AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

A brief overview of the size and composition of the myrtle rust genome and its taxonomic status

Mui-Keng Tana( )Damian Collinsa,Zhiliang Chenb,Anna EnglezouaMarc R. Wilkinsb,c
NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW 2567, Australia
Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, NSW 2052, Australia
Ramaciotti Centre for Genomics, The University of New South Wales, Kensington, NSW 2052, Australia

Damian Collins and Zhiliang Chen have contributed equally to this work.

Show Author Information

Abstract

Using de novo assembly of 46 million paired end sequence reads of length 250 bp for a myrtle rust isolate, we have estimated its genome size to be between 103 and 145 Mb and the number of proteins as >19,000. Annotation of the contigs found a very large percentage of proteins are associated with molecular functions of DNA binding or binding in biological processes for DNA integration and RNA-dependent DNA replication. A large proportion of these activities are attributed to the transposable elements (TEs). These elements are estimated to comprise 27% of the genome with 22% retrotransposons and 5% DNA transposons. The exon and intron boundaries of 46 genes occurring on contigs >20,000 bp have been determined. The number of introns range from 2 to 20 with a mean of 7. Phylogenetic analyses using partial COXI, 18S rRNA and 28S rRNA genes have placed myrtle rust in the Pucciniaceae lineage on a separate taxonomic branch from the families of Pucciniaceae, Phragmidiaceae, Sphaerophragmiaceae, Phragmidiaceae, Uropyxidaceae, Chaconiaceae and Phakopsoraceae. Further work is thus required to determine the family placement of myrtle rust in the Pucciniaceae of Pucciniales.

References

 

Baker S, Thykaer J, Adney W, Brettin T, Brockman F, D’haeseleer P, Martinez A, Miller R, Rokhsar D, Schadt C, et al. 2008. Fungal genome sequencing and bioenergy. Fungal Biol Rev. 22:1–5. doi:10.1016/j.fbr.2008.03.001.

 

Cantu D, Govindarajulu M, Kozik A, Wang M, Chen X, Kojima K, Jurka J, Michelmore R, Dubcovsky J, Harris S. 2011. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. Plos ONE. 6:e24230. doi:10.1371/journal.pone.0024230.

 

Carnegie AJ, Lidbetter JR. 2012. Rapidly expanding host range for Puccinia psidii sensu lato in Australia. Australas Plant Pathol. 41:13–29. doi:10.1007/s13313-011-0082-6.

 

Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest M. 2010. Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol. 39:463–466. doi:10.1071/AP10102.

 

Casacuberta JM, Santiago N. 2003. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene. 311:1–11. doi:10.1016/S0378-1119(03)00557-2.

 

Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW. 1998. Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis. 82:819–825. doi:10.1094/PDIS.1998.82.7.819.

 

Duplessis S, Cuomo C, Lin Y, Aerts A, Tisserant E, Veneault-Fourrey C, Joly D, Hacquard S, Amselem J, Cantarel B, et al. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA. 108:9166–9171.

 

Ferreira FA. 1983. Eucalyptus rust. Revista Arvore. 7:91–109.

 

Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of eukaryotic genomes [review]. Annu Rev Genet. 41:331–368. doi:10.1146/annurev.genet.40.110405.090448.

 

Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C. 2007. Puccinia psidii: a threat to the Australian environment and economy – a review. Australas Plant Pathol. 36:1–16. doi:10.1071/AP06088.

 

Gonnella G, Kurtz S. 2012. Readjoiner: a fast and memory efficient string graph-based sequence assembler. BMC Bioinformatics. 13:82. doi:10.1186/1471-2105-13-82.

 

Götz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A. 2008. High-throughput functional annotation and data mining with the blast2go suite. Nucleic Acids Res. 36:3420–3435. doi:10.1093/nar/gkn176.

 

Grgurinovic CA, Walsh D, Macbeth F. 2006. Eucalyptus rust caused by Puccinia psidii and the threat it poses to Australia. EPPO Bull. 36:486–489. doi:10.1111/j.1365-2338.2006.01048.x.

 

Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D. 2003. Resistance to rust (Puccinia psidii winter) in eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet. 108:175–180. doi:10.1007/s00122-003-1415-9.

 

Labbe J, Murat C, Morin E, Tuskan GA, Le Tacon F, Martin F, Stajich JE. 2012. Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor. Plos ONE. 7:e40197. doi:10.1371/journal.pone.0040197.

 

Lander ES, Waterman MS. 1988. Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics. 2:231–239. doi:10.1016/0888-7543(88)90007-9.

 

Liu M, Hambleton S. 2012. Puccinia chunjii, a close relative of the cereal stem rusts revealed by molecular phylogeny and morphological study. Mycologia. 104:1056–1067. doi:10.3852/11-251.

 

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. 2012. Soapdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 1:18.

 

Maier W, Begerow D, Weiβ M, Oberwinkler F. 2003. Phylogeny of the rust fungi: an approach using the nuclear large subunit ribosomal DNA sequences. Can J Bot. 81:12–23. doi:10.1139/b02-113.

 

Maier W, Wingfield BD, Mennicken M, Wingfield MJ. 2007. Polyphyly and two emerging lineages in the rust genera Puccinia and Uromyces. Mycol Res. 111:176–185. doi:10.1016/j.mycres.2006.11.005.

 

Miller JR, Koren S, Sutton G. 2010. Assembly algorithms for next-generation sequencing data. Genomics. 95:315–327. doi:10.1016/j.ygeno.2010.03.001.

 

Muszewska A, Hoffman-Sommer M, Grynberg M, Redfield RJ. 2011. LTR retrotransposons in fungi. Plos ONE. 6:e29425. doi:10.1371/journal.pone.0029425.

 

Pevzner PA, Tang H, Waterman MS. 2001. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci USA. 98:9748–9753. doi:10.1073/pnas.171285098.

 

Roux J, Greyling I, Coutinho TA, Verleur M, Wingfield MJ. 2013. The Myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus. 4:155–159. doi:10.5598/imafungus.2013.04.01.14.

 

Seifert KA, Samson RA, de Waard JR, Houbraken J, Levesque CA, Moncalvo J, Louis-Seize G, Hebert P. 2007. Prospects for fungus identification using CO1 DNA barcodes, with penicillium as a test case. Proc Natl Acad Sci USA. 104:3901–3906. doi:10.1073/pnas.0611691104.

 

Simpson JA, Thomas K, Grgurinovic CA. 2006. Uredinales species pathogenic on species of Myrtaceae. Australas Plant Pathol. 35:549–562. doi:10.1071/AP06057.

 

Simpson JT, Durbin R. 2012. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22:549–556. doi:10.1101/gr.126953.111.

 

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. Abyss: a parallel assembler for short read sequence data. Genome Res. 19:1117–1123. doi:10.1101/gr.089532.108.

 

Tan M-K, Niessen LM. 2003. Analysis of rDNA ITS sequences to determine genetic relationships among, and provide a basis for simplified diagnosis of, Fusarium species causing crown rot and head blight of cereals. Mycol Res. 107:811–821. doi:10.1017/S0953756203008013.

 

Van Der Merwe MM, Ericson L, Walker J, Thrall PH, Burdon JJ. 2007. Evolutionary relationships among species of Puccinia and Uromyces (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. Mycol Res. 111:163–175. doi:10.1016/j.mycres.2006.09.015.

 

Van Der Merwe MM, Walker J, Ericson L, Burdon JJ. 2008. Coevolution with higher taxonomic host groups within the Puccinia/Uromyces rust lineage obscured by host jumps. Mycol Res. 112:1387–1408. doi:10.1016/j.mycres.2008.06.027.

 

Wingfield BD, Ericson L, Szaro T, Burdon JJ. 2004. Phylogenetic patterns in the uredinales. Australas Plant Pathol. 33:327–335. doi:10.1071/AP04020.

 

Winter G. 1884. Repertorium. rabenhorstii fungi europaei et extraeuraopaei. centuria XXXI et XXXII. Hedwigia. 23:164–175.

Mycology
Pages 52-63
Cite this article:
Tan M-K, Collins D, Chen Z, et al. A brief overview of the size and composition of the myrtle rust genome and its taxonomic status. Mycology, 2014, 5(2): 52-63. https://doi.org/10.1080/21501203.2014.919967

111

Views

29

Crossref

N/A

Web of Science

29

Scopus

Altmetrics

Received: 09 February 2014
Accepted: 28 April 2014
Published: 29 May 2014
© 2014 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Return