PDF (2.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Paper | Open Access

Triphase photocatalytic water-gas-shift reaction for hydrogen production with enhanced interfacial diffusion at gas–liquid–solid interfaces

Huige Chena,bZhenhua LiaChao ZhouaRun Shia ()Tierui Zhanga,b()
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The exothermic characteristic of the water-gas-shift (WGS) reaction, coupled with the thermodynamic constraints at elevated temperatures, has spurred a research inclination towards conducting the WGS reaction at reduced temperatures. Nonetheless, the challenge of achieving efficient mass transfer between gaseous CO and liquid H2O at the photocatalytic interface under mild reaction conditions hinders the advancement of the photocatalytic WGS reaction. In this study, we introduce a gas–liquid–solid triphase photocatalytic WGS reaction system. This system facilitates swift transportation of gaseous CO to the photocatalyst's surface while ensuring a consistent water supply. Among various metal-loaded TiO2 photocatalysts, Rh/TiO2 nanoparticles positioned at the triphase interface demonstrated an impressive H2 production rate of 27.60 mmol g−1 h−1. This rate is roughly 2 and 10 times greater than that observed in the liquid–solid and gas–solid diphase systems. Additionally, finite element simulations indicate that the concentrations of CO and H2O at the gas–liquid–solid interface remain stable. This suggests that the triphase interface establishes a conducive microenvironment with sufficient CO and H2O supply to the surface of photocatalysts. These insights offer a foundational approach to enhance the interfacial mass transfer of gaseous CO and liquid H2O, thereby optimizing the photocatalytic WGS reaction's efficiency.

References

1

M. G. Rasul, M. A. Hazrat, M. A. Sattar, M. I. Jahirul and M. J. Shearer, The future of hydrogen: Challenges on production, storage and applications, Energy Convers. Manage., 2022, 272, 116326.

2

W. H. Chen and C. Y. Chen, Water gas shift reaction for hydrogen production and carbon dioxide capture: A review, Appl. Energy, 2020, 258, 114078.

3

K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar and M. Bornstein, Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale, Annu. Rev. Chem. Biomol. Eng., 2019, 10, 219–239.

4

R. M. Navarro, M. A. Peña and J. L. G. Fierro, Hydrogen production reactions from carbon feedstocks fossil fules and biomass, Chem. Rev., 2007, 107, 3952–3991.

5

J. D. Holladay, J. Hu, D. L. King and Y. Wang, An overview of hydrogen production technologies, Catal. Today, 2009, 139, 244–260.

6

C. Ratnasamy and J. P. Wagner, Water gas shift catalysis, Catal. Rev.: Sci. Eng., 2009, 51, 325–440.

7

A. Ambrosi and S. E. Denmark, Harnessing the power of the water-gas shift reaction for organic synthesis, Angew. Chem., Int. Ed., 2016, 55, 12164–12189.

8

Y. X. Tong, L. Z. Song, S. B. Ning, S. X. Ouyang and J. H. Ye, Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst, Appl. Catal., B, 2021, 298, 120551.

9

S. Y. Yao, X. Zhang, W. Zhou, R. Gao, W. Q. Xu, Y. F. Ye, L. L. Lin, X. D. Wen, P. Liu, B. B. Chen, E. Crumlin, J. G. Guo, Z. J. Zuo, W. Z. Li, J. L. Xie, I. Lu, C. Kiely, L. Gu, G. Shi, J. Rodriguez and D. Ma, Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction, Science, 2017, 357, 389–393.

10

Z. H. Zhang, X. Y. Chen, J. C. Kang, Z. Y. Yu, J. Tian, Z. M. Gong, A. P. Jia, R. You, K. Qian, S. He, B. T. Teng, Y. Cui, Y. Wang, W. H. Zhang and W. X. Huang, The active sites of Cu-ZnO catalysts for water gas shift and CO hydrogenation reactions, Nat. Commun., 2021, 12, 4331.

11

K. Xu, C. Ma, H. Yan, H. Gu, W. W. Wang, S. Q. Li, Q. L. Meng, W. P. Shao, G. H. Ding, F. R. Wang and C. J. Jia, Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction, Nat. Commun., 2022, 13, 2443.

12

Z. H. Cui, S. Song, H. B. Liu, Y. T. Zhang, F. Gao, T. Ding, Y. Tian, X. B. Fan and X. G. Li, Synergistic effect of Cu+ single atoms and Cu nanoparticles supported on alumina boosting water-gas shift reaction, Appl. Catal., B, 2022, 313, 121468.

13

Z. H. Zhang, S. S. Wang, R. Song, T. Cao, L. F. Luo, X. Y. Chen, Y. X. Gao, J. Q. Lu, W. X. Li and W. X. Huang, The most active Cu facet for low-temperature water gas shift reaction, Nat. Commun., 2017, 8, 488.

14

Y. J. Zhang, C. Q. Chen, X. Y. Lin, D. L. Li, X. H. Chen, Y. Y. Zhan and Q. Zheng, CuO/ZrO2 catalystsfor water-gas shift reaction: Nature of catalytically active copper species, Int. J. Hydrogen Energy, 2014, 39, 3746–3754.

15

J. L. Santos, T. R. Reina, S. Ivanova, M. A. Centeno and J. A. Odriozola, Gold promoted Cu/ZnO/Al2O3 catalysts prepared from hydrotalcite precursors: Advanced materials for the WGS reaction, Appl. Catal., B, 2017, 201, 310–317.

16

L. Torrente-Murciano and F. R. Garcia-Garcia, Effect of nanostructured support on the WGSR activity of Pt/CeO2 catalysts, Catal. Commun., 2015, 71, 1–6.

17

A. Kubacka, M. Fernandez-García and G. Colón, Advanced nanoarchitectures for solar photocatalytic applications, Chem. Rev., 2012, 112, 1555–1614.

18

Y. Ma, X. L. Wang, Y. S. Jia, X. B. Chen, H. X. Han and C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev., 2014, 114, 9987–10043.

19

L. K. Zhao, Y. H. Qi, L. Z. Song, S. B. Ning, S. X. Ouyang, H. Xu and J. H. Ye, Solar-driven water-gas shift reaction over CuOx/Al2O3 with 1.1% of light-to-energy storage, Angew. Chem., Int. Ed., 2019, 58, 7708–7712.

20

F. Sastre, M. Oteri, A. Corma and H. García, Photocatalytic water gas shift using visible or simulated solar light for the efficient, room-temperature hydrogen generation, Energy Environ. Sci., 2013, 6, 2211–2215.

21

N. Liu, M. Xu, Y. S. Yang, S. M. Zhang, J. Zhang, W. L. Wang, L. R. Zheng, S. Hong and M. Wei, Auδ--Ov-Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction, ACS Catal., 2019, 9, 2707–2717.

22

X. C. Ma, Y. L. Shi, J. Y. Liu, X. T. Li, X. F. Cui, S. J. Tan, J. Zhao and B. Wang, Hydrogen-bond network promotes water splitting on the TiO2 surface, J. Am. Chem. Soc., 2022, 144, 13565–13573.

23

K. S. Davidge, R. Motterlini, B. E. Mann, J. L. Wilson and R. K. Poole, Carbon monoxide in biology and microbiology: Surprising roles for the “detroit perfume”, Adv. Microb. Physiol., 2009, 56, 85–167.

24

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge university press, Cambridge, 3rd edn, 2009.

25

H. N. Huang, R. Shi, Z. H. Li, J. Q. Zhao, C. L. Su and T. R. Zhang, Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary, Angew. Chem., Int. Ed., 2022, e202200802.

26

X. Y. Xiong, Z. P. Wang, Y. Zhang, Z. H. Li, R. Shi and T. R. Zhang, Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems, Appl. Catal., B, 2020, 264, 118518.

27

L. J. Li, L. P. Xu, Z. F. Hu and J. C. Yu, Enhanced mass transfer of oxygen through a gas-liquid-solid interface for photocatalytic hydrogen peroxide production, Adv. Funct. Mater., 2021, 31, 2106120.

28

H. Song, X. G. Meng, Z. J. Wang, Z. Wang, H. L. Chen, Y. X. Weng, F. Ichihara, M. Oshikiri, T. Kako and J. H. Ye, Visible-light-mediated methane activation for steam methane reforming under mild conditions: A case study of Rh/TiO2 catalysts, ACS Catal., 2018, 8, 7556–7565.

29

Y. J. Chen, S. F. Ji, W. M. Sun, Y. P. Lei, Q. C. Wang, A. Li, W. X. Chen, G. Zhou, Z. D. Zhang, Y. Wang, L. R. Zheng, Q. H. Zhang, L. Gu, X. D. Han, D. S. Wang and Y. D. Li, Engineeringthe atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production, Angew. Chem., Int. Ed., 2020, 59, 1295–1301.

30

Y. L. Chen, X. Q. Liu, L. Hou, X. R. Guo, R. W. Fu and J. M. Sun, Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution, Chem. Eng. J., 2020, 383, 123132.

31

C. C. Han, P. F. Su, B. H. Tan, X. G. Ma, H. Lv, C. Y. Huang, P. Wang, Z. F. Tong, G. Li, Y. Z. Huang and Z. F. Liu, Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity, J. Colloid Interface Sci., 2021, 581, 159–166.

32

H. F. Wei, H. Liu, L. Yu, M. Zhang, Y. L. Zhang, J. C. Fan, X. J. Cui and D. H. Deng, Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction, Nano Energy, 2022, 102, 107704.

33

X. Zhang, M. T. Zhang, Y. C. Deng, M. Q. Xu, L. Artiglia, W. Wen, R. Gao, B. B. Chen, S. Y. Yao, X. C. Zhang, M. Peng, J. Yan, A. W. Li, Z. Jiang, X. Y. Gao, S. F. Cao, C. Yang, A. J. Kropf, J. N. Shi, J. L. Xie, M. S. Bi, J. A. van Bokhoven, Y. W. Li, X. D. Wen, M. Flytzani-Stephanopoulos, C. Shi, W. Zhou and D. Ma, A stable low-temperature H2-production catalyst by crowding Pt on alpha-MoC, Nature, 2021, 589, 396–401.

34

P. Wang, J. Q. Zhao, R. Shi, X. R. Zhang, X. D. Guo, Q. Dai and T. R. Zhang, Efficient photocatalytic aerobic oxidation of bisphenol A via gas-liquid-solid triphase interfaces, Mater. Today Energy, 2022, 23, 100908.

35

I. Amdur and L. M. Shuler, Diffusion coefficients of the systems CO-CO and CO-N2, J. Chem. Phys., 1963, 38, 188–192.

36

D. H. Shou, J. T. Fan, M. F. Mei and F. Ding, An analytical model for gas diffusion though nanoscale and microscale fibrous media, Microfluid. Nanofluid., 2014, 16, 381–389.

Industrial Chemistry & Materials
Pages 432-440
Cite this article:
Chen H, Li Z, Zhou C, et al. Triphase photocatalytic water-gas-shift reaction for hydrogen production with enhanced interfacial diffusion at gas–liquid–solid interfaces. Industrial Chemistry & Materials, 2024, 2(3): 432-440. https://doi.org/10.1039/d3im00135k
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return