AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Invited Article | Open Access

Sea foam as a source of fungal inoculum for the isolation of biologically active natural products

David P. Overya,b,cFabrice Berruea,bHebelin CorreaaNovriyandi HanifbKathryn HaydMartin LanteignebKathrine MquilianaStephanie DuffyaPatricia BolandbRamesh JagannathanaGavin S. CarraMarieke VansteelandaRussell G. Kerra,b,e( )
Nautilus Biosciences Canada Inc., Duffy Research Center, 550 University Ave., Charlottetown, PEI, Canada C1A 4P3
Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, Canada C1A 4P3
Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, Canada C1A 4P3
Department of Biology, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, Canada C1A 4P3
Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI, Canada C1A 4P3
Show Author Information

Abstract

Due to a rate increase in the resistance of microbial pathogens to currently used antibiotics, there is a need in society for the discovery of novel antimicrobials. Historically, fungi are a proven source for antimicrobial compounds. The main goals of this study were to investigate the fungal diversity associated with sea foam collected around the coast of Prince Edward Island and the utility of this resource for the production of antimicrobial natural products. Obtained isolates were identified using ITS and nLSU rDNA sequences, fermented on four media, extracted and fractions enriched in secondary metabolites were screened for antimicrobial activity. The majority of the isolates obtained were ascomycetes, consisting of four recognized marine taxa along with other ubiquitous genera and many ‘unknown’ isolates that could not be identified to the species level using rDNA gene sequences. Secondary metabolite isolation efforts lead to the purification of the metabolites epolones A and B, pycnidione and coniothyrione from a strain of Neosetophoma samarorum; brefeldin A, leptosin J and the metabolite TMC-264 from an unknown fungus (probably representative of an Edenia sp.); and 1-hydroxy-6-methyl-8-hydroxymethylxanthone, chrysophanol and chrysophanol bianthrone from a Phaeospheria spartinae isolate. The biological activity of each of these metabolites was assessed against a panel of microbial pathogens as well as several cell lines.

References

 

Agarwal SK, Singh SS, Verma S, Kumar S. 2000. Antifungal activity of anthraquinone derivatives from Rheum emodi. J Ethnopharmacol. 72:43–46. doi:10.1016/S0378-8741(00)00195-1

 

Alemayehu G, Abegaz B, Snatzke G, Duddeck H. 1993. Bianthrones from Senna longiracemosa. Phytochem. 32:1273–1277.

 

Ayer WA, Taylor DR. 1976. Metabolites of bird’s nest fungi. Part 5. The isolation of 1-hydroxy-6-methyl-8-hydroxymethylxanthone, a new xanthone, from Cyathus intermedius. Synthesis via photoenolisation. Can J Chem. 54:1703–1707. doi:10.1139/v76-242

 

Ayers S, Zink DL, Powell JS, Brown CM, Grund A, Bills GF, Platas G, Thompson D, Singh SB. 2008. Noreupenifeldin, a tropolone from an unidentified ascomycete. J Nat Prod. 71:457–459. doi:10.1021/np070513k

 

Barr ME. 2002. Teichosporaceae, another family in the Pleosporales. Mycotaxon. 72:373–389.

 

Berg T. 2008. Signal transducers and activators of transcription as targets for small organic molecules. Chembiochem. 9:2039–2044. doi:10.1002/cbic.200800274

 

Bills GF, Martin J, Collado J, Platas G, Overy DP, Tormo JR, Vicente F, Verkley G, Crous PW. 2009. Measuring the distribution and diversity of antibiosis and secondary metabolites in filamentous fungi. SIM News. 59:133–146.

 

Bringmann G, Irmer A, Feineis D, Gulder TAM, Fiedler H-P. 2009. Convergence in the biosynthesis of acetogenic natural products from plants, fungi, and bacteria. Phytochem. 70:1776–1786. doi:10.1016/j.phytochem.2009.08.019

 

Cai P, Smith D, Cunningham B, Brown-Shimer S, Katz B, Pearce C, Venables D, Houck D. 1998. Epolones: novel sesquiterpene-tropolones from fungus OS-F69284 that induce erythropoietin in human cells. J Nat Prod. 61:791–795. doi:10.1021/np9800506

 

Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, Summerell BA, Alfenas AC, Cumagun CJR, Groenewald JZ. 2009. Phylogeny and taxonomy of obscure genera of microfungi. Persoonia. 22:139–161. doi:10.3767/003158509X461701

 

De Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW. 2010. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia. 102:1066–1081. doi:10.3852/09-240

 

Donaldson JG, Finazzi D, Klausner RD. 1992. Brefeldin A inhibits golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature. 360:350–352. doi:10.1038/360350a0

 

Gardiner DM, Waring P, Howlett BJ. 2005. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiol. 151:1021–1032. doi:10.1099/mic.0.27847-0

 

Glaser R, Shiftan D, Froimowitz M. 2000. NMR structure determination of brefeldin-A, a 13-membered ring fungal metabolite. Magn Reson Chem. 3.0.CO;2-M">38:274–280. doi:10.1002/(SICI)1097-458X(200004)38:4<274::AID-MRC630>3.0.CO;2-M

 

Gonzalez MC, Anaya AL, Glenn AE, Saucedo-Garcia A, Macias-Rubalcava ML, Hanlin RT. 2007. A new endophytic ascomycete from El Eden Ecological reserve, Quintana Roo, Mexico. Mycotaxon. 2001:251–260.

 

Harris GH, Hoogsteen K, Silverman KC, Raghoobar SL, Bills GF, Lingham B, Smith JL, Dougherty HW, Cascales C, Peláez F. 1993. Isolation and structure determination of pycnidione, a novel bistropolone stromelysin inhibitor from a Phoma sp. Tetrahedron. 49:2139–2144. doi:10.1016/S0040-4020(01)80357-4

 

Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A. 2006. Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev. 17:173–188. doi:10.1016/j.cytogfr.2006.01.004

 

Hein SM, Gloer JB, Koster B, Malloch D. 1998. Arugosin F: A new antifungal metabolite from the coprophilous fungus Ascodesmis sphaerospora. J Nat Prod. 61:1566–1567. doi:10.1021/np9801918

 

Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust H-J, Schulz B. 2000. Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res. 104:1354–1365. doi:10.1017/S0953756200003117

 

Hyde KD, Jones EBG. 1989. Ecological observations on marine fungi from the Seychelles. Bot J Linnean Soc. 100:237–254. doi:10.1111/j.1095-8339.1989.tb01720.x

 

Kirk PW. 1983. Direct enumeration of marine arenicolous fungi. Mycologia. 75:670–682. doi:10.2307/3792997

 

Koehn RD. 1982. Fungi isolated from sea foam collected at North Padre island beaches. Southwest Nat. 27:17–21. doi:10.2307/3671402

 
Kohlmeyer J, Kohlmeyer E. 1979. Marine mycology: the higher fungi. New York (NY): Academic Press.
 

Lu C-C, Yang J-S, Huang A-C, Hsia T-C, Chou S-T, Kuo C-L, Lu H-F, Lee T-H, Wood WG, Chung J-G. 2010. Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol Nutr Food Res. 54:967–976. doi:10.1002/mnfr.200900265

 

Morita Y, Matsumura E, Okabe T, Shibata M, Sugiura M, Ohe T, Tsujibo H, Ishida N, Inamori Y. 2003. Biological activity of tropolone. Biol Pharm Bull. 26:1487–1490. doi:10.1248/bpb.26.1487

 

Mueller SO, Stopper H, Dekant W. 1998. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites. Drug Metabolism and Deposition. 26:540–546.

 

Müllbacher A, Waring P, Tiwari-Palni U, Eichner RD. 1986. Structural relationship of epipolythiodioxopiperazines and their immunomodulating activity. Mol Immunol. 23:231–235. doi:10.1016/0161-5890(86)90047-7

 
National Committee for Clinical Laboratory Standards. 2003. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. 6th. Approved standard M7-A6. Wayne (PA): National Committee for Clinical Laboratory Standards.
 

Ondeyka JG, Zink D, Basilio A, Vicente F, Bills GF, Diez MT, Motyl M, Dezeny G, Byrne K, Singh SB. 2007. Coniothyrione, a chlorocyclopentandienylbenzopyrone as a bacterial protein synthesis inhibitor discovered by antisense technology. J Nat Prod. 70:668–670. doi:10.1021/np060557d

 
Pan P, Finnegan M, Soushinsky A, Arvanitis G, Berardini M; Warner-Lambert Co. 2004a Substituted tropolone compounds, oral care compositions containing the same and methods of using the same. US patent 6,787,675 B2, New Jersey.
 
Pan P, Finnegan M, Soshinsky A, Arvanitis G, Berardini M; Warner-Lambert Co. 2004b. Oral care compositions comprising tropolone compounds and essential oils and methods of using the same. US patent 6,689,342 B1, New Jersey.
 

Pittayakhajonwut P, Theerasilp M, Kongsaeree P, Rungrod A, Tanticharoen M, Thebtaranonth Y. 2002. Pughiinin A, a sesquiterpene from the fungus Kionochaeta pughii BCC 3878. Plant Medica. 68:1017–1019. doi:10.1055/s-2002-35653

 

Pockrandt D, Ludwig L, Fan A, König GM, Li S-M. 2012. New insights into the biosynthesis of prenylated xanthones: Xptb from Aspergillus nidulans catalyses an o-prenylation of xanthones. Chembiochem. 13:2764–2771. doi:10.1002/cbic.201200545

 

Pornpakakul S, Roengsumran S, Deechangvipart S, Petsom A, Muangsin N, Ngamrojnavanich N, Sriubolmas N, Chaichit N, Ohta T. 2007. Diaporthichalasin, a novel CYP3A4 inhibitor from an endophytic Diaporthe sp. Tetrahedron Lett. 48:651–655. doi:10.1016/j.tetlet.2006.11.102

 

Quaedvlieg W, Verkley GJM, Shin H-D, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW. 2013. Sizing up Septoria. Stud Mycol. 75:307–390. doi:10.3114/sim0017

 

Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 98:625–634. doi:10.1016/S0953-7562(09)80409-7

 

Sakurai M, Nishio M, Yamamoto K, Okuda T, Kawano K, Ohnuki T. 2003a. TMC-264, a novel antiallergic heptaketide produced by the fungus Phoma sp. TC 1674. Org Lett. 5:1083–1085. doi:10.1021/ol034125v

 

Sakurai M, Nishio M, Yamamoto K, Okuda T, Kawano K, Ohnuki T. 2003b. TMC-264, a novel inhibitor of STAT6 activation produced by Phoma sp. TC1674. J Antiobiot. 56:513–519. doi:10.7164/antibiotics.56.513

 

Seehafer K, Rominger F, Helmchen G, Langhans M, Robinson DG, Özata B, Brügger B, Strating JRPM, van Kuppeveld FJM, Klein CD. 2013. Synthesis and biological properties of novel brefeldin A analogues. J Med Chem. 56:5872–5884. doi:10.1021/jm400615g

 

Shen K-Z, Gao S, Gao Y-X, Wang A-R, Xu Y-B, Sun R, Hu P-G, Yang G-F, Li A-J, Zhong D, et al. 2012. Novel dibenzo[b,e]oxepinones from the freshwater-derived fungus Chaetomium sp. YMF 1.02105. Planta Med. 78:1837–1843. doi:10.1055/s-0032-1327828

 

Srinivas G, Babykutty S, Sathiadevan PP, Srinivas P. 2007. Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev. 27:591–608. doi:10.1002/med.20095

 

Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG. 2009. Molecular systematics of the marine Dothideomycetes. Stud Mycol. 64:155–173. doi:10.3114/sim.2009.64.09

 

Takahashi C, Numata A, Ito Y, Matsumura E, Araki H, Iwaki H, Kushida K. 1994b. Leptosins, antitumour metabolites of a fungus isolated from a marine alga. J Chem Soc, Perkin Transact. 1(13):1859–1864. doi:10.1039/p19940001859

 

Takahashi C, Numata A, Matsumura E, Minoura K, Eto H, Shingu T, Ito T, Hasegawa T. 1994a. Leptosins I and J, cytotoxic substances produced by a Leptosphaeria sp. physico-chemical properties and structures. J Antibiot. 47:1242–1249. doi:10.7164/antibiotics.47.1242

 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28:2731–2739. doi:10.1093/molbev/msr121

 

Torii S, Banno T, Watanabe T, Ikehara Y, Murakami K, Nakayama K. 1995. Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J Biol Chem. 270:11574–11580. doi:10.1074/jbc.270.19.11574

 

Trust TJ. 1975. Antibacterial activity of tropolone. Antimicrob Agents Chemother. 7:500–506. doi:10.1128/AAC.7.5.500

 

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 172:4238–4246.

 
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego, CA: Academic Press; p. 315–322.
 

Yanagihara M, Sasaki-Takahashi N, Sugahara T, Yamamoto S, Shinomi M, Yamashita I, Hayashida M, Yamanoha B, Numata A, Yamori T, et al. 2005. Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases Ⅰ and/or Ⅱ and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci. 96:816–824. doi:10.1111/j.1349-7006.2005.00117.x

Mycology
Pages 130-144
Cite this article:
Overy DP, Berrue F, Correa H, et al. Sea foam as a source of fungal inoculum for the isolation of biologically active natural products. Mycology, 2014, 5(3): 130-144. https://doi.org/10.1080/21501203.2014.931893

161

Views

41

Crossref

N/A

Web of Science

42

Scopus

Altmetrics

Received: 04 March 2014
Accepted: 02 June 2014
Published: 22 July 2014
© 2014 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

Return