AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review

Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Pavia, Italy
Show Author Information

Abstract

Fomitopsis officinalis, also known as Laricifomes officinalis, is a medicinal polypore used for millennia (Agarikon) to contrast several diseases, particularly the pulmonary ones. A rich literature has dealt with its ethno-mycological aspects, but isolation and chemical characterisation of single compounds has only recently significantly developed, as well as in vitro tests for bioactivity. According to several reports there is evidence of a broad-spectrum antibacterial and antiviral activity by F. officinalis, including pathogens like Mycobacterium tuberculosis, Yersinia pseudotuberculosis and Staphylococcus aureus, as well as Ortopox virus. Chlorinated coumarins from mycelia and lanostane triterpenoids from basidiomes have been demonstrated to be directly responsible for antiviral-antibacterial and trypanocidal activity, respectively. A wider literature deals instead with crude extracts including an undetermined mixture of metabolites, whose efficacy in vitro is yet far from being standardised as extraction and treatment methodology are highly variable. Nevertheless, in vivo tests on bees provided promising results in order to develop sustainable solutions against the pathogens responsible for colony collapse disorders. Despite increasing attention has been paid to other medicinal aspects of this polypore, such as immune-tropic or antitumor, this review rationally reports and critically analyses the available knowledge by focusing on aspects of antimicrobial properties.

References

 

Airapetova A, Gromovykh T. 2013. Выделение и идентификация агарициновой кислоты из мицелия Fomitopsis officinalis (Vill. Fr.: ) Bond. et Sing. [Selection and identification of agaricine acid from micelia of Fomitopsis officinalis (Vill. Fr.: ) Bond. et Sin]. Химия Растительного Сырья [Chem Plant Raw Mater]. 2:101–106.

 

Airapetova AY, Gavrilin MV, Dmitriev AB, Mezenova TD. 2010. Examination of the structure of agaricinic acid using 1 H and 13 C NMR spectroscopy. Pharm Chem J. 44(9):510–513.

 

Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB. 2017. Coumarins: the antimicrobial agents. Sys Rev Pharm. 8(1):62.

 

Anderson C, Epstein W. 1971. Metabolic intermediates in the biological oxidation of lanosterol to eburicoic acid. Phytochemistry. 10:2713–2717.

 

Anderson CG, Vanlear G, Epstein WW. 1972. Minor triterpenes of Fomes officinalis. Phytochemistry. 11:2847–2852.

 

Asif M. 2015. Pharmacologically potentials of different substituted coumarin derivatives. Chem Int. 1(1):1–11.

 

Basanagouda M, Kulkarni MV, Sharma D, Gupta VK, Sandhyarani P, Rasal VP. 2009. Synthesis of some new 4-aryloxmethylcoumarins and examination of their antibacterial and antifungal activities. J Chem Sci. 121(4):485–495.

 
Bernicchia A. 2005. Polyporaceae sl. Alassio (Savona): Candusso; p. 222–224.
 

Blanchette RA, Compton BD, Turner NJ, Gilbertson RL. 1992. Nineteenth century shaman grave guardians are carved Fomitopsis officinalis sporophores. Mycologia. 84(1):119–124.

 

Coletto MAB, Striano B. 2000. Antibiotic activity in Basidiomycetes. ⅩⅢ. Antibiotic activity of mycelia and cultural filtrates. Allionia. 37:253–255.

 

Costa TM, Tavares LBB, de Oliveira D. 2016. Fungi as a source of natural coumarins production. Appl Microbiol Biotechnol. 100(15):6571–6584.

 
Dioscorides Pedanios. I century A.D. De Materia Medica. Aboca Edizioni (2013)
 

Epstein WW, Sweat FW, Van Lear G, Lovell FM, Gabe EJ. 1979. Structure and stereochemistry of officinalic acid, a novel triterpene from Fomes officinalis. J Am Chem Soc. 101:2748–2750.

 

Epstein WW, Van Lear G. 1966. Metabolites of Fomes officinalis. J Org Chem. 31:3434–3435.

 

Erb B, Borschberg HJ, Arigoni D. 2000. The structure of laricinolic acid and its biomimetic transformation into officinalic acid. J Chem Soc Perkin Trans. 1(15):2307–2309.

 

Feng W, Yang J, Xu X, Liu Q. 2010. Quantitative determination of lanostane triterpenes in Fomes officinalis and their fragmentation study by HPLC‐ESI. Phytochem Anal. 21(6):531–538.

 

Gargano ML, van Griensven LJ, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI. 2017. Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst. 151(3):548–565.

 

Grienke U, Zöll M, Peintner U, Rollinger JM. 2014. European medicinal polypores–A modern view on traditional uses. J Ethnopharmacol. 154(3):564–583.

 

Guz NR, Lorenz P, Stermitz FR. 2001. New coumarins from Harbouria trachypleura: isolation and synthesis. Tetrahedron Lett. 42(37):6491–6494.

 

Han J, Li L, Zhong J, Tohtaton Z, Ren Q, Han L, Huang X, Yuan T. 2016a. Officimalonic acids A−H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry. 130::193–200.

 

Han ML, Chen YY, Shen LL, Song J, Vlasák J, Dai YC, Cui BK. 2016b. Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera. Fungal Divers. 80(1):343–373.

 

Hleba L, Kompas M, Hutková J, Rajtar M, Petrová J, Cubon J, Kántor A, Kacániová M. 2016. Antimicrobial activity of crude ethanolic extracts from some medicinal mushrooms. J Microbiol Biotechnol Food Sci. 5:60.

 

Hwang CH, Jaki BU, Klein LL, Lankin DC, McAlpine JB, Napolitano JG, Fryling NA, Franzblau SG, Cho SH, Stamets PE, et al. 2013. Chlorinated coumarins from the polypore mushroom Fomitopsis officinalis and their activity against Mycobacterium tuberculosis. J Nat Prod. 76(10):1916–1922.

 

Isaka M, Chinthanom P, Srichomthong K, Thummarukcharoen T. 2017. Lanostane triterpenoids from fruiting bodies of the bracket fungus Fomitopsis feei. Tetrahedron Lett. 58(18):1758–1761.

 

Kalinkevich K, Karandashov VE, Ptitsyn LR. 2014. In vitro study of the anti-inflammatory activity of some medicinal and edible plants growing in Russia. Russ J Bioorgan Chem. 40(7):752–761.

 

Kim HJ, Choi EH, Lee IS. 2004. Two lanostane triterpenoids from Abies koreana. Phytochemistry. 65(18):2545–2549.

 

Mithöfer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 63:431–450.

 

Naranmandakh S, Murata T, Odonbayar B, Suganuma K, Batkhuu J, Sasaki K. 2018. Lanostane triterpenoids from Fomitopsis officinalis and their trypanocidal activity. J Nat Med. 72(2):523–529.

 

Parkash V, Sharma A. 2016. In vitro efficacy of bracket fungi for their potential antimicrobial activity. J Microbiol Biotechnol Food Sci. 6(2):818.

 

Patnam R, Kadali SS, Koumaglo KH, Roy R. 2005. A chlorinated coumarinolignan from the African medicinal plant, Mondia whitei. Phytochemistry. 66(6):683–686.

 

Popova M, Trusheva B, Gyosheva M, Tsvetkova I, Bankova V. 2009. Antibacterial triterpenes from the threatened wood-decay fungus Fomitopsis rosea. Fitoterapia. 80(5):263–266.

 

Quang DN, Arakawa Y, Hashimoto T, Asakawa Y. 2005. Lanostane triterpenoids from the inedible mushroom Fomitopsis spraguei. Phytochemistry. 66(14):1656–1661.

 
Ryvarden L, Melo I. 2014. Poroid fungi of Europe. Oslo: Fungiflora. P.; p. 226–227.
 

Shi ZT, Bao HY, Feng S. 2017. Antitumor activity and structure-activity relationship of seven lanostane-type triterpenes from Fomitopsis pinicola and F. officinalis. Zhongguo Zhong Yao Za Zhi= Zhongguo Zhongyao Zazhi [China J Chin Mater Med]. 42(5):915–922. Chinese.

 
Sidorenko M 2009a. Strain of basidial fungus Fomitopsis officinalis showing antibacterial activity against bacteria Yersinia pseudotuberculosis. Russia Patent 2375439, 2009 Dec 10. Russian.
 
Sidorenko ML. 2009b. Антибактериальные свойства лиственничной губки [White agaric antibacterial properties]. Вестник Красгау [Bulletin of KrasGAU – Krasnodar Agrarian University]. 12:80–85. Russian.
 

Sidorenko ML, Buzoleva LS. 2012. Поиск новых видов сырья для получения антибактериальных препаратов [Search for new types of raw materials for antibacterial drugs]. Антибиотики И Химиотерапия [Antibiot Chemiother]. 57(5–6):7–10. Russian.

 
Stamets PE 2011. Antiviral activity from medicinal mushrooms. U.S. Patent Application No. 11/728, 613.
 
Stamets PE. 2014. Antiviral and antibacterial activity from medicinal mushrooms. Washington (DC): U.S. Patent and Trademark Office. U.S. Patent No. 8, 765, 138.
 
Stamets PE. 2016. Integrative fungal solutions for protecting bees. Washington (DC): U.S. Patent and Trademark Office. U.S. Patent No. 9, 474, 776.
 
Stamets PE 2018. Antiviral activity from medicinal mushrooms and their active constituents. U.S. Patent Application No 15/918, 082.
 

Teplyakova TV, Psurtseva NV, Kosogova TA, Mazurkova NA, Khanin VA, Vlasenko VA. 2012. Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int J Med Mushrooms. 14(1):37–45.

 

Vedenicheva NP, Al-Maali GA, Mytropolska NY, Mykhaylova OB, Bisko NA, Kosakivska IV. 2016. Endogenous cytokinins in medicinal Basidiomycetes mycelial biomass. Biotechnol Acta. 9(1):55–63.

 

Wasser S. 2014. Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J. 37(6):345–356.

 

Wu GS, Guo JJ, Bao JL, Li XW, Chen XP, Lu JJ, Wang YT. 2013. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum–a review. Expert Opin Invest Drugs. 22(8):981–992.

 

Wu X, Yang JS, Dong YS. 2005. Chemical constituents of Fomes officinalis (Ⅰ). Chin Tradit Herb Drugs. 36:811–814.

 

Wu X, Yang JS, Yan M. 2009. Four New Triterpenes from Fungus of Fomes officinalis. Chem Pharm Bull. 57:195–197.

 

Wu X, Yang JS, Zhou L, Dong YS. 2004. New lanostane-typetriterpenes from Fomes officinalis. Chem Pharm Bull. 52:1375–1377.

 
Yui. et al. 2009. Лекарственные грибы в традиционной китайской медицине и современных биотехнологиях [Medicinal Fungi in Traditional Chinese Medicine and Modern Biotechnology]. Kirov, Russia 320 pp.
 
Yui L. et al. 2009. Medicinal fungi in traditional Chinese medicine and modern biotechnology. Kirov (Russia): O-Kratkoye. Russian.
 

Zaichenko T, Krupodorova T, Barshteyn V, Dekhtiarenko N. 2017. Антибактеріальні властивості деяких макроміцетів [Antibacterial Properties of Some Macromycetes]. Наукові вісті НТУУ “КПІ” [Scientific news of NTUU “KPI”]. 3:19–28. Russian.

 

Zhang W, Men X, Lei P. 2014. Review on anti-tumor effect of triterpene acid compounds. J Cancer Res Ther. 10(5):14.

Mycology
Pages 32-39
Cite this article:
Girometta C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review. Mycology, 2019, 10(1): 32-39. https://doi.org/10.1080/21501203.2018.1536680

247

Views

34

Crossref

18

Web of Science

26

Scopus

Altmetrics

Received: 26 September 2018
Accepted: 09 October 2018
Published: 25 October 2018
© 2018 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return