AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Three-dimensional cellular aggregates formed by Beauveria pseudobassiana in liquid culture with potential for use as a biocontrol agent of the African black beetle (Heteronychus arator)

Laura F. Villamizara,( )Gloria BarrerabSean D.G. MarshallaMarina RichenaaDuane HarlandaTrevor A. Jacksona
Lincoln Research Centre, AgResearch Ltd, Christchurch, New Zealand
Control Biológico De Plagas Agrícolas, Colombian Corporation for Agricultural Research, Vía Mosquera, Colombia

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Show Author Information

Abstract

Beauveria pseudobassiana formed three-dimensional aggregates of cells (CAs) in liquid culture. CAs were formed mainly by blastospores and conidia, distinct from microsclerotia formed through adhesion of hyphae. The formation, germination and sporulation of CAs were studied, as well as the pathogenicity of conidia produced from them against adults of black beetle. After 4 days of culture, CAs were formed, becoming compact and melanised after 10 days of incubation. Electron microscopy showed three-dimensional CAs averaging 431.65 µm in length with irregular shapes and rough surfaces, where cells were trapped within an extracellular matrix. CAs germinated after 2 days of incubation on agar-plates producing hyphae and forming phialides and conidia after 4 days. Produced conidia caused 45% mortality of black beetle adults. CAs germination and sporulation on soil were directly correlated with soil moisture, reaching 80% and 100% germination on the surface of soil with 17% and 30% moisture, respectively. CAs maintained 100% germination after 2 years of storage under refrigeration. These CAs could have a similar function as microsclerotia in nature, acting as resistant structures able to protect internal cells and their ability to sporulate producing infective conidia, suggesting their potential to be used as bioinsecticides to control soil-dwelling insects.

References

 

Allocati N, Masulli M, Di Ilio C, De Laurenzi V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6:e1609. doi:10.1038/cddis.2014.570.

 

Beauvais A, Loussert C, Prevost MC, Verstrepen K, Latgé JP. 2009. Characterization of a biofilm‐like extracellular matrix in FLO1‐expressing Saccharomyces cerevisiae cells. FEMS Yeast Res. 9:411–419. doi:10.1111/j.1567-1364.2009.00482.x.

 

Boucias DG, Pendland JC, Latge JP. 1988. Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl Environ Microbiol. 54:1795–1805. doi:10.1128/AEM.54.7.1795-1805.1988.

 

Cavalheiro M, Teixeira MC. 2018. Candida biofilms: threats, challenges, and promising strategies. Front Med. 5:28. doi:10.3389/fmed.2018.00028.

 

Chaffin WL. 2008. Candida albicans cell wall proteins. Microbiol Mol Biol Rev. 72:495–544. doi:10.1128/MMBR.00032-07.

 

Cho EM, Liu L, Farmerie W, Keyhani NO. 2006. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Ⅰ. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology. 152:2843–2854. doi:10.1099/mic.0.28844-0.

 

Chong-Rodríguez MJ, Maldonado-Blanco MG, Hernández-Escareño JJ, Galán-Wong LJ, Sandoval-Coronado CF. 2011. Study of Beauveria bassiana growth, blastospore yield, desiccation-tolerance, viability and toxic activity using different liquid media. Afr J Biotechnol. 10:5736–5742.

 

Di Bonaventura G, Pompilio A, Picciani C, Lezzi M, D’Antonio D, Piccolomini R. 2006. Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother. 50:3269–3276. doi:10.1128/AAC.00556-06.

 

Donlan RM. 2001. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 33:1387–1392. doi:10.1086/322972.

 

Douglas HW, Collins AE, Parkinson D. 1959. Electric charge and other surface properties of some fungal spores. Biochim Biophys Acta. 33:535–538. doi:10.1016/0006-3002(59)90145-3.

 

Eisenman HC, Casadevall A. 2012. Synthesis and assembly of fungal melanin. Appl Microbiol Biot. 93:931–940. doi:10.1007/s00253-011-3777-2.

 

Fanning S, Mitchell AP. 2012. Fungal biofilms. PLoS Pathog. 8(4):e1002585. doi:10.1371/journal.ppat.1002585.

 

Ferguson CM, Barratt BI, Bell N, Goldson SL, Hardwick S, Jackson T, Phillips C, Popay A, Rennie G, Sinclair S, et al. 2019. Quantifying the economic cost of invertebrate pests to New Zealand’s pastoral industry. New Zeal J Agr Res. 62:255–315. doi:10.1080/00288233.2018.1478860.

 

Griffiths D. 1970. The fine structure of developing microsclerotia of Verticillium dahliae Kleb. Arch Microbiol. 74:207–212.

 

Grijalba EP, Espinel C, Cuartas P, Chaparro M, Villamizar L. 2018. Metarhizium rileyi biopesticide to control Spodoptera frugiperda: stability and insecticidal activity under glasshouse conditions. Fungal Biol. 122:1069–1076. doi:10.1016/j.funbio.2018.08.010.

 

Holder DJ, Keyhani NO. 2005. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol. 71:5260–5266. doi:10.1128/AEM.71.9.5260-5266.2005.

 

Huarte‐Bonnet C, Paixão FR, Mascarin GM, Santana M, ÉK F, Pedrini N. 2019. The entomopathogenic fungus Beauveria bassiana produces microsclerotia‐like pellets mediated by oxidative stress and peroxisome biogenesis. Environ Microbiol Rep. doi:10.1111/1758-2229.12742

 

Jackson MA, Jaronski ST. 2009. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res. 113:842–850. doi:10.1016/j.mycres.2009.03.004.

 

Jaronski ST, Jackson MA. 2008. Efficacy of Metarhizium anisopliae microsclerotia granules. Biocontrol Sci Tech. 18:849–863. doi:10.1080/09583150802381144.

 

Jaronski ST, Jackson MA. 2009. Further progress with Metarhizium microsclerotial production. IOBC/WPRS Bulletin. 45:275–278.

 
Jaronski ST, Jackson MA. 2012. Mass production of entomopathogenic Hypocreales. In: Lacey L, editor. Manual of Techniques in Invertebrate Pathology. 2nd ed. London (UK): Academic Press; p. 255–284.
 
Jaronski ST, Mascarin GM. 2016. Mass production of fungal entomopathogens. In: Lacey LA, editor. Microbial control of insect and mite pests: from theory to practice. First ed. Elsevier, Amsterdam, Academic Press; p. 141–155.
 

Kernien JF, Snarr BD, Sheppard DC, Nett JE. 2018. The interface between fungal biofilms and innate immunity. Front Immunol. 8:1968. doi:10.3389/fimmu.2017.01968.

 

Kobori NN, Mascarin GM, Jackson MA, Schisler DA. 2015. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biol. 119:179–190. doi:10.1016/j.funbio.2014.12.005.

 

Kumar R, Saraswat D, Tati S, Edgerton M. 2015. Novel aggregation properties of Candida albicans secreted aspartyl proteinase sapVI mediate virulence in oral candidiasis. Infect Immun. 83:2614–2626. doi:10.1128/IAI.00282-15.

 

Lagree K, Desai JV, Finkel JS, Lanni F. 2018. Microscopy of fungal biofilms. Curr Opin Microbiol. 43:100–107. doi:10.1016/j.mib.2017.12.008.

 

Lohse R, Jakobs-Schönwandt D, Patel AV. 2014. Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor. AMB Express. 4:47. doi:10.1186/s13568-014-0047-6.

 

Mansfield S, Gerard PJ, Hurst MRH, Townsend RJ, Wilson DJ, van Koten C. 2016. Dispersal of the invasive pasture pest Heteronychus arator into areas of low population density: effects of sex and season, and implications for pest management. Front Plant Sci. doi:10.3389/fpls.2016.01278

 
Mitchell KF, Zarnowski R, Andes DR. 2016. The extracellular matrix of fungal biofilms. In: Imbert C, editor. Fungal biofilms and related infections. Advances in experimental medicine and biology, Vol. 931. New York: Springer Nature; p. 21–35.
 
Nagy E. 2002. Three-phase oxygen absorption and its effect on fermentation. In: Dutta NN, editor. History and trends in bioprocessing and biotransformation. Heidelberg: Springer; p. 51–80.
 

Nicholson RL, Moraes WB. 1980. Survival of Colletotrichum graminicola: importance of the spore matrix. Phytopathology. 70:255–261. doi:10.1094/Phyto-70-255.

 

Noor R. 2015. Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress. Springerplus. 4:599. doi:10.1186/s40064-015-1415-7.

 

Nosanchuk JD, Casadevall A. 2003. The contribution of melanin to microbial pathogenesis. Cellular Microbiology. 5(4):203–223. doi:10.1046/j.1462-5814.2003.00268.x.

 

Peiqian L, Xiaoming P, Huifang S, Jingxin Z, Ning H, Birun L. 2014. Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress. FEMS Microbiol Lett. 350:138–145. doi:10.1111/1574-6968.12310.

 

Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. 2009. Our current understanding of fungal biofilms. Crit Rev Microbiol. 35:340–355. doi:10.3109/10408410903241436.

 
Ravensberg WJ. 2011. A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods.Vol. 10, progress in biological control. Dordrecht: Springer Science + Business Media B.V.
 

Reynolds ES. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 17:208. doi:10.1083/jcb.17.1.208.

 

Schisler DA, Jackson MA. 1996. Germination of soil-incorporated microsclerotia of Colletotrichum truncatum and colonization of seedlings of the weed Sesbania exaltata. Can J Microbiol. 42:1032–1038. doi:10.1139/m96-132.

 

Shearer JF, Jackson MA. 2006. Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of Hydrilla. Biol Control. 38:298–306. doi:10.1016/j.biocontrol.2006.04.012.

 

Sheppard DC, Howell PL. 2016. Biofilm exopolysaccharides of pathogenic fungi: lessons from bacteria. J Biol Chem. 291:12529–12537. doi:10.1074/jbc.R116.720995.

 

Soesanto L, Termorshuizen AJ. 2001. Effect of Temperature on the Formation of Microsclerotia of Verticillium dahliae. J Phytopathol. 149:685–691. doi:10.1046/j.1439-0434.2001.00697.x.

 

Song Z. 2018. Fungal microsclerotia development: essential prerequisites, influencing factors, and molecular mechanism. Appl Microbiol Biotechnol. 102:9873–9880. doi:10.1007/s00253-018-9400-z.

 

Song Z, Lin Y, Du F, Yin Y, Wang Z. 2017. Statistical optimisation of process variables and large-scale production of Metarhizium rileyi (Ascomycetes: hypocreales) microsclerotia in submerged fermentation. Mycology. 8:39–47. doi:10.1080/21501203.2017.1279688.

 

Song Z, Shen L, Zhong Q, Yin Y, Wang Z. 2016. Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as bionematicide. Nematology. 18:719–726. doi:10.1163/15685411-00002987.

 

Song ZY, Yin YP, Jiang SS, Liu JJ, Wang ZK. 2014. Optimization of culture medium for microsclerotia production by Nomuraea rileyi and analysis of their viability for use as a mycoinsecticide. BioControl. 59:597–605. doi:10.1007/s10526-014-9589-4.

 

Varo A, Raya‐Ortega M, Trapero A. 2016. Enhanced production of microsclerotia in recalcitrant Verticillium dahliae isolates and its use for inoculation of olive plants. J Appl Microbiol. 121:473–484. doi:10.1111/jam.13167.

 

Veiter L, Rajamanickam V, Herwig C. 2018. The filamentous fungal pellet—relationship between morphology and productivity. Appl Microbiol Biotechnol. 102:2997–3006. doi:10.1007/s00253-018-8818-7.

 

Villamizar LF, Nelson TL, Jones SA, Jackson TA, Hurst MR, Marshall SD. 2018. Formation of microsclerotia in three species of eauveria and storage stability of a prototype granular formulation. Biocontrol Sci Tech. 28:1097–1113. doi:10.1080/09583157.2018.1514584.

 

Wang HH, Wang JL, Li YP, Liu X, Wen JZ, Lei ZR. 2011. Liquid culturing of microsclerotia of Beauveria bassiana, an entomopathogenic fungus to control western flower thrip, Frankliniella occidentalis. Chin J Appl Entomol. 48:588–595.

 

Weisberg SH, Turian G. 1974. The membraneous type of lomasome (membranosome) in the hyphae of Aspergillus nidulans. Protoplasma. 79::377–389. doi:10.1007/BF01276612.

 

Wilsenach R, Kessel M. 1965. The role of lomasomes in wall formation in Penicillium vermiculatum. Microbiology. 40::401–404.

 
Zar J 1999. Biostatistical analysis, cuarta Ed. ed. New Jersey.
 

Zhang J, Zhang J. 2016. The filamentous fungal pellet and forces driving its formation. Crit Rev Biotechnol. 36:1066–1077. doi:10.3109/07388551.2015.1084262.

Mycology
Pages 105-118
Cite this article:
Villamizar LF, Barrera G, Marshall SD, et al. Three-dimensional cellular aggregates formed by Beauveria pseudobassiana in liquid culture with potential for use as a biocontrol agent of the African black beetle (Heteronychus arator). Mycology, 2021, 12(2): 105-118. https://doi.org/10.1080/21501203.2020.1754953

205

Views

3

Crossref

2

Web of Science

3

Scopus

Altmetrics

Received: 14 January 2020
Accepted: 06 April 2020
Published: 27 April 2020
© 2020 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return