AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Invited Article | Open Access

Potential molecular mechanisms for fruiting body formation of Cordyceps illustrated in the case of Cordyceps sinensis

Kun Fenga,*Lan-ying Wanga,b,*Dong-jiang Liaoc,*Xin-peng Luc,*De-jun HuaXiao LiangdJing Zhaoa( )Zi-yao Moc( )Shao-ping Lia( )
State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
Department of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, China
The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
Bino Beijing Limited, Beijing, China

*These authors contributed equally to this work.

Show Author Information

Abstract

The fruiting body formation mechanisms of Cordyceps sinensis are still unclear. To explore the mechanisms, proteins potentially related to the fruiting body formation, proteins from fruiting bodies, and mycelia of Cordyceps species were assessed by using two-dimensional fluorescence difference gel electrophoresis, and the differential expression proteins were identified by matrix-assisted laser desorption/ionisation tandem time of flight mass spectrometry. The results showed that 198 differential expression proteins (252 protein spots) were identified during the fruiting body formation of Cordyceps species, and 24 of them involved in fruiting body development in both C. sinensis and other microorganisms. Especially, enolase and malate dehydrogenase were first found to play an important role in fruiting body development in macro-fungus. The results implied that cAMP signal pathway involved in fruiting body development of C. sinensis, meanwhile glycometabolism, protein metabolism, energy metabolism, and cell reconstruction were more active during fruiting body development. It has become evident that fruiting body formation of C. sinensis is a highly complex differentiation process and requires precise integration of a number of fundamental biological processes. Although the fruiting body formation mechanisms for all these activities remain to be further elucidated, the possible mechanism provides insights into the culture of C. sinensis.

References

 

Au D, Wang L, Yang D, Mok DKW, Chan ASC, Xu H. 2011. Application of microscopy in authentication of valuable Chinese medicine I-Cordyceps sinensis, its counterfeits, and related products. Microsc Res Tech. 75:54–64.

 

Barros BHR, da Silva SH, Marques EDR, Rosa JC, Yatsuda AP, Roberts DW, Braga GUL. 2010. A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Fungal Biol. 114:572–579.

 

Beranova-Giorgianni S. 2003. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Trends Analyt Chem. 22:273–281.

 

Bishop JD, Moon BC, Harrow F, Ratner D, Gomer RH, Dottin RP, Brazill DT. 2002. A second UDP-glucose pyrophosphorylase is required for differentiation and development in Dictyostelium discoideum. J Biol Chem. 277:32430–32437.

 

Bulik DA, Van Ophem P, Manning JM, Shen Z, Newburg DS, Jarroll EL. 2000. UDP-N-acetylglucosamine pyrophosphorylase, a key enzyme in encysting Giardia, is allosterically regulated. J Biol Chem. 275:14722–14728.

 

Burt ET, O’Connor C, Larsen B. 1999. Isolation and identification of a 92-kDa stress induced protein from Candida albicans. Mycopathologia. 147:13–20.

 

Busch S, Braus GH. 2007. How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol. 64:873–876.

 

Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. 1998. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev. 62:130–180.

 

Chakraborty TK, Das N, Mukherjee M. 2003. Evidences of high carbon catabolic enzyme activities during sporulation of Pleurotus ostreatus (Florida). J Basic Microbiol. 43:462–467.

 

Chen YQ, Hu B, Xu F, Zhang WM, Zhou H, Qu LH. 2004. Genetic variation of Cordyceps sinensis, a fruit-body-producing entomopathogenic species from different geographical regions in China. Fems Microbiol Lett. 230:153–158.

 

Chen YR, Chu FH. 2010. Mago nashi interacts with a Taiwania (Taiwania cryptomerioides) pectin methylesterase-like protein. J Plant Biochem Biotechnol. 19:59–66.

 

Chevalier F. 2010. Highlights on the capacities of ‘Gel-based’ proteomics. Proteome Sci. 8:1–10.

 

Chu FH, Chen YR, Lee CH, Chang TT. 2009. Molecular characterization and expression analysis of Acmago and AcY14 in Antrodia cinnamomea. Mycol Res. 113:577–582.

 

Chum WWY, Kwan HS, Au CH, Kwok ISW, Fung YW. 2011. Cataloging and profiling genes expressed in Lentinula edodes fruiting body by massive cDNA pyrosequencing and LongSAGE. Fungal Genet Biol. 48:359–369.

 

Chum WWY, Ng KTP, Shih RSM, Au CH, Kwan HS. 2008. Gene expression studies of the dikaryotic mycelium and primordium of Lentinula edodes by serial analysis of gene expression. Mycol Res. 112:950–964.

 

D’Souza CA, Heitman J. 2001. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev. 25:349–364.

 

De Groot PWJ, Schaap PJ, Van Griensven LJLD, Visser J. 1997. Isolation of developmentally regulated genes from the edible mushroom Agaricus bisporus. Microbiology. 143:1993–2001.

 

De Groot PWJ, Visser J, Van Griensven LJLD, Schaap PJ. 1998. Biochemical and molecular aspects of growth and fruiting of the edible mushroom Agaricus bisporus. Mycol Res. 102:1297–1308.

 

De Oliveira SK, Hoffmeister M, Gambaryan S, Müller-Esterl W, Guimaraes JA, Smolenski AP. 2007. Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor. J Biol Chem. 282:13656–13663.

 

De Roos B, McArdle HJ. 2008. Proteomics as a tool for the modelling of biological processes and biomarker development in nutrition research. Br J Nutr. 99:S66–S71.

 

Demeke T, Sasikumar B, Hucl P, Chibbar RN. 1997. Random amplified polymorphic DNA (RAPD) in cereal improvement. Maydica. 42:133–142.

 

Deveau A, Kohler A, Frey-Klett P, Martin F. 2008. The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol. 180:379–390.

 

Feng K, Wang S, Hu DJ, Yang FQ, Wang HX, Li SP. 2009. Random amplified polymorphic DNA (RAPD) analysis and the nucleosides assessment of fungal strains isolated from natural Cordyceps sinensis. J Pharm Biomed Anal. 50:522–526.

 

Fishel BR, Manrow RE, Dottin RP. 1982. Developmental regulation of multiple forms of UDPglucose pyrophosphorylase of Dictyostelium. Dev Biol. 92:175–187.

 

Gauci VJ, Wright EP, Coorssen JR. 2011. Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol. 4:3–29.

 

Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. 2006. The fluorescent toolbox for assessing protein location and function. Science. 312:217–224.

 

Graves PR, Haystead TAJ. 2002. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 66:39–63.

 

Guan J, Yang FQ, Li SP. 2010. Evaluation of carbohydrates in natural and cultured Cordyceps by pressurized liquid extraction and gas chromatography coupled with mass spectrometry. Molecules. 15:4227–4241.

 

Guo K, Chang WT, Newell PC. 1999. Isolation of spermidine synthase gene (spsA) of Dictyostelium discoideum. Biochim Biophys Acta-Mol Cell Res. 1449:211–216.

 

Hammond JBW, Nichols R. 1976. Carbohydrate metabolism in Agaricus bisporus (Lange) Sing: changes in soluble carbohydrates during growth of mycelium and sporophore. J Gen Microbiol. 93:309–320.

 

Heneghan MN, Porta C, Zhang C, Burton KS, Challen MP, Bailey AM, Foster GD. 2009. Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol. 75:792–801.

 

Holliday JC, Cleaver M. 2008. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) link (Ascomycetes). A review. Int J Med Mushrooms. 10:219–234.

 

Hsu T-H, Shiao L-H, Hsieh C, Chang D-M. 2002. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem. 78:463–469.

 
Jin ZX. 2005. Preliminary proteomic study on Cordyceps sinensis College of Life Sciences. Tianjin: Nankai University.
 

Juuti JT, Jokela S, Tarkka MT, Paulin L, Lahdensalo J. 2005. Two phylogenetically highly distinct β-tubulin genes of the basidiomycete Suillus bovinus. Curr Genet. 47:253–263.

 

Kamerewerd J, Jansson M, Nowrousian M, Pöggeler S, Kück U. 2008. Three α-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora. Genetics. 180:191–206.

 
Kao YT. 2006. The investigation of the protein profiles of the isolates of Cordyceps spp. by proteomics Department of Biological Science and Technology. Tainan County: Southern Taiwan University of Technology.
 

Kinoshita H, Sen K, Iwama H, Samadder PP, Kurosawa SI, Shibai H. 2002. Effects of indole and caffeine on cAMP in the ind1 and cfn1 mutant strains of Schizophyllum commune during sexual development. FEMS Microbiol. Lett. 206:247–251.

 

Krappmann S, Braus GH. 2003. Deletion of Aspergillus nidulans aroC using a novel blaster module that combines ET cloning and marker rescue. Mol Genet Genomics. 268:675–683.

 

Kulkarni RK. 1990. Mannitol metabolism in Lentinus edodes, the Shiitake mushroom. Appl Environ Microbiol. 56:250–253.

 

Lewandowski JP, Sheehan KB, Bennett PE Jr, Boswell RE. 2010. Mago Nashi, Tsunagi/Y14, and Ranshi form a complex that influences oocyte differentiation in Drosophila melanogaster. Dev Biol. 339:307–319.

 

Li C, Li Z, Fan M, Cheng W, Long Y, Ding T, Ming L. 2006a. The composition of Hirsutella sinensis, anamorph of Cordyceps sinensis. J Food Compos Anal. 19:800–805.

 

Li J, Yang J, Huang X, Zhang K-Q. 2006b. Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochem. 41:925–929.

 

Li L, Wright SJ, Krystofova S, Park G, Borkovich KA. 2007. Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol. 61:423–452.

 

Li Y, Wang XL, Jiao L, Jiang Y, Li H, Jiang SP, Lhosumtseiring N, Fu SZ, Dong CH, Zhan Y, et al. 2011. A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol. 49:913–919.

 

Liu ZY, Liang ZQ, Liu AY, Yao YJ, Hyde KD, Yu ZN. 2002. Molecular evidence for teleomorph-anamorph connections in Cordyceps based on its-5.8S rDNA sequences. Mycol Res. 106:1100–1108.

 

Loubradou G, Bégueret J, Turcq B. 1997. A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. Genetics. 147:581–588.

 

Luo H, Sun C, Song J, Lan J, Li Y, Li X, Chen S. 2010. Generation and analysis of expressed sequence tags from a cDNA library of the fruiting body of Ganoderma lucidum. Chin Med. 5:1–7.

 

Minden J. 2007. Comparative proteomics and difference gel electrophoresis. Biotechniques. 43:739–745.

 

Miyazaki Y, Nakamura M, Babasaki K. 2005. Molecular cloning of developmentally specific genes by representational difference analysis during the fruiting body formation in the basidiomycete Lentinula edodes. Fungal Genet Biol. 42:493–505.

 

Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, Usui T, Osada H. 2010. Application of proteomic profiling based on 2d-DIGE for classification of compounds according to the mechanism of action. Chem Biol. 17:460–470.

 

Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U. 2007. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol. 64:923–937.

 

Otani M, Tabata J, Ueki T, Sano K, Inouye S. 2001. Heat-shock-induced proteins from Myxococcus xanthus. J Bacteriol. 183:6282–6287.

 

Palmer GE, Horton JS. 2006. Mushrooms by magic: making connections between signal transduction and fruiting body development in the basidiomycete fungus Schizophyllum commune. FEMS Microbiol Lett. 262:1–8.

 

Paterson RRM. 2008. Cordyceps - a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 69:1469–1495.

 

Poetsch B, Schreckenbach T, Werenskiold AK. 1989. Photomorphogenesis in Physarum polycephalum. Temporal expression pattern of actin, α- and β-tubulin. Eur J Biochem. 179:141–146.

 
Pöggeler S, Nowrousian M, Kück U. 2006. Fruiting-body development in Ascomycetes. In: Kües U, Fischer R, editors. Growth, differentiation and sexuality. New York: Springer Berlin Heidelberg; p. 325–355.
 

Pudelski B, Soll J, Philippar K. 2009. A search for factors influencing etioplast-chloroplast transition. Proc Natl Acad Sci USA. 106:12201–12206.

 

Putzer H, Verfuerth C, Claviez M, Schreckenbach T. 1984. Photomorphogenesis in Physarum: induction of tubulins and sporulation-specific proteins and of their mRNAs. Proc Natl Acad Sci USA. 81:7117–7121.

 

Rak A, Pylypenko O, Durek T, Watzke A, Kushnir S, Brunsveld L, Waldmann H, Goody RS, Alexandrov K. 2003. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science. 302:646–650.

 

Sakamoto Y, Nakade K, Sato T. 2009. Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body. Curr Genet. 55:409–423.

 

Schlenstedt G, Smirnova E, Deane R, Solsbacher J, Kutay U, GöRlich D, Ponstingl H, Bischoff FR. 1997. Yrb4p, a yeast Ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. EMBO J. 16:6237–6249.

 

Seewald MJ, Kraemer A, Farkasovsky M, Körner C, Wittinghofer A, Vetter IR. 2003. Biochemical characterization of the Ran-RanBP1-RanGAP system: are RanBP proteins and the acidic tail of RanGAP required for the Ran-RanGAP GTPase reaction? Mol Cell Biol. 23:8124–8136.

 

Silar P, Lalucque H, Haedens V, Zickler D, Picard M. 2001. eEF1A controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina. Genetics. 158:1477–1489.

 

Stamm I, Lottspeich F, Plaga W. 2005. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development. Mol Microbiol. 56:1386–1395.

 

Szeto CYY, Leung GS, Kwan HS. 2007. Le.MAPK and its interacting partner, Le.DRMIP, in fruiting body development in Lentinula edodes. Gene. 393:87–93.

 

Terashita T, Murao R, Yoshikawa K, Shishiyama J. 1998. Changes in carbohydrase activities during vegetative growth and development of fruit-bodies of Hypsizygus marmoreus grown in sawdust-based culture. J Wood Sci. 44:234–236.

 

Thanonkeo P, Monkeang R, Saksirirat W, Thanonkeo S, Akiyama K. 2010. Cloning and molecular characterization of glyceraldehyde-3-phosphate dehydrogenase gene from thermotolerant mushroom, Lentinus polychrous. Afr J Biotechnol. 9:3242–3251.

 

Van Den Bergh G, Arckens L. 2004. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol. 15:38–43.

 

Vélëz H, Glassbrook NJ, Daub ME. 2007. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet Biol. 44:258–268.

 

Wang S, Yang FQ, Feng K, Li DQ, Zhao J, Li SP. 2009. Simultaneous determination of nucleosides, myriocin, and carbohydrates in Cordyceps by HPLC coupled with diode array detection and evaporative light scattering detection. J Sep Sci. 32:4069–4076.

 

Wang SY, Shiao MS. 2000. Pharmacological functions of Chinese medicinal fungus Cordyceps sinensis and related species. J Food Drug Anal. 8:248–257.

 

Wannet WJB, Hermans JHM, Van Der Drift C, Op Den Camp HJM. 2000. HPLC detection of soluble carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. J Agric Food Chem. 48:287–291.

 

Winkler D. 2008. Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot. 62:291–305.

 

Yoon JJ, Munir E, Miyasou H, Hattori T, Terashita T, Shimada M. 2002. A possible role of the key enzymes of the glyoxylate and gluconeogenesis pathways for fruit-body formation of the wood-rotting basidiomycete Flammulina velutipes. Mycoscience. 43:327–332.

 

Yu JH. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol. 44:145–154.

 

Zakrzewska A, Palamarczyk G, Krotkiewski H, Zdebska E, Saloheimo M, Penttilä M, Kruszewska JS. 2003. Overexpression of the gene encoding GTP: mannose-1-phosphateguanyltransferase, mpg1, increases cellular GDP-mannose levels and protein mannosylation in Trichoderma reesei. Appl Environ Microbiol. 69:4383–4389.

 

Zeppa S, Guidi C, Zambonelli A, Potenza L, Vallorani L, Pierleoni R, Sacconi C, Stocchi V. 2002. Identification of putative genes involved in the development of Tuber borchii fruit body by mRNA differential display in agarose gel. Curr Genet. 42:161–168.

 

Zeppa S, Marchionni C, Saltarelli R, Guidi C, Ceccaroli P, Pierleoni R, Zambonelli A, Stocchi V. 2010. Sulfate metabolism in Tuber borchii: characterization of a putative sulfate transporter and the homocysteine synthase genes. Curr Genet. 56:109–119.

 

Zhang Y, Liu X, Wang M. 2008. Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis. Res Microbiol. 159:462–469.

 

Zhang Y, Zhang S, Wang M, Bai F, Liu X. 2010. High diversity of the fungal community structure in naturally-occurring Ophiocordyceps sinensis. PLoS One. 5, art. no. e15570.

 

Zhang YJ, Sun BD, Zhang S, Wang M, Liu XZ, Gong WF. 2010. Mycobiotal investigation of natural Ophiocordyceps sinensis based on culture-dependent investigation. Jun Wu Xi Tong. 29:518–527.

 

Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biol. 12, art. no. R116.

 

Zhong X, Peng Q, Qi L, Lei W, Liu X. 2010. rDNA-targeted PCR primers and FISH probe in the detection of Ophiocordyceps sinensis hyphae and conidia. J Microbiol Methods. 83:188–193.

 

Zimmermann G. 2008. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol. 18:865–901.

 

Zwahlen J, Kolappan S, Zhou R, Kisker C, Tonge PJ. 2007. Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis. Biochemistry. 46:954–964.

Mycology
Pages 231-258
Cite this article:
Feng K, Wang L-y, Liao D-j, et al. Potential molecular mechanisms for fruiting body formation of Cordyceps illustrated in the case of Cordyceps sinensis. Mycology, 2017, 8(4): 231-258. https://doi.org/10.1080/21501203.2017.1365314

82

Views

10

Crossref

0

Web of Science

10

Scopus

Altmetrics

Received: 26 May 2017
Accepted: 04 August 2017
Published: 30 August 2017
© 2017 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return