Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Medicines developed from natural sources are a frequent target for the research and discovery of antimicrobial compounds. Discovering of penicillin in 1928 was a motive to explore of nature as a source of new antimicrobial agents. Fungi produce a diverse range of bioactive metabolites, making them rich source of different types of medicines. The purpose of this paper was to review studies on antibacterials from terrestrial Aspergillus published exclusively during 1942–2018, with emphasis on their antibacterial activities, structures, and mechanisms of action if present. According to the results from different studies in the world, large number of compounds and extracts showed different activities against different bacterial species, including Gram-positive and Gram-negative bacteria. The most prominent result was that of the compound CJ-17,665, isolated from A. ochraceus, showing good activity against multi-drug resistant Staphylococcus aureus, which is well-recognised to be one of the most important current public health problem. These findings may motivate scientists to undertake a project that may result in the development of novel antibacterial drugs from terrestrial-derived Aspergillus spp., although further toxicity assays (in vivo) must be performed before their application.
Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, et al. 1980. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl- coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA. 77(7):3957–3961.
Al-Shaibani ABA, Al-Shakarchi FI, Ameen RS. 2013. Extraction and characterization of antibacterial compound from Aspergillus niger. J Al-Nahrain Univ/Sci. 16(4):167–174.
Amina B, Sana G, Atef J, Laid D, Noreddine KC. 2017. Antibacterial activity of Aspergillus isolated from different Algerian ecosystems. Afr J Biotechnol. 16(32):1699–1704.
Bala N, Aitken EA, Fechner N, Cusack A, Steadman KJ. 2011. Evaluation of antibacterial activity of Australian basidiomycetous macrofungi using a high-throughput 96-well plate assay. Pharm Biol. 49(5):492–500.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 6(2):71–79.
Bennett JW, Klich M. 2003. Mycotoxins. Microbiol Mol Biol Rev. 16:497–516.
Bérdy J. 2005. Bioactive microbial metabolites. J Antibiot. 58(1):1–26.
Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP. 2011. Allergens/antigens, toxins and polyketides of important Aspergillus species. Indian J Clin Biochem. 26(2):104–119.
Bills GF, Stadler M. 2014. Editorial comment – discovery, distribution and biosynthesis of fungal secondary metabolites. Mycology. 5(3):99–101.
Bjarnsholt T, Givskov M. 2007. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci. 362(1483):1213–1222.
Brian PW, Hemming HG. 1947. Production of antifungal and antibacterial substances by fungi; preliminary examination of 166 strains of fungi imperfecti. J Gen Microbiol. 1(2):158–167.
Bugni TS, Ireland CM. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep. 21(1):143–163.
Cai S, Sun S, Zhou H, Kong X, Zhu T, Li D, Gu Q. 2011. Prenylated polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07. J Nat Prod. 74(5):1106–1110.
Calvo AM, Wilson RA, Bok JW, Keller NP. 2002. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 66(3):447–459.
Cazar ME, Schmeda-Hirschmann G, Astudillo L. 2005. Antimicrobial butyrolactone I derivatives from the Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World J Microbiol Biotechnol. 21(6–7):1067–1075.
Chain E, Florey HW, Jennings MA, Williams TI. 1943. Helvolic acid, an antibiotic produced by Aspergillus fumigatus mut. helcola Yuill. Br J Exp Pathol. 24(3):108–119.
Chang M, Wang J, Tian F, Zhang Q, Ye B. 2010. Antibacterial activity of secondary metabolites from Aspergillus awamori F12 isolated from rhizospheric soil of Rhizophora stylosa Griff. Acta Microbiol Sin. 50(10):1385–1391. [Article in Chinese].
Clutterbuck PW, Oxford AE, Raistrick H, Smith G. 1932. Studies in the biochemistry of microorganisms XXIV. The metabolic products of Penicillium brevi-compactum. Biochem J. 26(5):1441–1458.
Conteas CN, Berlin OG, Ash LR, Pruthi JS. 2000. Therapy for human gastrointestinal microsporidiosis. Am J Trop Med Hyg. 63(3–4):121–127.
Craney A, Ahmed S, Nodwell J. 2013. Towards a new science of secondary metabolism. J Antibiot. 66(7):387–400.
Cui C, Li X, Li C, Sun H, Gao S, Wang B. 2009. Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helv Chim Acta. 92(7):1366–1370.
Dewi RT, Tachibana S, Fajriah S, Hanafi M. 2015. α-Glucosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity. Med Chem Res. 24(2):737–743.
Eble TE, Hanson FR. 1951. Fumagillin, an antibiotic from Aspergillus fumigatus H-3. Antibiot Chemother. 1(1):54–58.
El-Aasar SA. 2006.. Cultural conditions studies on kojic acid production by Aspergillus parasiticus. Int J Agri Biol. 8(4):468–473.
Fleming A. 1929. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 10(3):226–236.
Flewelling AJ, Bishop AI, Johnson JA, Gray CA. 2015. Polyketides from an endophytic Aspergillus fumigatus isolate inhibit the growth of Mycobacterium tuberculosis and MRSA. Nat Prod Commun. 10(10):1661.
Florey HW, Jennings MA, Philpot FJ. 1944. Claviformin from Aspergillus giganteus Wehm. Nature. 153:139.
Foster JW, Karow EO. 1945. Microbiological aspects of penicillin VIII. Penicillin from different fungi. J Bacteriol. 49(1):19–29.
Fukuda T, Kurihara Y, Kanamoto A, Tomoda H. 2014. Terretonin G, a new sesterterpenoid antibiotic from marine-derived Aspergillus sp. OPMF00272. J Antibiot. 67(8):593–595.
Furtado NAJC, Said S, Ito IY, Bastos JK. 2002. The antimicrobial activity of Aspergillus fumigatus is enhanced by a pool of bacteria. Microbiol Res. 157(3):207–211.
Guo ZY, Tan MH, Liu CX, Lv MM, Deng ZS, Cao F, Zou K, Proksch P. 2018. Aspergoterpenins A-D: four new antimicrobial bisabolane sesquiterpenoid derivatives from an endophytic fungus Aspergillus versicolor. Molecules. 23(6):1291.
Hanson FR, Eble TE. 1949. An antiphage agent isolated from Aspergillus sp. J Bacteriol. 58(4):527–529.
Hasegawa Y, Fukuda T, Hagimori K, Tomoda H, Omura S. 2007. Tensyuic acids, new antibiotics produced by Aspergillus niger FKI-2342. Chem Pharm Bull. 55(9):1338–1341.
Hassan SAA, Bakhiet SEA. 2017. Optimization of antibacterial compounds production by Aspergillus fumigatus isolated from Sudanese indigenous soil. Int Biol Biomed J. 3(4):203–208.
He F, Sun Y, Liu K, Zhang X, Qian P, Wang Y, Qi S. 2012. Indole alkaloids from marine-derived fungus Aspergillus sydowii SCSIO 00305. J Antibiot. 65(2):109–111.
Ibrahim SRM, Elkhayat ES, Mohamed GA, Khedr AIM, Fouad MA, Kotb MHR, Ross SA. 2015b. Aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillus terreus. Phytochem Lett. 14:84–90.
Ibrahim SRM, Mohamed GA, Moharram AM, Youssef DTA. 2015a. Aegyptolidines A and B: new pyrrolidine alkaloids from the fungus Aspergillus aegyptiacus. Phytochem Lett. 12:90–93.
Inamori Y, Kato Y, Kubo M, Kamiki T, Takemoto T, Nomoto K. 1983. Studies on metabolites produced by Aspergillus terreus var. aureus. I. Chemical structures and antimicrobial activities of metabolites isolated from culture broth. Chem Pharm Bull. 31(12):4543–4548.
Irobi ON, Gbodi TA, Moo-Young M, Anderson WA. 2000. Antibiotic activity of Aspergillus quadrilineatus extracts isolated from a Nigerian cereal. Pharm Biol. 38(1):57–60.
Ismaiel AA, Rabie GH, Abd El-Aal MA. 2016. Antimicrobial and morphogenic effects of emodin produced by Aspergillus awamori WAIR120. Biologia. 71(5):464–474.
Jansen N, Ohlendorf B, Erhard A, Bruhn T, Bringmann G, Imhoff JF. 2013. Helicusin E, isochromophilone X and isochromophilone XI: new chloroazaphilones produced by the fungus Bartalinia robillardoides strain LF550. Mar Drugs. 11(3):800–816.
Kalyanasundaram I, Nagamuthu J, Muthukumaraswamy S. 2015. Antimicrobial activity of endophytic fungi isolated and identified from salt marsh plant in Vellar Estuary. J Microbiol Antimicrob. 7(2):13–20.
Kalyani P, Hemalatha KPJ. 2017. In vitro antimicrobial potential of Aspergillus niger (MTCC-961). Int J Chemtech Res. 10(4):430–435.
Killough JH, Magill GB, Smith RC. 1952. The treatment of amebiasis with fumagillin. Science. 115(2977):71–72.
Kusari S, Lamshöft M, Spiteller M. 2009. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol. 107(3):1019–1030.
Lee KW, Lee SK, Lee BD. 2006. Aspergillus oryzae as probiotic in poultry—a review. Int J Poult Sci. 5(1):1–3.
Levy SB, Marshall B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 10(12 suppl.):S122–S129.
Li DH, Han T, Guan LP, Bai J, Zhao N, Li ZL, Wu X, Hua HM. 2016. New naphthopyrones from marinederived fungus Aspergillus niger 2HL-M-8 and their in vitro antiproliferative activity. Nat prod Res. 30(10):1116–1122.
Li W, Luo D, Huang J, Wang L, Zhang F, Xi T, Liao J, Lu Y. 2018. Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat Prod Res. 32(6):662–667.
Li XJ, Zhang Q, Zhang AL, Gao JM. 2012. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agric Food Chem. 60(13):3424–3431.
Li Y, Song YC, Liu JY, Ma YM, Tan RX. 2005. Anti-Helicobacter pylori substances from endophytic fungal cultures. World J Microbiol Biotechnol. 21(4):553–558.
Liu M, Zhou Q, Wang J, Liu J, Qi C, Lai Y, Zhu H, Xue Y, Hu Z, Zhang Y. 2018. Anti-inflammatory butenolide derivatives from the coral-derived fungus Aspergillus terreus and structure revisions of aspernolides D and G, butyrolactone VI and 4′,8″- diacetoxy butyrolactone VI. RSC Adv. 8:13040–13047.
Liu S, Dai H, Konuklugil B, Orfali RS, Lin WH, Kalscheuer R, Liu Z, Proksch P. 2017. Phenolic bisabolanes from the sponge-derived fungus Aspergillus sp. Phytochem Lett. 18:187–191.
Lubertozzi D, Keasling JD. 2009. Developing Aspergillus as a host for heterologous expression. Biotechnol Adv. 27(1):53–75.
Ma J, Zhang XL, Wang Y, Zheng JY, Wang CY, Shao CL. 2017b. Aspergivones A and B, two new flavones isolated from a gorgonian-derived Aspergillus candidus fungus. Nat Prod Res. 31(1):32–36.
Ma X, Nong X, Ren Z, Wang J, Liang X, Wang L, Qi S. 2017a. Antiviral peptides from marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Tetrahedron Lett. 58(12):1151–1155.
Maria GL, Sridhar KR, Raviraja NS. 2005. Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agr Technol. 1:67–80.
Marwaha SS, Kaur J, Sodhi GS. 1994. Organomercury(Ⅱ) complexes of kojic acid and maltol: synthesis, characterization, and biological studies. J Inorg Biochem. 54(1):67–74.
Mehta A, Bodh U, Gupta R. 2017. Fungal lipases: a review. J Biotechnol Res. 8:58–77.
Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Uthandi S, Thankappan S, Gupta VK, Singh BP. 2017. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLoS One. 12(10):e0186234.
Mizuba S, Lee K, Jiu J. 1975. Three antimicrobial metabolites from Aspergillus caespitosus. Can J Microbiol. 21(11):1781–1787.
Monggoot S, Pichaitam T, Tanapichatsakul C, Pripdeevech P. 2018. Antibacterial potential of secondary metabolites produced by Aspergillus sp., an endophyte of Mitrephora wangii. Arch Microbiol. 200(6):951–959.
Newton GGF, Abraham EP. 1955. Cephalosporin C, A new antibiotic containing sulphur and D-α-aminoadipic acid. Nature. 175(4456):548.
Ng TB, Cheung RCF, Wong JH, Bekhit AA, Bekhit AE. 2015. Antibacterial products of marine organisms. Appl Microbiol Biotechnol. 99(10):4145–4173.
Nguyen HP, Zhang D, Lee U, Kang JS, Choi HD, Son BW. 2007. Dehydroxychlorofusarielin B, an antibacterial polyoxygenated decalin derivative from the marine-derived fungus Aspergillus sp. J Nat Prod. 70(7):1188–1190.
Nguyen HT, Yu NH, Jeon SJ, Lee HW, Bae CH, Yeo JH, Lee HB, Kim IS, Park HW, Kim JC. 2016. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett Appl Microbiol. 62(6):488–493.
Ogbole OO, Adebayo-Tayo BC, Salawu KM, Okoli VC. 2017. Molecular identification and antimicrobial activity of endophytic fungi Aspergillus tamarii (trichomaceae). Nig J Pharm Sci. 16(1):41–48.
Ola ARB, Debbab A, Aly AH, Mandi A, Zerfass I, Hamacher A, Kassack MU, Brötz-Oesterhelt H, Kurtan T, Proksch P. 2014. Absolute configuration and antibiotic activity of neosartorin from the endophytic fungus Aspergillus fumigatiaffinis. Tetrahedron Lett. 55(5):1020–1023.
Padhi S, Das D, Panja S, Tayung K. 2017. Molecular characterization and antimicrobial activity of an endolichenic fungus, Aspergillus sp. isolated from Parmelia caperata of Similipal Biosphere Reserve, India. Interdiscip Sci Comput Life Sci. 9(2):237–246.
Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad JC, Meijer M, Noonim P, Mahakarnchanakul W, Samson RA. 2007. Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol. 59:53–66.
Peterson SW. 2008. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 100(2):205–226.
Phainuphong P, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Saithong S, Phongpaichit S, Preedanon S, Sakayaroj J. 2017. γ- Butenolide and furanone derivatives from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Phytochemistry. 137:165–173.
Philpot FJ. 1943. A penicillin-like substance from Aspergillus giganteus Wehm. Nature. 152:725.
Pinheiro EA, Carvalho JM, Dos Santos DC, FeitosaAde O, Marinho PS, Guilhon GM, de Souza AD, Da Silva FM, Marinho AM. 2013. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat Prod Res. 27(18):1633–1638.
Prabavathy D, Nachiyar CV. 2012. Study on the antimicrobial activity of Aspergillus sp. isolated from Justicia adathoda. Indian J Sci Technol. 5(9):3317–3320.
Qiao M, Ji N, Liu X, Li K, Zhu Q, Xue Q. 2010. Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg Med Chem Lett. 20(19):5677–5680.
Rani R, Sharma D, Chaturvedi M, Yadav JP. 2017. Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clin Microbiol. 6(3):280.
Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ. 2015. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med. 15:220.
Ratnaweera PB, Williams DE, de Silva ED, Andersen RJ. 2016. Antibacterial metabolites from the Sri Lankan demosponge-derived fungus, Aspergillus flavipes. Curr Sci. 111(9):1473–1479.
Ruma K, Sunil K, Prakash HS. 2013. Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from Garcinia species. Int J Pharm Pharm Sci. 5(Suppl.3):889–897.
Sadrati N, Daoud H, Zerroug A, Dahamna S, Bouharati S. 2013. Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum). J Plant Prot Res. 53(2):128–136.
Saranraj P, Stella D. 2013. Fungal amylase—a review. Int J Microbiol Res. 4(2):203–211.
Silva EMS, Da Silva IR, Ogusku MM, Carvalho CM, Maki CS, Rudi Procópio REL. 2018. Metabolites from endophytic Aspergillus fumigatus and their in vitro effect against the causal agent of tuberculosis. Acta Amaz. 48(1):63–69.
Soltys MA. 1944. Antibiotic action of Aspergillus fumigatus against Mycobacterium tuberculosis. Nature. 154:550–551.
Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX. 2004. Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett. 241(1):67–72.
Soothill JS, Ward R, Girling AJ. 1992. The IC50: an exactly defined measure of antibiotic sensitivity. J Antimicrob Chemother. 29(2):137–139.
Sugie Y, Hirai H, Inagaki T, Ishiguro M, Kim YJ, Kojima Y, Sakakibara T, Sakemi S, Sugiura A, Suzuki Y, et al. 2001. A new antibiotic CJ-17,665 from Aspergillus ochraceus. J Antibiot. 54(11):911–916.
Synytsya A, Monkai J, Bleha R, Macurkova A, Ruml T, Ahn J, Chukeatirote E. 2017. Antimicrobial activity of crude extracts prepared from fungal mycelia. Asian Pac J Trop Biomed. 7(3):257–261.
Thorati M, Mishra JK. 2017. Antibacterial activity of crude extract from Aspergillus niger isolated from the stilt roots of Rhizophora apiculata along South Andaman coast, India. J Pharmacogn Phytochem. 6(5):1635–1638.
Tian YQ, Lin XP, Wang Z, Zhou XF, Qin XC, Kaliyaperumal K, Zhang TY, Tu ZC, Liu Y. 2015. Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Molecules. 21(1):E34.
Valgas C, de Souza SM, Smânia EFA, Zhou XF, Qin XC, Kaliyaperumal K, Zhang TY, Tu ZC, Liu Y. 2007. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 38(2):369–380.
Wang W, Liao Y, Tang C, Huang X, Luo Z, Chen J, Cai P. 2017. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar Drugs. 15(11):348.
Wang Y, Xue Y, Liu C. 2015. A brief review of bioactive metabolites derived from deep-sea fungi. Mar Drugs. 13(8):4594–4616.
Wiesner BP. 1942. Bactericidal effect of Aspergillus clacatus. Nature. 149:356–357.
Wilkins WH, Harris GCM. 1942. Investigation into the production of bacteriostatic substances by fungi. I. Preliminary examination of 100 fungal species. Br J Exp Pathol. 23(4):166–169.
Wilkins WH, Harris GCM. 1945. Investigation into the production of bacteriostatic substances by fungi: V. Preliminary examination of the third 100 fungi with special reference to strain variation among species of Aspergillus. Trans Brit Mycol Soc. 27(3–4):113–118.
Wilson BJ. 1966. Toxins other than aflatoxins produced by Aspergillus flavus. Bacteriol Rev. 30(2):478–484.
Wo G, Jahnsen S, Lorck H, Roholt K, Tybring L. 1962. Fusidic acid, a new antibiotic. Nature. 193:987.
Xiao J, Zhang Q, Gao YQ, Shi XW, Gao JM. 2014. Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. Nat Prod Res. 28(17):1388–1392.
Xu W, Li G, Huang X, Luo Z. 2015. Fungal diversity study in the deep sea sediments of three oceans by culture-dependent approach. J Appl Oceanogr. 34:103–110. (In Chinese).
Yadav RP, Agarwal P, Upadhyay SN. 2000. Microbial lipases: tool for drug discovery. J Sci Ind Res. 59:977–987.
Yahaya S, Idris B, Yusuf I, Rabiu MK. 2017. Screening and identification of antibacterial agents produced by Aspergillus species from the soil of Bayero University Kano. Bayero J Pure Appl Sci. 10(1):498–502.
Yang SQ, Li XM, Xu GM, Li X, An CY, Wang BG. 2018. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy. J Antibiot. 71(9):778–784.
Zhang H, Liu R, Zhou F, Wang R, Liu X, Zhang H. 2014. Antimicrobial metabolites from the endophytic fungus Aspergillus sp. of Eucommia ulmoides. Chem Nat Compd. 50(3):526–528.
Zhang W, Wei W, Shi J, Chen C, Zhao G, Jiao R, Tan R. 2015. Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity. Bioorg Med Chem Lett. 25(13):2698–2701.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.