AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Invited Article | Open Access

An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi

David P. Overya,b,d( )Paul BaymaneRussell G. Kerra,c,dGerald F. Billsf
Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, Canada C1A 4P3
Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, Canada C1A 4P3
Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, Canada C1A 4P3
Nautilus Biosciences Canada, Duffy Research Center, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, Canada C1A 4P3
Department of Biology, University of Puerto Rico-Río Piedras, P. O. Box 23360, San Juan 00931, Puerto Rico
Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, 1881 East Rd., Houston, TX 77054, USA
Show Author Information

Abstract

The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from ‘marine-derived’ fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment.

References

 

Abbanat D, Leighton M, Maiese W, Jones EBG, Pearce C, Greenstein M. 1998. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. Ⅰ. Taxonomy and fermentation. J Antibiot. 51:296–302. doi:10.7164/antibiotics.51.296

 

Abraham SP, Hoang TD, Alam M, Jones EBG. 1994. Chemistry of the cytotoxic principles of the marine fungus Lignincola laevis. Pure Appl Chem. 66:2391–2394. doi:10.1351/pac199466102391

 

Alam M, Jones EBG, Hossain MB, Van Der Helm D. 1996. Isolation and structure of isoculmorin from the marine fungus Kallichroma tethys. J Nat Prod. 59:454–456. doi:10.1021/np960114h

 

Alias SA, Kuthubutheen AJ, Jones EBG. 1995. Frequency of occurrence of fungi on wood in Malaysian mangroves. Hydrobiologia. 295:97–106. doi:10.1007/BF00029116

 

Alvi KA, Casey A, Nair BG. 1998. Pulchellalactam: a CD45 protein tyrosine phosphatase inhibitor from the marine fungus Corollospora pulchella. J Antibiot. 51:515–517. doi:10.7164/antibiotics.51.515

 

Amend AS, Seifert KA, Samson R, Bruns TD. 2010. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci USA. 107:13748–13753. doi:10.1073/pnas.1000454107

 

Anastasiou CJ. 1963. Fungi from salt lakes. Ⅱ. Ascomycetes and fungi imperfecti from the Salton Sea. Nova Hedwigia. 6:243–276.

 

Arvas M, Kivioja T, Mitchell A, Saloheimo M, Ussery D, Penttila M, Oliver S. 2007. Comparison of protein coding gene contents of the fungal phyla pezizomycotina and saccharomycotina. BMC Genomics. 8:325.

 

Azevedo E, Rebelo R, Filomena-Caeiro M, Barata M. 2012. Use of drift substrates to characterize marine fungal communities from the west coast of Portugal. Mycologia. 104:623–632. doi:10.3852/11-191

 

Barata M. 2006. Marine fungi from Mira river salt marsh in Portugal. Rev Iberoam Micol. 23:179–184. doi:10.1016/S1130-1406(06)70040-7

 

Barluenga S, Dakas P-Y, Ferandin Y, Meijer L, Winssinger N. 2006. Modular asymmetric synthesis of aigialomycin D, a kinase-inhibitory scaffold. Angew Chem Int Ed. 45:3951–3954. doi:10.1002/anie.200600593

 

Barr ME. 2002. Teichosporaceae, another family in the Pleosporales. Mycotaxon. 72:373–389.

 

Bills GF, Christensen M, Powell M, Thorn G. 2004. Saprobic soil fungi. In: Mueller G, Bills GF, Foster MS, editors. Biodiversity of fungi, inventory and monitoring methods. Oxford (UK): Elsevier Academic Press; p. 271–302.

 

Bills GF, Gloer JB, An Z. 2013. Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol. 16:549–565. doi:10.1016/j.mib.2013.08.001

 

Boonmee S, Ko TWK, Chukeatirote E, Hyde KD, Chen H, Cai L, Mckenzie EHC, Jones EBG, Kodsueb R, Hassan BA. 2012. Two new Kirschsteiniothelia species with Dendryphiopsis anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia. 104:698–714. doi:10.3852/11-089

 

Buchalo AS, Eviatar N, Wasser SP, Oren A, Molitoris HP. 1998. Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B. 265:1461–1465. doi:10.1098/rspb.1998.0458

 

Bugni T, Ireland C. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep. 21:143–163. doi:10.1039/b301926h

 

Burgaud G, Woehlke S, Rédou V, Orsi W, Beaudoin D, Barbier G, Biddle JF, Edgcomb VP. 2013. Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat Microb Ecol. 70:45–62. doi:10.3354/ame01638

 

Byrne PJ, Jones EBG. 1975. Effect of salinity on the reproduction of terrestrial and marine fungi. Trans Br Mycol Soc. 65:185–200. doi:10.1016/S0007-1536(75)80002-7

 

Camara MPS, Palm ME, Van Berkum P, O’Neill NR. 2002. Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia. 94:630–640. doi:10.2307/3761714

 
Campbell J, Shearer CA, Mitchell JR, Eaton RA. 2002. Corollospora revisited: a molecular approach. In: Hyde KD, editor. Fungi in marine environments. Hong Kong: Hong Kong University Press; p. 15–33.
 

Campbell J, Volkmann-Kohlmeyer B, Grafenhan T, Spatafora JW, Kohlmeyer J. 2005. A re-evaluation of Lulworthiales: relationships based on 18S and 28S rdna. Mycol Res. 109:556–568. doi:10.1017/S0953756205002716

 

Cantrell SA, Casillas L, Molina M. 2006. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res. 110:962–970. doi:10.1016/j.mycres.2006.06.005

 

Capon RJ, Ratnayake R, Stewart M, Lacey E, Tennant S, Gill JH. 2005. Aspergillazines A-E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis. Org Biomol Chem. 3:123–129. doi:10.1039/b413440k

 

Chen CH, Xiao WW, Jiang XB, Wang JW, Mao ZG, Lei N, Fan X, Song BB, Liao CX, Wang HJ, et al. 2013. A novel marine drug, sz-685c, induces apoptosis of mmq pituitary tumor cells by downregulating mir-200c. Curr Med Chem. 20:2145–2154. doi:10.2174/0929867311320160007

 

Chinworrungsee M, Kittakoop P, Isaka M, Chanphen R, Tanticharoen M, Thebtaranonth Y. 2002. Halorosellins A and B, unique isocoumarin glucosides from the marine fungus Halorosellinia oceanica. J Chem Soc Perkin Trans. 1:2473–2476. doi:10.1039/b207887m

 

Chinworrungsee M, Kittakoop P, Isaka M, Rungrod A, Tanticharoen M, Thebtaranonth Y. 2001. Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorg Med Chem Lett. 11:1965–1969. doi:10.1016/S0960-894X(01)00327-4

 

Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk L. 1998. Antibacterial activity of marine-derived fungi. Mycopathologia. 143:135–138. doi:10.1023/A:1006961500325

 

Collado J, Platas G, Paulus B, Bills GF. 2007. High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol. 60:521–533. doi:10.1111/j.1574-6941.2007.00294.x

 

Daferner M, Anke T, Sterner O. 2002. Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron. 58:7781–7784. doi:10.1016/S0040-4020(02)00942-0

 

Dreyfuss MM. 1986. Neue erkenntnisse aus einem pharmakologischen pilz-screening. Sydowia. 39:22–36.

 
Dreyfuss MM, Chapela IH. 1994. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP, editor. The discovery of natural products with therapeutic potential. Boston (MA): Butterworth-Heinmann; p. 49–80.
 

Duran R, Cary JW, Calvo AM. 2010. Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins. 2:367–381. doi:10.3390/toxins2040367

 

Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A. 2011. Marine subsurface eukaryotes: the fungal majority. Environ Microbiol. 13:172–183. doi:10.1111/j.1462-2920.2010.02318.x

 

Eleuterius LN, Meyers SP. 1977. Alkaloids of Claviceps from Spartina. Mycologia. 69:838–840. doi:10.2307/3758875

 

Elmer WH, Marra RE. 2011. New species of Fusarium associated with dieback of Spartina alterniflora in Atlantic salt marshes. Mycologia. 103:806–819. doi:10.3852/10-155

 
Elsebai MF. 2011. Novel and bioactive natural products from the marine-derived endophytic fungi Coniothyrium cereale, Phaeosphaeria spartinae, and Auxarthron reticulatum [PhD dissertation]. Bonn: University of Bonn.
 

Elsebai MF, Kehraus S, Gϋtschow M, Köning GM. 2009. New polyketides from the marine-derived fungus Phaeosphaeria spartinae. Nat Prod Commun. 4:1463–1468.

 

Elsebai MF, Kehraus S, Gϋtschow M, Köning GM. 2010. Spartinoxide, a new enantiomer of A82775C with inhibitory activity toward HLE from the marine-derived fungus Phaeosphaeria spartinae. Nat Prod Commun. 5:1071–1076.

 

Elsebai MF, Kehraus S, Köning GM. 2013. Caught between triterpene- and steroid-metabolism: 4α-carboxylic pregnane-derivative from the marine alga-derived fungus Phaeosphaeria spartinae. Steroids. 78:880–883. doi:10.1016/j.steroids.2013.05.003

 
Farr DF, Bills GF, Chamuris GP, Rossman AY. 1989. Fungi on plant and plant products in the United States. St. Paul (MN): APS Press.
 

Figueira D, Barata M. 2007. Marine fungi from two sandy beaches in Portugal. Mycologia. 99:20–23. doi:10.3852/mycologia.99.1.20

 

Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, et al. 2011. Biogeography in the air: fungal diversity over land and oceans. Biogeosciences. 8:7071–7096. doi:10.5194/bgd-8-7071-2011

 

Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U. 2009. High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA. 106:12814–12819. doi:10.1073/pnas.0811003106

 

Furuya K, Okudaira M, Shindo T, Sato A. 1985. Corollospora pulchella, a marine fungus producing antibiotics, melinacidins Ⅲ, Ⅳ and gancidin W. Annu Rep Sankyo Res Lab. 37:140–142.

 

Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterba A, Yarde O. 2011. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol. 77:5100–5109.

 

Geiser DM, Taylor JW, Ritchie KB, Smith GW. 1998. Cause of sea fan death in the West Indies. Nature. 394:137–138. doi:10.1038/28079

 

Gessner MO, Chauvet E. 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol. 59:502–507.

 

Gessner RV. 1977. Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from a Rhode Island estuary. Mycologia. 69:477–491. doi:10.2307/3758551

 

Gessner RV, Goos RD. 1973. Fungi from Spartina alterniflora in Rhode Island. Mycologia. 65:1296–1301. doi:10.2307/3758143

 
Gloer JB. 2007. Applications of fungal ecology in the search for new bioactive natural products. In: Kubicek CP, Druzhinina IS, editors. Environmental and microbial relationships. 2nd ed. The Mycota IV. Berlin (Germany): Springer-Verlag; p. 257–283.
 

Golubic S, Radtke G, Le Campion-Alsumard T. 2005. Endolithic fungi in marine ecosystems. Trends Microbiol. 13:229–235. doi:10.1016/j.tim.2005.03.007

 

Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, et al. 2011. Fueling the future with fungal genomics. Mycology. 2:192–209.

 

Guerriero A, Cuomo V, Vanzanella F, Pietra F. 1990. A novel glyceryl ester (glyceryl dendryphiellate A), A trinor-eremophilane (dendryphiellin A1), and eremophilanes (dendryphiellin E1 and E2) from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helv Chim Acta. 73:2090–2096. doi:10.1002/hlca.19900730804

 

Guerriero A, D’Ambrosio M, Cuomo V, Pietra F. 1991. A novel, degraded polyketidic lactone, leptosphaerolide, and its likely diketone precursor, leptosphaerodion. Isolation from cultures of the marine ascomycete Leptospaeria oraemaris (Linder). Helv Chim Acta. 74:1445–1450.

 

Guerriero A, D’Ambrosio M, Cuomo V, Vanzanella F, Pietra F. 1988. Dendryphiellin A, the first fungal trinor-eremophilane. isolation from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helv Chim Acta. 71:57–61. doi:10.1002/hlca.19880710107

 

Guerriero A, D’Ambrosio M, Cuomo V, Vanzanella F, Pietra F. 1989. Novel trinor-eremophilanes (dendryphiellin B, C, and D), eremophilanes (dendryphiellin E, F, and G), and branched C9-carboylic acids (dendryphiellic acid A and B) from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et nicot. Helv Chim Acta. 72:438–446. doi:10.1002/hlca.19890720304

 

Gulder TAM, Hong H, Correa J, Egereva E, Wiese J, Imhoff JF, Gross H. 2012. Isolation, structure elucidation and the total synthesis of lajollamide A from the marine fungus Asteromyces cruciatus. Mar Drugs. 10:2912–2935. doi:10.3390/md10122912

 

Hibbett DS, Binder M. 2001. Evolution of marine mushrooms. Biol Bull. 201:319–322. doi:10.2307/1543610

 

Höller U, König GM, Wright AD. 1999. A new tyrosine kinase inhibitor from a marine isolate of Ulocladium botrytis and new metabolites from the marine fungi Asteromyces cruciatus and Varicosporina ramulosa. Eur J Org Chem. 3.0.CO;2-Y">11:2949–2955. doi:10.1002/(SICI)1099-0690(199911)1999:11<2949::AID-EJOC2949>3.0.CO;2-Y

 

Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust H-J, Schulz B. 2000. Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res. 104:1354–1365. doi:10.1017/S0953756200003117

 

Hosoya T. 1998. Discovery research for novel bioactive metabolites from discomycetes in Japan, in particular, Hyaloscyphaceae. Annu Rep Sankyo Res Lab. 50:1–131.

 

Huang J, Lu C, Qian X, Huang Y, Zheng Z, Shen Y. 2011. Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanolog Sin. 30:118–123. doi:10.1007/s13131-011-0126-3

 

Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebtaranonth Y. 2002. Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem. 67:1561–1566. doi:10.1021/jo010930g

 

Isaka M, Yangchum A, Intamas S, Kocharin K, Jones EBG, Kongsaeree P, Prabpai S. 2009. Aigialomycins and related polyketide metabolites from the mangrove fungus Aigialus parvus BCC 5311. Tetrahedron. 65:4396–4403. doi:10.1016/j.tet.2009.03.050

 
Jensen P, Fenical W. 2005. New natural-product diversity from marine actinomycetes. In: Zhang L, Demain AL, editors. Natural products. New York (NY): Humana Press; p. 315–328.
 
Jensen PR, Fenical W. 2002. Secondary metabolites from marine fungi. In: Hyde K, editor. Fungi in marine environments. Thailand: Fungal Diversity Press; p. 293–315.
 

Jin Y, Weining S, Nevo E. 2005. A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing–thawing: Prospects for saline agriculture. Proc Natl Acad Sci USA. 102:18992–18997. doi:10.1073/pnas.0509653102

 

Jones EBG. 1995. Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot. 73:S790–S801. doi:10.1139/b95-324

 

Jones EBG. 2011. Fifty years of marine mycology. Fungal Divers. 50:73–112. doi:10.1007/s13225-011-0119-8

 

Jones EBG. 2012. Marine mycologists. Inoculum. 63:2–4.

 

Jones EBG, Jennings DH. 1964. The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans Br Mycol Soc. 47:619–625. doi:10.1016/S0007-1536(64)80041-3

 

Jones EBG, Johnson RG, Moss ST. 1983. Taxonomic studies of the Halosphaeriaceae: Corollospora Werdermann. Bot J Linn Soc. 87:193–212. doi:10.1111/j.1095-8339.1983.tb00990.x

 

Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL. 2009. Classification of marine ascomycota, anamorphic taxa and basidiomycota. Fungal Divers. 35:1–187.

 

Khashnobish A, Shearer CA. 1996. Phylogenetic relationships in some Leptosphaeria and Phaeosphaeria species. Mycol Res. 100:1355–1363. doi:10.1016/S0953-7562(96)80063-3

 

Kis-Papo T, Oren A, Wasser SP, Nevo E. 2003. Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol. 45:183–190. doi:10.1007/s00248-002-3006-8

 

Kohlmeyer J. 1969. Marine fungi of Hawaii including the new genus Helicascus. Can J Bot. 47:1469–1487. doi:10.1139/b69-210

 
Kohlmeyer J. 1981. Distribution and ecology of conidial fungi in marine habitats. In: Cole GT, Kendrick B, editors. Biology of conidial fungi. New York (NY): Academic Press; p. 357–372.
 

Kohlmeyer J. 1984. Tropical marine fungi. Mar Ecol. 5:329–378. doi:10.1111/j.1439-0485.1984.tb00130.x

 
Kohlmeyer J. 1986. Taxonomic studies of the marine Ascomycotina. In: Moss ST, editor. The biology of marine fungi. Cambridge (UK): Cambridge University Press; p. 234–257.
 
Kohlmeyer J, Kohlmeyer E. 1979. Marine mycology: the higher fungi. New York (NY): Academic Press.
 

Kohlmeyer J, Schatz S. 1985. Aigialus gen.nov. (Ascomycetes) with two new marine species from mangroves. Trans Brit Mycol Soc. 85:699–707. doi:10.1016/s0007-1536(85)80266-7

 

Kohlmeyer J, Spatafora JW, Volkmann-Kohlmeyer B. 2000. Lulworthiales, a new order of marine Ascomycota. Mycologia. 92:453–458. doi:10.2307/3761504

 

Kohlmeyer J, Volkmann-Kohlmeyer B. 1990. Revision of marine species of Didymosphaeria (Ascomycotina). Mycol Res. 94:685–690. doi:10.1016/S0953-7562(09)80669-2

 

Kohlmeyer J, Volkmann-Kohlmeyer B. 2001. The biodiversity of fungi on Juncus roemerianus. Mycol Res. 105:1411–1412. doi:10.1017/s095375620124547x

 

Kohlmeyer J, Volkmann-Kohlmeyer B. 2003a. Fungi from coral reefs: a commentary. Mycol Res. 107:386–387. doi:10.1017/S0953756203227775

 

Kohlmeyer J, Volkmann-Kohlmeyer B. 2003b. Marine ascomycetes from algae and animal hosts. Bot Mar. 46:285–306. doi:10.1515/BOT.2003.026

 

Kondo M, Takayama T, Furuya K, Okudaira M, Hayashi T, Kinoshita M. 1987. A nuclear magnetic resonance study of Zopfinol isolated from Zopfiella marina. Annu Rep Sankyo Res Lab. 39:45–53.

 

Konishi M, Hatada Y, Horiuchi J-I. 2013. Draft genome sequence of the basidiomycetous yeast-like fungus Pseudozyma hubeiensis SY62, which produces an abundant amount of the biosurfactant mannosylerythritol lipids. Genome Announc. 1:e00409–13.

 

Kusnick C, Jansen R, Liberra K, Lindequist U. 2002. Ascochital, a new metabolite from the marine ascomycete Kirschsteiniothelia maritima. Pharmazie. 57:510–512.

 

Lackner G, Misiek M, Braesel J, Hoffmeister D. 2012. Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genet Biol. 49:996–1003. doi:10.1016/j.fgb.2012.09.009

 

Liberra K, Jansen R, Lindequist U. 1998. Corollosporine, a new phthalide derivative form the marine fungus Corollospora maritima werderm.1069. Pharmazie. 53:578–581.

 

Lin Y, Wu X, Deng Z, Wang J, Zhou S, Vrijmoed LLP, Jones EBG. 2002. The metabolites of the mangrove fungus Verruculina enalia no. 2606 from a salt lake in the Bahamas. Phytochemistry. 59:469–471. doi:10.1016/S0031-9422(01)00470-8

 
Liñan-Rico A, Cardenas-Conejo Y. 2013. Use of molecular techniques to study the ecology of microorganisms associated with corals. In: Liñán-Cabello MA, editor. Corals: classification, habitat and ecological significance. New York (NY): Nova Science; p. 1–20.
 

Liu J-K, Jones EBG, Chukeatirote E, Bahkali AHD, Hyde KD. 2011. Lignincola conchicola from palms with a key to the species of Lignincola. Mycotaxon. 117:343–349. doi:10.5248/117.343

 

Meyers SP, Kohlmeyer J. 1965. Varicosporina ramulosa gen. nov. sp. nov., an aquatic hyphomycete from marine areas. Can J Bot. 43:915–921. doi:10.1139/b65-101

 

Miller JD, Savard ME. 1989. Antibiotic activity of the marine fungus Leptosphaeria oraemaris. Proc NS Inst Sci. 39:51–58.

 

Mincer TJ, Jensen PR, Kauffman CA, Fenical W. 2002. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol. 68:5005–5011. doi:10.1128/AEM.68.10.5005-5011.2002

 

Mita MM, Spear MA, Yee LK, Mita AC, Heath EI, Papadopoulos KP, Federico KC, Reich SD, Romero O, Malburg L, et al. 2010. Phase 1 first-in-human trial of the vascular disrupting agent plinabulin (NPI-2358) in patients with solid tumors or lymphomas. Clin Cancer Res. 16:5892–5899. doi:10.1158/1078-0432.CCR-10-1096

 

Newell SY, Porter D, Lingle WL. 1996. Lignocellulolysis by ascomycetes (fungi) of a saltmarsh grass (smooth cordgrass). Microsc Res Tech. 3.0.CO;2-2">33:32–46. doi:10.1002/(SICI)1097-0029(199601)33:1<32::AID-JEMT5>3.0.CO;2-2

 
Ogita T, Hayashi A, Sato S, Furutani W. 1987. Antibiotic zopfimarin. Japan patent 62-040292.
 

Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, et al. 2012. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 8:e1003037. doi:10.1371/journal.ppat.1003037

 
Okuda T, Ando K, Bills G. 2005. Fungal germplasm for drug discovery and industrial applications. In: An Z, editor. Handbook of industrial mycology. New York (NY): Marcel Dekker; p. 123–166.
 

Osterhage C, Kaminsky R, König GM, Wright AD. 2000. Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem. 65:6412–6417. doi:10.1021/jo000307g

 

Pazoutova S, Olsovska J, Linka M, Kolinska R, Flieger M. 2000. Chemoraces and habitat specialization of Claviceps purpurea populations. Appl Environ Microbiol. 66:5419–5425. doi:10.1128/AEM.66.12.5419-5425.2000

 

Penn K, Jensen PR. 2012. Comparative genomics reveals evidence of marine adaptation in Salinispora species. BMC Genomics. 13:86.

 
Pitt JI, Hocking AD. 1997. Fungi and food spoilage. 2nd ed. London: Blackie Academic and Professional.
 

Poch GK, Gloer JB. 1989a. Helicascolides A and B: new lactones from the marine fungus Helicascus kanaloanus. J Nat Prod. 52:257–260. doi:10.1021/np50062a006

 

Poch GK, Gloer JB. 1989b. Obionin A: a new polyketide metabolite form the marine fungus Leptosphaeria obiones. Tetrahedron Lett. 30:3483–3486. doi:10.1016/S0040-4039(00)99419-X

 

Poirier L, Amiard J-C, Mondeguer F, Quiniou F, Ruiz N, Pouchus YF, Montagu M. 2007. Determination of peptaibol trace amounts in marine sediments by liquid chromatography/electrospray ionization-ion trap-mass spectrometry. J Chromatogr A. 1160:106–113. doi:10.1016/j.chroma.2007.04.006

 

Prieto-Davó A, Fenical W, Jensen PR. 2008. Comparative actinomycete diversity in marine sediments. Aqu Microb Ecol. 52:1–11. doi:10.3354/ame01211

 

Rahbæk L, Christophersen C, Frisvad JC, Bengaard HS, Larsen S, Rassing BR. 1997. Insulicolide A: a new nitrobenzoyloxy-substituted sesquiterpene from the marine fungus Aspergillus insulicola. J Nat Prod. 60:811–813. doi:10.1021/np970142f

 

Rämä T, Nordén J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H. 2014. Fungi ahoy! Diversity on marine wooden substrata in the high north. Fungal Ecol. 8:46–58. doi:10.1016/j.funeco.2013.12.002

 
Ramakrishna D, Sabaratnam V. 2002. The effect of agitation on ascomata formation of the marine ascomycete Corollospora gracilis. In: Hyde K, editor. Fungi in marine environments. Thailand: Fungal Diversity Press; p. 213–233.
 

Ramírez-Camejo LA, Torres-Ocampo AP, Bayman P. 2014. An opportunistic human pathogen on the fly: strains of Aspergillus flavus vary in virulence on Drosophila melanogaster. Med Mycol. 52:211–219. doi:10.1093/mmy/myt008

 

Ramírez-Camejo LA, Zuluaga-Montero A, Lázaro-Escudero M, Hernández-Kendall V, Bayman P. 2012. Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere? Fungal Biol. 116:452–463. doi:10.1016/j.funbio.2012.01.006

 

Rateb ME, Ebel R. 2011. Secondary metabolites of fungi from marine habitats. Nat Prod Rep. 28:290–344. doi:10.1039/c0np00061b

 

Rypien KL, Andras JP, Harvell CD. 2008. Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii. Molec Ecol. 17:4068–4078. doi:10.1111/j.1365-294X.2008.03894.x

 

Sakayaroj J, Pang K-L, Jones EBG. 2011. Multi-gene phylogeny of the halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers. 46:87–109. doi:10.1007/s13225-010-0072-y

 

Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS. 2007. Marine natural products of fungal origin. Nat Prod Rep. 24:1142–1152. doi:10.1039/b607254m

 

Schiehser GA, White JD, Matsumoto G, Pezzanite JO, Clardy J. 1986. The structure of leptosphaerin. Tetrahedron Lett. 27:5587–5590. doi:10.1016/S0040-4039(00)85272-7

 

Schlingmann G, Milne L, Carter GT. 2002. Isolation and identification of antifungal polyesters from the marine fungus Hypoxylon oceanicum LL-15G256. Tetrahedron. 58:6825–6835. doi:10.1016/S0040-4020(02)00746-9

 

Schlingmann G, Milne L, Williams DR, Carter GT. 1998. Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. Ⅱ. Isolation and structure determination. J Antibiot. 51:303–316. doi:10.7164/antibiotics.51.303

 

Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, et al. 2009. The ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol. 58:224–239. doi:10.1093/sysbio/syp020

 

Schoch CL, Sung GH, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW. 2007. Marine fungal lineages in the hypocreomycetidae. Mycol Res. 111:154–162. doi:10.1016/j.mycres.2006.10.005

 

Seibert SF, Eguereva E, Krick A, Kehraus S, Voloshina E, Raabe G, Fleischhauer J, Leistner E, Wiese M, Prinz H, et al. 2006. Polyketides from the marine-derived fungus Ascochyta salicorniae and their potential to inhibit protein phosphatases. Org Biomol Chem. 4:2233–2240. doi:10.1039/b601386d

 

Seibert SF, Krick A, Eguereva E, Kehraus S, König GM. 2007. Ascospiroketals A and B, unprecedented cycloethers from the marine-derived fungus Ascochyta salicorniae. Org Lett. 9:239–242. doi:10.1021/ol0626802

 

Shin J, Fenical W. 1987. Isolation of gliovictin from the marine deuteromycete Asteromyces cruciatus. Phytochem. 26:3347.

 

Shinn E, Smith GM, Prospero JM, Betzer P, Hayes ML, Garrison V, Barber RT. 2000. African dust and the demise of Caribbean coral reefs. Geophys Res Lett. 27:3029–3032. doi:10.1029/2000GL011599

 

Shrestha P, Szaro TM, Bruns TD, Taylor JW. 2011. Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field. Appl Environ Microbiol. 77:5490–5504. doi:10.1128/AEM.02996-10

 

Sparrow FKJ. 1937. The occurrence of saprophytic fungi in marine muds. Biol Bull. 73:242–248. doi:10.2307/1537586

 

Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J. 1998. Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot. 85:1569–1580. doi:10.2307/2446483

 

Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG. 2009. Molecular systematics of the marine Dothideomycetes. Stud Mycol. 64:155–173. doi:10.3114/sim.2009.64.09

 

Tan TK, Teng CL, Jones EBG. 1995. Substrate type and microbial interactions as factors affecting ascocarp formation by mangrove fungi. Hydrobiologia. 295:127–134. doi:10.1007/BF00029119

 

Toledo-Hernández C, Zuluaga-Montero A, Bones-González A, Sabat AM, Bayman P. 2008. Fungi in healthy and diseased sea fans (Gorgonia ventalina): is Aspergillus sydowii always the pathogen? Coral Reefs. 27:707–714. doi:10.1007/s00338-008-0387-2

 

Unterseher M, Schnittler M. 2009. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)‒different cultivation techniques influence fungal biodiversity assessment. Mycol Res. 113:645–654. doi:10.1016/j.mycres.2009.02.002

 

Velez P, González MC, Rosique-Gil E, Cifuentes J, Reyes-Montes MDR, Capello-García S, Hanlin RT. 2013. Community structure and diversity of marine ascomycetes from coastal beaches of the southern Gulf of Mexico. Fungal Ecol. 6:513–521. doi:10.1016/j.funeco.2013.10.002

 

Vongvilai P, Isaka M, Kittakoop P, Srikitikulchai P, Kongsaeree P, Thebtaranonth Y. 2004. Ketene acetal and spiroacetal constituents of the marine fungus Aigialus parvus BCC 5311. J Nat Prod. 67:457–460. doi:10.1021/np030344d

 

Walker AK, Campbell J. 2010. Marine fungal diversity: a comparison of natural and created salt marshes of the north-central Gulf of Mexico. Mycologia. 102:513–521. doi:10.3852/09-132

 

Wang D, Wang S, Liu Q, Wang M, Wang C, Yang H. 2013. SZ-685C exhibits potent anticancer activity in both radiosensitive and radioresistant NPC cells through the mir-205-PTEN-akt pathway. Oncol Rep. 29:2341–2347.

 

Wang GYS, Borgeson BM, Crews P. 1997. Pitholides A-D, polyketides from a marine tunicate-derived culture of Pithomyces sp. Tetrahedron Lett. 38:8449–8452. doi:10.1016/S0040-4039(97)10277-5

 

Wang Y, Lu Z, Sun K, Zhu W. 2011. Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans. Mar Drugs. 9:535–542. doi:10.3390/md9040535

 

Weir-Brush J, Garrison VH, Smith GW, Shinn EZ. 2004. The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms. Aerobiologia. 20:119e126.

 

Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. 2013. Alternaria redefined. Stud Mycol. 75:171–212. doi:10.3114/sim0015

 

Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z, et al. 2010. SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the akt/FOXO pathway. Brit J Pharmacol. 159:689–697. doi:10.1111/j.1476-5381.2009.00577.x

 

Zettler ER, Mincer TJ, Amaral-Zettler LA. 2013. Life in the ‘plastisphere’: microbial communities on plastic marine debris. Environ Sci Technol. 47:7137–7146.

 

Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, et al. 2006. An overview of the systematics of the sordariomycetes based on a four-gene phylogeny. Mycologia. 98:1076–1087. doi:10.3852/mycologia.98.6.1076

 

Ziemert N, Lechner A, Wietz M, Millań-Aguiñaga N, Chavarria KL, Jensen PR. 2014. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Nat Acad Sci USA. 111:E1130–E1139. doi:10.1073/pnas.1324161111

 
Zuccaro A, Mitchell JI. 2005. Fungal communities of seaweeds. In: Deighton J, White JF, Oudemans P, editors. The fungal community: its organization and role in the ecosystem. New York (NY): CRC Press; p. 533–580.
 

Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchel JI. 2008. Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol. 74:931–941. doi:10.1128/AEM.01158-07

 

Zuluaga-Montero A, Ramírez-Camejo L, Rauscher J, Bayman P. 2010. Marine isolates of Aspergillus flavus: denizens of the deep or lost at sea? Fungal Ecol. 3:386–391. doi:10.1016/j.funeco.2010.05.003

Mycology
Pages 145-167
Cite this article:
Overy DP, Bayman P, Kerr RG, et al. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi. Mycology, 2014, 5(3): 145-167. https://doi.org/10.1080/21501203.2014.931308

158

Views

60

Crossref

N/A

Web of Science

56

Scopus

Altmetrics

Received: 03 March 2014
Accepted: 30 May 2014
Published: 22 July 2014
© 2014 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Return