, R. Yi, Y. C. Li, J. Song, S. Chen, Q. Huang, T. E. Mallouk and D. Wang, General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes, J. Am. Chem. Soc., 2017, 139, 17359–17367.

37

Y. Liu, Q. Liu, C. Jian, D. Cui, M. Chen, Z. Li, T. Li, T. Nilges, K. He, Z. Jia and C. Zhou, Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus, Nat. Commun., 2020, 11, 2520.

38

H. Ding, J. Wang, J. Zhou, C. Wang and B. Lu, Building electrode skins for ultra-stable potassium metal batteries, Nat. Commun., 2023, 14, 2305.

39

M. Gu, A. M. Rao, J. Zhou and B. Lu, In situ formed uniform and elastic SEI for high-performance batteries, Energy Environ. Sci., 2023, 16, 1166–1175.

40

Y. Zhang, X. Yi, H. Fu, X. Wang, C. Gao, J. Zhou, A. M. Rao and B. Lu, Reticular elastic solid electrolyte interface enabled by an industrial dye for ultrastable potassium-ion batteries, Small Struct., 2024, 5, 2300232.

41

K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 2014, 114, 11503–11618.

42
Handbook of Battery Materials, Wiley-VCH, Weinheim, New York, 1999
43

P. Peljo and H. H. Girault, Electrochemical potential window of battery electrolytes: The HOMO–LUMO misconception, Energy Environ. Sci., 2018, 11, 2306–2309.

44

B. Lee, E. Paek, D. Mitlin and S. W. Lee, Sodium metal anodes: Emerging solutions to dendrite growth, Chem. Rev., 2019, 119, 5416–5460.

45

A. K. Stephan, Completing the picture of the solid electrolyte interphase, Joule, 2019, 3, 1812–1814.

46

X. Yi, A. M. Rao, J. Zhou and B. Lu, Trimming the degrees of freedom via a K+ flux rectifier for safe and long-life potassium-ion batteries, Nano-Micro Lett., 2023, 15, 200.

47

J. Wu, M. Ihsan-Ul-Haq, Y. Chen and J.-K. Kim, Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations, Nano Energy, 2021, 89, 106489.

48

N. Yao, X. Chen, Z.-H. Fu and Q. Zhang, Applying Classical, Ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries, Chem. Rev., 2022, 122, 10970–11021.

49

M. Li, R. P. Hicks, Z. Chen, C. Luo, J. Guo, C. Wang and Y. Xu, Electrolytes in organic batteries, Chem. Rev., 2023, 123, 1712–1773.

50

X. Fan and C. Wang, High-voltage liquid electrolytes for Li batteries: Progress and perspectives, Chem. Soc. Rev., 2021, 50, 10486–10566.

51

B. S. Parimalam and B. L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, J. Electrochem. Soc., 2018, 165, A251.

52

T. Li, X.-Q. Zhang, P. Shi and Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries, Joule, 2019, 3, 2647–2661.

53

L. Ma, J. Li, T. Wu, P. Sun, S. Tan, H. Wang, W. Xie, L. Pan, Y. Yamauchi and W. Mai, Re-oxidation reconstruction process of solid electrolyte interphase layer derived from highly active anion for potassium-ion batteries, Nano Energy, 2021, 87, 106150.

54

H. Zheng, H. Xiang, F. Jiang, Y. Liu, Y. Sun, X. Liang, Y. Feng and Y. Yu, Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries, Adv. Energy Mater., 2020, 10, 2001440.

55

G. G. Eshetu, G. A. Elia, M. Armand, M. Forsyth, S. Komaba, T. Rojo and S. Passerini, Electrolytes and interphases in sodium-based rechargeable batteries: Recent advances and perspectives, Adv. Energy Mater., 2020, 10, 2000093.

56

Y. An, H. Fei, G. Zeng, L. Ci, B. Xi, S. Xiong and J. Feng, Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte, J. Power Sources, 2018, 378, 66–72.

57

Z. Piao, R. Gao, Y. Liu, G. Zhou and H.-M. Cheng, A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries, Adv. Mater., 2023, 35, 2206009.

58

Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai, J.-M. Tarascon and B. Zhang, Unraveling the mechanical origin of stable solid electrolyte interphase, Joule, 2021, 5, 1860–1872.

59

A. Meazah Haregewoin, A. Sorsa Wotango and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: Progress and perspectives, Energy Environ. Sci., 2016, 9, 1955–1988.

60

Z. Zeng, X. Jiang, R. Li, D. Yuan, X. Ai, H. Yang and Y. Cao, A safer sodium-ion battery based on nonflammable organic phosphate electrolyte, Adv. Sci., 2016, 3, 1600066.

61

Y. Jin, N.-J. H. Kneusels, L. E. Marbella, E. Castillo-Martínez, P. C. M. M. Magusin, R. S. Weatherup, E. Jónsson, T. Liu, S. Paul and C. P. Grey, Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy, J. Am. Chem. Soc., 2018, 140, 9854–9867.

62

B. Qin, A. Schiele, Z. Jusys, A. Mariani, T. Diemant, X. Liu, T. Brezesinski, R. J. Behm, A. Varzi and S. Passerini, Highly reversible sodiation of tin in glyme electrolytes: The critical role of the solid electrolyte interphase and its formation mechanism, ACS Appl. Mater. Interfaces, 2020, 12, 3697–3708.

63

J. Luis Gómez-Cámer, B. Acebedo, N. Ortiz-Vitoriano, I. Monterrubio, M. Galcerán and T. Rojo, Unravelling the impact of electrolyte nature on Sn4P3/C negative electrodes for Na-ion batteries, J. Mater. Chem. A, 2019, 7, 18434–18441.

64

H. Wang, J. He, J. Liu, S. Qi, M. Wu, J. Wen, Y. Chen, Y. Feng and J. Ma, Electrolytes enriched by crown ethers for lithium metal batteries, Adv. Funct. Mater., 2021, 31, 2002578.

65

X. Ma, H. Fu, J. Shen, D. Zhang, J. Zhou, C. Tong, A. M. Rao, J. Zhou, L. Fan and B. Lu, Green ether electrolytes for sustainable high-voltage potassium ion batteries, Angew. Chem., Int. Ed., 2023, 62, e202312973.

66

J. Chen, X. Fan, Q. Li, H. Yang, M. R. Khoshi, Y. Xu, S. Hwang, L. Chen, X. Ji, C. Yang, H. He, C. Wang, E. Garfunkel, D. Su, O. Borodin and C. Wang, Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries, Nat. Energy, 2020, 5, 386–397.

67

Y. Li, F. Wu, Y. Li, M. Liu, X. Feng, Y. Bai and C. Wu, Ether-based electrolytes for sodium ion batteries, Chem. Soc. Rev., 2022, 51, 4484–4536.

68

N. Zhang, C. Sun, Y. Huang, C. Zhu, Z. Wu, L. Lv, X. Zhou, X. Wang, X. Xiao, X. Fan and L. Chen, Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries, J. Mater. Chem. A, 2021, 9, 1812–1821.

69

E. P. Roth and C. J. Orendorff, How electrolytes influence battery safety, Electrochem. Soc. Interface, 2012, 21, 45.

70

K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, A. Yamazaki, E. Takashima, J.-W. Park, K. Ueno, S. Seki, N. Serizawa and M. Watanabe, Solvate ionic liquid electrolyte for Li–S batteries, J. Electrochem. Soc., 2013, 160, A1304.

71

S. Izquierdo-Gonzales, W. Li and B. L. Lucht, Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes, J. Power Sources, 2004, 135, 291–296.

72

Z. Zeng, B. Wu, L. Xiao, X. Jiang, Y. Chen, X. Ai, H. Yang and Y. Cao, Safer lithium ion batteries based on nonflammable electrolyte, J. Power Sources, 2015, 279, 6–12.

73

Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee, K. Kim, E. Nakamura and A. Yamada, A cyclic phosphate-based battery electrolyte for high voltage and safe operation, Nat. Energy, 2020, 5, 291–298.

74

S. Yang, Y. Zhang, Z. Li, N. Takenaka, Y. Liu, H. Zou, W. Chen, M. Du, X.-J. Hong, R. Shang, E. Nakamura, Y.-P. Cai, Y.-Q. Lan, Q. Zheng, Y. Yamada and A. Yamada, Rational electrolyte design to form inorganic–polymeric interphase on silicon-based anodes, ACS Energy Lett., 2021, 6, 1811–1820.

75

G. Zeng, Y. An, S. Xiong and J. Feng, Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries, ACS Appl. Mater. Interfaces, 2019, 11, 23229–23235.

76

H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M. H. Engelhard, S. D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J.-G. Zhang and W. Xu, High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater., 2019, 9, 1900784.

77

L. Wang, B. Zhang, B. Wang, S. Zeng, M. Zhao, X. Sun, Y. Zhai and L. Xu, In-situ nano-crystallization and solvation modulation to promote highly stable anode involving alloy/de-alloy for potassium ion batteries, Angew. Chem., 2021, 133, 15509–15517.

78

K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, 104, 4303–4418.

79

N. M. Johnson, Z. Yang, M. Kim, D.-J. Yoo, Q. Liu and Z. Zhang, Enabling silicon anodes with novel isosorbide-based electrolytes, ACS Energy Lett., 2022, 7, 897–905.

80

L. Ji, M. Gu, Y. Shao, X. Li, M. H. Engelhard, B. W. Arey, W. Wang, Z. Nie, J. Xiao, C. Wang, J.-G. Zhang and J. Liu, Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage, Adv. Mater., 2014, 26, 2901–2908.

81

A. M. Haregewoin, A. S. Wotango and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: Progress and perspectives, Energy Environ. Sci., 2016, 9, 1955–1988.

82

Y. Li, Y. An, Y. Tian, H. Fei, S. Xiong, Y. Qian and J. Feng, Stable and safe lithium metal batteries with Ni-rich cathodes enabled by a high efficiency flame retardant additive, J. Electrochem. Soc., 2019, 166, A2736.

83

M. Peng, K. Shin, L. Jiang, Y. Jin, K. Zeng, X. Zhou and Y. Tang, Alloy-type anodes for high-performance rechargeable batteries, Angew. Chem., Int. Ed., 2022, 61, e202206770.

84

Q. Sun, Z. Cao, Z. Ma, J. Zhang, W. Wahyudi, G. Liu, H. Cheng, T. Cai, E. Xie, L. Cavallo, Q. Li and J. Ming, Interfacial and interphasial chemistry of electrolyte components to invoke high-performance antimony anodes and non-flammable lithium-ion batteries, Adv. Funct. Mater., 2023, 33, 2210292.

85

G. Yan, K. Reeves, D. Foix, Z. Li, C. Cometto, S. Mariyappan, M. Salanne and J.-M. Tarascon, A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries, Adv. Energy Mater., 2019, 9, 1901431.

86

L. A. Ma, A. J. Naylor, L. Nyholm and R. Younesi, Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries, Angew. Chem., Int. Ed., 2021, 60, 4855–4863.

87

Z. Li, N. Fu and Z. Yang, Particulate modification of lithium-ion battery anode materials and electrolytes, Particuology, 2023, 83, 129–141.

88

M. Dahbi, N. Yabuuchi, M. Fukunishi, K. Kubota, K. Chihara, K. Tokiwa, X. Yu, H. Ushiyama, K. Yamashita, J.-Y. Son, Y.-T. Cui, H. Oji and S. Komaba, Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: Investigation of the electrode/electrolyte interface, Chem. Mater., 2016, 28, 1625–1635.

89

J. Zhang, K. Zhang, J. Yang, V. Wing-hei Lau, G.-H. Lee, M. Park and Y.-M. Kang, Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage, Chem. Mater., 2020, 32, 448–458.

90

X. Bian, Y. Dong, D. Zhao, X. Ma, M. Qiu, J. Xu, L. Jiao, F. Cheng and N. Zhang, Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes for rechargeable lithium-/sodium-ion batteries, ACS Appl. Mater. Interfaces, 2020, 12, 3554–3562.

91

M. Xu, Y. Li, M. Ihsan-Ul-Haq, N. Mubarak, Z. Liu, J. Wu, Z. Luo and J. K. Kim, NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries, Energy Storage Mater., 2022, 44, 477–486.

92

A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano and L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism, J. Am. Chem. Soc., 2012, 134, 20805–20811.

93

X. Feng, J. Sun, M. Ouyang, F. Wang, X. He, L. Lu and H. Peng, Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module, J. Power Sources, 2015, 275, 261–273.

94

S. Chen, K. Wen, J. Fan, Y. Bando and D. Golberg, Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes, J. Mater. Chem. A, 2018, 6, 11631–11663.

95

Z. Shen, W. Zhang, G. Zhu, Y. Huang, Q. Feng and Y. Lu, Design principles of the anode–electrolyte interface for all solid-state lithium metal batteries, Small Methods, 2020, 4, 1900592.

96

L.-P. Wang, X.-D. Zhang, T.-S. Wang, Y.-X. Yin, J.-L. Shi, C.-R. Wang and Y.-G. Guo, Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers, Adv. Energy Mater., 2018, 8, 1801528.

97

D. L. Wood, J. Li and S. J. An, Formation challenges of lithium-ion battery manufacturing, Joule, 2019, 3, 2884–2888.

98

D. H. S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B. Sayahpour, J. Scharf, E. A. Wu, G. Deysher, H. E. Han, H. J. Hah, H. Jeong, J. B. Lee, Z. Chen and Y. S. Meng, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 2021, 373, 1494–1499.

99

Y.-M. Zhao, F.-S. Yue, S.-C. Li, Y. Zhang, Z.-R. Tian, Q. Xu, S. Xin and Y.-G. Guo, Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries, InfoMat, 2021, 3, 460–501.

100

L. Han, T. Liu, O. Sheng, Y. Liu, Y. Wang, J. Nai, L. Zhang and X. Tao, Undervalued roles of binder in modulating solid electrolyte interphase formation of silicon-based anode materials, ACS Appl. Mater. Interfaces, 2021, 13, 45139–45148.

101

J. Song, M. Zhou, R. Yi, T. Xu, M. L. Gordin, D. Tang, Z. Yu, M. Regula and D. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Adv. Funct. Mater., 2014, 24, 5904–5910.

102

S. Choi, T. Kwon, A. Coskun and J. W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries, Science, 2017, 357, 279–283.

103

Z.-J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui and S. Komaba, High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries, Energy Environ. Sci., 2012, 5, 9014–9020.

104

C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui and Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chem., 2013, 5, 1042–1048.

105

T. S. Arthur, D. J. Bates, N. Cirigliano, D. C. Johnson, P. Malati, J. M. Mosby, E. Perre, M. T. Rawls, A. L. Prieto and B. Dunn, Three-dimensional electrodes and battery architectures, MRS Bull., 2011, 36, 523–531.

106

N. Nitta and G. Yushin, High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles, Part. Part. Syst. Charact., 2014, 31, 317–336.

107

R. Marom, S. Francis Amalraj, N. Leifer, D. Jacob and D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 2011, 21, 9938–9954.

108

B. Liang, Y. Liu and Y. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries, J. Power Sources, 2014, 267, 469–490.

109

R. A. Huggins, Lithium alloy negative electrodes, J. Power Sources, 1999, 81–82, 13–19.

110

W.-J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196, 877–885.

111

M. Ko, S. Chae, S. Jeong, P. Oh and J. Cho, Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries, ACS Nano, 2014, 8, 8591–8599.

112

J. K. Lee, K. B. Smith, C. M. Hayner and H. H. Kung, Silicon nanoparticles – graphene paper composites for Li ion battery anodes, Chem. Commun., 2010, 46, 2025–2027.

113

Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang and J. Liu, In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage, Adv. Energy Mater., 2012, 2, 95–102.

114

J. R. Dahn, T. Zheng, Y. Liu and J. S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 1995, 270, 590–593.

115

R. Mukherjee, A. V. Thomas, A. Krishnamurthy and N. Koratkar, Photothermally reduced graphene as high-power anodes for lithium-ion batteries, ACS Nano, 2012, 6, 7867–7878.

116

Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu and Y. Cui, Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes, Nat. Energy, 2016, 1, 15029.

117

Q. Xu, J. Li, Y. Yin, Y. Kong, Y. Guo and L. Wan, Nano/Micro-structured Si/C anodes with high initial coulombic efficiency in Li-ion batteries, Chem. – Asian J., 2016, 11, 1205–1209.

118

B. M. Bang, J.-I. Lee, H. Kim, J. Cho and S. Park, High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching, Adv. Energy Mater., 2012, 2, 878–883.

119

X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. J. Sailor, J.-G. Zhang and J. Liu, Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes, Nat. Commun., 2014, 5, 4105.

120

Y. An, H. Fei, G. Zeng, L. Ci, S. Xiong, J. Feng and Y. Qian, Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries, ACS Nano, 2018, 12, 4993–5002.

121

Y. Ren, X. Yin, R. Xiao, T. Mu, H. Huo, P. Zuo, Y. Ma, X. Cheng, Y. Gao, G. Yin, Y. Li and C. Du, Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries, Chem. Eng. J., 2022, 431, 133982.

122

Y. Lv, M. Shang, X. Chen, P. S. Nezhad and J. Niu, Largely improved battery performance using a microsized silicon skeleton caged by polypyrrole as anode, ACS Nano, 2019, 13, 12032–12041.

123

Y. Zhao, J. Wang, Q. He, J. Shi, Z. Zhang, X. Men, D. Yan and H. Wang, Li-ions transport promoting and highly stable solid–electrolyte interface on Si in multilayer Si/C through thickness control, ACS Nano, 2019, 13, 5602–5610.

124

Y. Feng, Y. Lv, H. Fu, M. Parekh, A. M. Rao, H. Wang, X. Tai, X. Yi, Y. Lin, J. Zhou and B. Lu, Co-activation for enhanced K-ion storage in battery anodes, Natl. Sci. Rev., 2023, 10, nwad118.

125

X. Liu, B. Xiao, A. Daali, X. Zhou, Z. Yu, X. Li, Y. Liu, L. Yin, Z. Yang, C. Zhao, L. Zhu, Y. Ren, L. Cheng, S. Ahmed, Z. Chen, X. Li, G.-L. Xu and K. Amine, Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion batteries, ACS Energy Lett., 2021, 6, 547–556.

126

X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu, B. Wang, C. Sun, Y. Jiang, Q. Zhang and Y. Yu, A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage, Adv. Funct. Mater., 2021, 31, 2011264.

127

T. Song, M. Yan and M. Qian, A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications, J. Porous Mater., 2015, 22, 713–719.

Industrial Chemistry & Materials
Pages 489-513
Cite this article:
Daali A, Amine R, Otieno W, et al. Strategies to enable microsized alloy anodes for high-energy and long-life alkali-ion batteries. Industrial Chemistry & Materials, 2024, 2(4): 489-513. https://doi.org/10.1039/d3im00126a

26

Views

0

Downloads

3

Crossref

Altmetrics

Received: 01 December 2023
Accepted: 09 February 2024
Published: 16 February 2024
© 2024 The Author(s). Co‐published by the Institute of Process Engineering, Chinese Academy of Sciences and the Royal Society of Chemistry

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Return