AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Calcium signaling is involved in diverse cellular processes in fungi

Avishek Roy,*Ajeet Kumar,*Darshana Baruah,*Ranjan Tamuli( )
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India

*These authors contributed equally to this article.

Show Author Information

Abstract

Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.

References

 

Andaluz E, Coque JR, Cueva R, Larriba G. 2001. Sequencing of a 4.3 kbp region of chromosome 2 of Candida albicans reveals the presence of homologues of SHE9 from Saccharomyces cerevisiae and of bacterial phosphatidylinositol‐phospholipase C. Yeast. 18(8):711–721. doi:10.1002/yea.716.

 

Bahn Y-S, Jung K-W. 2013. Stress signaling pathways for the pathogenicity of Cryptococcus. Eukaryot Cell. 12(12):1564–1577. doi:10.1128/EC.00218-13.

 

Barman A, Gohain D, Bora U, Tamuli R. 2018. Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res. 209:55–69. doi:10.1016/j.micres.2017.12.012

 

Barman A, Tamuli R. 2015. Multiple cellular roles of Neurospora crassa plc-1, splA2, and cpe-1 in regulation of cytosolic free calcium, carotenoid accumulation, stress responses, and acquisition of thermotolerance. J Microbiol. 53(4):226–235. doi:10.1007/s12275-015-4465-1.

 

Barman A, Tamuli R. 2017. The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet. 63(5):861–875. doi:10.1007/s00294-017-0682-y.

 

Bates S, Maccallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJP, Odds FC, Gow NAR. 2005. Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+ - ATPase, is required for glycosylation and virulence. J Biol Chem. 280(24):23408–23415. doi:10.1074/jbc.M502162200.

 

Bennett DE, McCreary CE, Coleman DC. 1998. Genetic characterization of a phospholipase C gene from Candida albicans: presence of homologous sequences in Candida species other than Candida albicans. Microbiol. 144(1):55–72. doi:10.1099/00221287-144-1-55.

 

Berridge MJ. 1993. Inositol trisphosphate and calcium signalling. Nature. 361(6410):315. doi:10.1038/361315a0.

 

Berridge MJ. 1998. Neuronal calcium signaling. Neuron. 21(1):13–26. doi:10.1016/S0896-6273(00)80510-3.

 

Berridge MJ, Bootman MD, Lipp P. 1998. Calcium-a life and death signal. Nature. 395(6703):645–648. doi:10.1038/27094.

 

Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 4(7):517. doi:10.1038/nrm1155.

 

Birch M, Robson G, Law D, Denning DW. 1996. Evidence of multiple extracellular phospholipase activities of Aspergillus fumigatus. Infect Immun. 64(3):751–755. doi:10.1128/IAI.64.3.751-755.1996.

 

Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, et al. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev. 68(1):1–108.

 

Bowman BJ, Abreu S, Margolles-clark E, Draskovic M, Bowman EJ. 2011. Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3, and cax, in maintaining intracellular calcium levels in Neurospora crassa. Eukaryot Cell. 10(5):654–661. doi:10.1128/EC.00239-10.

 
Brini M, Calì T, Ottolini D, Carafoli E. 2013a. Intracellular calcium homeostasis and signaling. In: Banci L, editor. Met Ions Life Sci. Vol. 12. Dordrecht: Springer; p. 119–168.
 

Brini M, Calì T, Ottolini D, Carafoli E. 2013b. The plasma membrane calcium pump in health and disease. Febs J. 280(21):5385–5397. doi:10.1111/febs.12193.

 

Burgoyne RD. 2007. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci. 8(3):182. doi:10.1038/nrn2093.

 

Carafoli E. 2002. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci. 99(3):1115–1122. doi:10.1073/pnas.032427999.

 

Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A. 2007. Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium. 42(4–5):345–350. doi:10.1016/j.ceca.2007.05.001.

 

Chae SW, Kim J-M, Yun YP, Lee WK, Kim J-S, Kim Y-H, Lee K-S, Ko YJ, Lee K-H, Rha HK. 2007. Identification and analysis of the promoter region of the human PLC-δ4 gene. Mol Biol Rep. 34(2):69–77. doi:10.1007/s11033-006-9014-x.

 

Chang P-K. 2008. Aspergillus parasiticus crzA, which encodes calcineurin response zinc-finger protein, is required for aflatoxin production under calcium stress. Int J Mol Sci. 9(10):2027–2043. doi:10.3390/ijms9102027.

 

Chin D, Means AR. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10(8):322–328. doi:10.1016/S0962-8924(00)01800-6.

 

Choi J, Kim Y, Kim S, Park J, Lee Y-H. 2009b. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol. 46(3):243–254. doi:10.1016/j.fgb.2008.11.010.

 

Choi J-H, Kim Y-S, Lee Y-H. 2009a. Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J Microbiol Biotechnol. 19(1):11–16.

 

Clapham DE. 2007. Calcium signaling. Cell. 131(6):1047–1058. doi:10.1016/j.cell.2007.11.028.

 

Cornelius G, Nakashima H. 1987. Vacuoles play a decisive role in calcium homeostasis Neurospora crassa . Microbio. 133(8):2341–2347.

 

Cortés JCG, Katoh-Fukui R, Moto K, Ribas JC, Ishiguro J. 2004. Schizosaccharomyces pombe Pmr1p is essential for cell wall integrity and is required for polarized cell growth and cytokinesis. Eukaryot Cell. 3(5):1124–1135. doi:10.1128/EC.3.5.1124-1135.2004.

 

Cramer RA, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ. 2008. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot Cell. 7(7):1085–1097. doi:10.1128/EC.00086-08.

 

Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VFJ, Movva NR, Perfect JR, Cardenas ME, Heitman J. 2000. Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemother. 44(1):143–149. doi:10.1128/AAC.44.1.143-149.2000.

 

Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. Embo J. 21(4):546–559. doi:10.1093/emboj/21.4.546.

 

Cunningham KW, Fink GR. 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol. 124(3):351–363. doi:10.1083/jcb.124.3.351.

 

Cyert MS, Kunisawa R, Kaim D, Thorner J. 1991. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci. 88(16):7376–7380. doi:10.1073/pnas.88.16.7376.

 

Davis TN, Urdea MS, Masiarz FR, Thorner J. 1986. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 47(3):423–431. doi:10.1016/0092-8674(86)90599-4.

 

Davis TR, Zucchi PC, Kumamoto CA. 2013. Calmodulin binding to Dfi1p promotes invasiveness of Candida albicans. PLoS One. 8(10):e76239. doi:10.1371/journal.pone.0076239.

 

de Castro PA, Chiaratto J, Winkelströter LK, Bom VLP, Ramalho LNZ, Goldman MHS, Brown NA, Goldman GH. 2014. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence. PLoS One. 9(8):e103957. doi:10.1371/journal.pone.0103957.

 

de Castro PA, Colabardini AC, Manfiolli AO, Chiaratto J, Silva LP, Mattos EC, Palmisano G, Almeida F, Persinoti GF, Ries LNA. 2019. Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance. PLoS Genet. 15(12):12. doi:10.1371/journal.pgen.1008551.

 

Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 434(7036):980. doi:10.1038/nature03449.

 

Deka R, Kumar R, Tamuli R. 2011. Neurospora crassa homologue of neuronal calcium sensor-1 has a role in growth, calcium stress tolerance, and ultraviolet survival. Genetica. 139(7):885–894. doi:10.1007/s10709-011-9592-y.

 

Deka R, Tamuli R. 2013. Neurospora crassa ncs-1, mid-1 and nca-2 double-mutant phenotypes suggest diverse interaction among three Ca2+-regulating gene products. J Genet. 92(3):559–563. doi:10.1007/s12041-013-0270-y.

 

Dinamarco TM, Freitas FZ, Almeida RS, Brown NA, Dos Reis TF, Ramalho LNZ, Savoldi M, Goldman MHS, Bertolini MC, Goldman GH. 2012. Functional characterization of an Aspergillus fumigatus calcium transporter (PmcA) that is essential for fungal infection. PLoS One. 7(5):e37591. doi:10.1371/journal.pone.0037591.

 

Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS. 2014. The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 genes, genomes. Genet. 4(3):389–398.

 

Fan Y, Ortiz-Urquiza A, Kudia RA, Keyhani NO. 2012. A fungal homologue of neuronal calcium sensor-1, Bbcsa1, regulates extracellular acidification and contributes to virulence in the entomopathogenic fungus Beauveria bassiana. Microbiol. 158(7):1843–1851. doi:10.1099/mic.0.058867-0.

 

Fankhauser H, Schweingruber AM, Edenharter E, Schweingruber ME. 1995. Growth of a mutant defective in a putative phosphoinositide-specific phospholipase C of Schizosaccharomyces pombe is restored by low concentrations of phosphate and inositol. Curr Genet. 28(2):199–203. doi:10.1007/BF00315789.

 

Farcasanu IC, Hirata D, Tsuchiya E, Nishiyama F, Miyakawa T. 1995. Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cells. Eur J Biochem. 232(3):712–717. doi:10.1111/j.1432-1033.1995.tb20865.x.

 

Flick JS, Thorner J. 1993. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol. 13(9):5861–5876. doi:10.1128/MCB.13.9.5861.

 

Fortwendel JR, Juvvadi PR, Perfect BZ, Rogg LE, Perfect JR, Steinbach WJ. 2010. Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob Agents Chemother. 54(4):1555–1563. doi:10.1128/AAC.00854-09.

 

Fox DS, Cruz MC, Sia RAL, Ke H, Cox GM, Cardenas ME, Heitman J. 2001. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12–FK506 in Cryptococcus neoformans. Mol Microbiol. 39(4):835–849. doi:10.1046/j.1365-2958.2001.02295.x.

 

Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J, Smirnov S, Purcell S, et al. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 422(6934):859–868. doi:10.1038/nature01554

 

Galimov E. 2009. Concept of sustained ordering and an ATP-related mechanism of life’s origin. Int J Mol Sci. 10(5):2019–2030. doi:10.3390/ijms10052019.

 

Gavric O, Dos Santos DB, Griffiths A. 2007. Mutation and divergence of the phospholipase C gene in Neurospora crassa. Fungal Genet Biol. 44(4):242–249. doi:10.1016/j.fgb.2006.09.010.

 

Gohain D, Tamuli R. 2019. Calcineurin responsive zinc‐finger‐1 binds to a unique promoter sequence to upregulate neuronal calcium sensor‐1, whose interaction with MID‐1 increases tolerance to calcium stress in Neurospora crassa. Mol Microbiol. 111(6):1510–1528. doi:10.1111/mmi.14234.

 

Halling DB, Liebeskind BJ, Hall AW, Aldrich RW. 2016. Conserved properties of individual Ca2+-binding sites in calmodulin. Proc Natl Acad Sci. 113(9):E1216–E1225. doi:10.1073/pnas.1600385113.

 

Hamasaki-Katagiri N, Molchanova T, Takeda K, Ames JB. 2004. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance. J Biol Chem. 279(13):12744–12754. doi:10.1074/jbc.M311895200.

 

Hamilton SL. 2005. Ryanodine receptors. Cell Calcium. 38(3–4):253–260. doi:10.1016/j.ceca.2005.06.037.

 

Hendricks KB, Wang BQ, Schnieders EA, Thorner J. 1999. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol. 1(4):234–241. doi:10.1038/12058.

 

Hirayama S, Sugiura R, Lu Y, Maeda T, Kawagishi K, Yokoyama M, Tohda H, Giga-Hama Y, Shuntoh H, Kuno T. 2003. Zinc finger protein prz1 regulates Ca2+ but not Cl− homeostasis in fission yeast. Identification of distinct branches of calcineurin signaling pathway in fission yeast. J Biol Chem. 278(20):18078–18084. doi:10.1074/jbc.M212900200.

 

Hong Y, Zhao J, Guo L, Kim S-C, Deng X, Wang G, Zhang G, Li M, Wang X. 2016. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res. 62:55–74. doi:10.1016/j.plipres.2016.01.002.

 

Itadani A, Nakamura T, Hirata A, Shimoda C. 2010. Schizosaccharomyces pombe calmodulin, Cam1, plays a crucial role in sporulation by recruiting and stabilizing the spindle pole body components responsible for assembly of the forespore membrane. Eukaryot Cell. 9(12):1925–1935. doi:10.1128/EC.00022-10.

 

Jaiswal JK. 2001. Calcium—how and why? J Biosci. 26(3):357–363. doi:10.1007/BF02703745.

 

Jia W, Zhang H, Li C, Li G, Liu X, Wei J. 2016. The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms. BMC Microbiol. 16(1):113. doi:10.1186/s12866-016-0728-1.

 

Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT. 2004. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci. 101(19):7329–7334. doi:10.1073/pnas.0401648101.

 

Juvvadi PR, Gehrke C, Fortwendel JR, Lamoth F, Soderblom EJ, Cook EC, Hast MA, Asfaw YG, Moseley MA, Creamer TP. 2013. Phosphorylation of calcineurin at a novel serine-proline rich region orchestrates hyphal growth and virulence in Aspergillus fumigatus. PLoS Pathog. 9(8):e1003564. doi:10.1371/journal.ppat.1003564.

 

Juvvadi PR, Lamoth F, Steinbach WJ. 2014. Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev. 28(2–3):56–69. doi:10.1016/j.fbr.2014.02.004.

 

Juvvadi PR, Muñoz A, Lamoth F, Soderblom EJ, Moseley MA, Read ND, Steinbach WJ. 2015. Calcium-mediated induction of paradoxical growth following caspofungin treatment is associated with calcineurin activation and phosphorylation in Aspergillus fumigatus. Antimicrob Agents Chemother. 59(8):4946–4955. doi:10.1128/AAC.00263-15.

 

Kellermayer R, Aiello DP, Miseta A, Bedwell DM. 2003. Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1∆ mutant of S. cerevisiae. J Cell Sci. 15;116(8):1637–1646. doi:10.1242/jcs.00372.

 

Klee CB, Crouch TH, Krinks MH. 1979. Calcineurin: A calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci U S A. 76(12):6270–6273. doi:10.1073/pnas.76.12.6270.

 

Klee CB, Krinks MH. 1978. Purification of cyclic 3ʹ, 5ʹ-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to sepharose. Biochemistry. 17(1):120–126. doi:10.1021/bi00594a017.

 

Klee CB, Ren H, Wang X. 1998. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 273(22):13367–13370. doi:10.1074/jbc.273.22.13367.

 

Kmetzsch L, Staats CC, Rodrigues ML, Schrank A, Vainstein MH. 2011. Calcium signaling components in the human pathogen Cryptococcus neoformans: Cryptococcus neoformans. Commun Integr Biol. 4(2):186–187. doi:10.4161/cib.4.2.14271.

 

Knechtle P, Goyard S, Brachat S, Ibrahim-Granet O, D’Enfert C. 2005. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host–pathogen interaction. Res Microbiol. 156(7):822–829. doi:10.1016/j.resmic.2005.04.007.

 

Köhler GA, Brenot A, Haas-Stapleton E, Agabian N, Deva R, Nigam S. 2006. Phospholipase A2 and phospholipase B activities in fungi. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids. 1761(11):1391–1399.

 

Kothe GO, Free SJ. 1998. Calcineurin subunit B is required for normal vegetative growth in Neurospora crassa. Fungal Genet Biol. 23(3):248–258. doi:10.1006/fgbi.1998.1037.

 

Kraus PR, Nichols CB, Heitman J. 2005. Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot Cell. 4(6):1079–1087. doi:10.1128/EC.4.6.1079-1087.2005

 

Kumar A, Roy A, Deshmukh MV, Tamuli R. 2019. Dominant mutants of the calcineurin catalytic subunit (CNA-1) showed developmental defects, increased sensitivity to stress conditions, and CNA-1 interacts with CaM and CRZ-1 in Neurospora crassa. Arch Microbiol. 202(4):921–934. doi:10.1007/s00203-019-01768-z.

 

Kumar R, Tamuli R. 2014. Calcium/calmodulin-dependent kinases are involved in growth, thermotolerance, oxidative stress survival, and fertility in Neurospora crassa. Arch Microbiol. 196(4):295–305. doi:10.1007/s00203-014-0966-2.

 

Kunze D, Melzer I, Bennett D, Sanglard D, MacCallum D, Nörskau J, Coleman DC, Odds FC, Schäfer W, Hube B. 2005. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiol. 151(10):3381–3394. doi:10.1099/mic.0.28353-0.

 

Lamoth F, Juvvadi PR, Gehrke C, Steinbach WJ. 2013. vitro activity of calcineurin and heat shock protein 90 inhibitors against Aspergillus fumigatus azole-and echinocandin-resistant strains. Antimicrob Agents Chemother. 57(2):1035–1039. doi:10.1128/AAC.01857-12.

 

Lange M, Peiter E. 2020. Calcium transport proteins in fungi: the phylogenetic diversity of their relevance for growth, virulence, and stress resistance. Front Microbiol. 10:3100. doi:10.3389/fmicb.2019.03100.

 

Laxmi V, Tamuli R. 2015. The Neurospora crassa cmd, trm-9, and nca-2 genes play a role in growth, development, and survival in stress conditions. Gen Appl Biol. 6(7):1–8. doi:10.5376/gab.2015.06.0007.

 

Laxmi V, Tamuli R. 2017. The calmodulin gene in Neurospora crassa is required for normal vegetative growth, ultraviolet survival, and sexual development. Arch Microbiol. 199(4):531–542. doi:10.1007/s00203-016-1319-0.

 

Lee K-T, So Y-S, Yang D-H, Jung K-W, Choi J, Lee D-G, Kwon H, Jang J, Wang LL, Cha S. 2016. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun. 7(1):12766. doi:10.1038/ncomms12766.

 

Lee SC, Lee YH. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol Cells. 8(6):698–704.

 

Lev S, Desmarini D, Chayakulkeeree M, Sorrell TC, Djordjevic JT. 2012. The Crz1/Sp1 transcription factor of Cryptococcus neoformans is activated by calcineurin and regulates cell wall integrity. PLoS One. 7(12):e51403. doi:10.1371/journal.pone.0051403.

 

Lev S, Desmarini D, Li C, Chayakulkeeree M, Traven A, Sorrell TC, Djordjevic JT. 2013. Phospholipase C of Cryptococcus neoformans regulates homeostasis and virulence by providing inositol trisphosphate as a substrate for Arg1 kinase. Infect Immun. 81(4):1245–1255. doi:10.1128/IAI.01421-12.

 

Lew RR, Giblon RE, Lorenti MSH. 2015. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol. 82:158–167. doi:10.1016/j.fgb.2015.07.007.

 

Lewit-Bentley A, Réty S. 2000. EF-hand calcium-binding proteins. Curr Opin Struct Biol. 10(6):637–643. doi:10.1016/S0959-440X(00)00142-1.

 

Li F, Wang Z-L, Zhang L-B, Ying S-H, Feng M-G. 2015. The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence in Beauveria bassiana. Appl Microbiol Biotechnol. 99(2):827–840. doi:10.1007/s00253-014-6124-6.

 

Li H, Rao A, Hogan PG. 2011. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 21(2):91–103. doi:10.1016/j.tcb.2010.09.011.

 

Li Y, Zhang Y, Lu L. 2019. Calcium signaling pathway is involved in non-CYP51 azole resistance in Aspergillus fumigatus. Med Mycol. 57(Supplement_2):S233–S238. doi:10.1093/mmy/myy075.

 

Lim S-Y, Son Y-E, Lee D-H, Eom T-J, Kim M-J, Park H-S. 2019. Function of crzA in fungal development and aflatoxin production in Aspergillus flavus. Toxins (Basel). 11(10):567. doi:10.3390/toxins11100567.

 

Liu Z-M, Kolattukudy PE. 1999. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J Bacteriol. 181(11):3571–3577. doi:10.1128/JB.181.11.3571-3577.1999.

 

Luna-Tapia A, DeJarnette C, Sansevere E, Reitler P, Butts A, Hevener KE, Palmer GE. 2019. The vacuolar Ca2+ ATPase Pump Pmc1p Is required for Candida albicans pathogenesis. mSphere. 4(1):e00715–18. doi:10.1128/mSphere.00715-18.

 

Ma L-J, Van Der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in fusarium. Nature. 464(7287):367. doi:10.1038/nature08850.

 

Martin DC, Kim H, Mackin NA, Maldonado-Báez L, Evangelista CC, Beaudry VG, Dudgeon DD, Naiman DQ, Erdman SE, Cunningham KW. 2011. New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. J Biol Chem. 286(12):10744–10754. doi:10.1074/jbc.M110.177451.

 

Matheos DP, Kingsbury TJ, Ahsan US, Cunningham KW. 1997. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 11(24):3445–3458. doi:10.1101/gad.11.24.3445.

 
Mikoshiba K, Hattori M. 2000. IP3 receptor-operated calcium entry. Sci STKE. 2000(51):–pe1. doi:10.1126/stke.2000.51.pe1.
 

Moser MJ, Flory MR, Davis TN. 1997. Calmodulin localizes to the spindle pole body of Schizosaccharomyces pombe and performs an essential function in chromosome segregation. J Cell Sci. 110(15):1805–1812.

 

Mota Júnior AO, Malavazi I, Soriani FM, Heinekamp T, Jacobsen I, Brakhage AA, Savoldi M, Goldman MHS, da Silva Ferreira ME, Goldman GH. 2008. Molecular characterization of the Aspergillus fumigatus NCS-1 homologue, NcsA. Mol Genet Genomics. 280(6):483‐495. doi:10.1007/s00438-008-0381-y.

 

Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H. 2008. Systematic functional analysis of calcium‐signalling proteins in the genome of the rice‐blast fungus, Magnaporthe oryzae, using a high‐throughput RNA‐silencing system. Mol Microbiol. 68(6):1348–1365. doi:10.1111/j.1365-2958.2008.06242.x.

 

Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 438(7071):1151. doi:10.1038/nature04332.

 

Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. Embo J. 16(10):2576–2589. doi:10.1093/emboj/16.10.2576.

 

Okorokova-Facanha AL, Okorokov LA, Ekwall K. 2003. An inventory of the P-type ATPases in the fission yeast Schizosaccharomyces pombe. Curr Genet. 43(4):273–280. doi:10.1007/s00294-003-0395-2.

 

Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Østerås M, Schalk M, Clark A. 2010. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics. 11(1):723. doi:10.1186/1471-2164-11-723.

 

Paranjape V, Roy BG, Datta A. 1990. Involvement of calcium, calmodulin and protein phosphorylation in morphogenesis of Candida albicans. Microbiol. 136(11):2149–2154.

 

Pittman JK. 2011. Vacuolar Ca2+ uptake. Cell Calcium. 50(2):139–146. doi:10.1016/j.ceca.2011.01.004.

 

Plattner H, Verkhratsky A. 2013. Ca2+ signalling early in evolution–all but primitive. J Cell Sci. 126(10):2141–2150. doi:10.1242/jcs.127449.

 

Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht H, Koch KW, Schwemer J, Rivosecchi R, et al. 1993. Frequenin–a novel calcium-binding protein that modulates synaptic efficacy in the drosophila nervous system. Neuron. 11(1):15–28. doi:10.1016/0896-6273(93)90267-u.

 

Ponnamperuma C, Sagan C, Mariner R. 1963. Synthesis of adenosine triphosphate under possible primitive earth conditions. Nature. 199(4890):222–226. doi:10.1038/199222a0.

 

Prokisch H, Yarden O, Dieminger M, Tropschug M, Barthelmess IB. 1997. Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of the apical Ca2+ gradient. Mol Gen Genet MGG. 256(2):104–114. doi:10.1007/s004380050551.

 

Rho H, Jeon J, Lee Y. 2009. Phospholipase C‐mediated calcium signalling is required for fungal development and pathogenicity in Magnaporthe oryzae. Mol Plant Pathol. 10(3):337–346. doi:10.1111/j.1364-3703.2009.00536.x.

 

Richmond GS, Smith TK. 2011. Phospholipases A1. Int J Mol Sci. 12(1):588–612. doi:10.3390/ijms12010588.

 

Ries LNA, Rocha MC, de Castro PA, Silva-Rocha R, Silva RN, Freitas FZ, de Assis LJ, Bertolini MC, Malavazi I, Goldman GH. 2017. The Aspergillus fumigatus CrzA transcription factor activates chitin synthase gene expression during the caspofungin paradoxical effect. MBio. 8(3):e00705–17. doi:10.1128/mBio.00705-17.

 

Roy BG, Datta A. 1987. A calmodulin inhibitor blocks morphogenesis in Candida albicans. FEMS Microbiol Lett. 41(3):327–329. doi:10.1111/j.1574-6968.1987.tb02221.x.

 

Rusnak F, Mertz P. 2000. Calcineurin: form and function. Physiol Rev. 80(4):1483–1521. doi:10.1152/physrev.2000.80.4.1483.

 

Saitoh K, Arie T, Teraoka T, Yamaguchi I, Kamakura T. 2003. Targeted gene disruption of the neuronal calcium sensor 1 homologue in rice blast fungus, Magnaporthe grisea. Biosci Biotechnol Biochem. 67(3):651–653. doi:10.1271/bbb.67.651.

 

Sánchez-Gracia A, Romero-Pozuelo J, Ferrús A. 2010. Two frequenins in Drosophila: unveiling the evolutionary history of an unusual Neuronal Calcium Sensor (NCS) duplication. BMC Evol Biol. 10(1):54. doi:10.1186/1471-2148-10-54.

 

Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. 2003. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol. 48(4):959–976. doi:10.1046/j.1365-2958.2003.03495.x.

 

Santos M, de Larrinoa IF. 2005. Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr Genet. 48(2):88–100. doi:10.1007/s00294-005-0003-8.

 

Schumacher J, Viaud M, Simon A, Tudzynski B. 2008. The Gα subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co‐ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol. 67(5):1027–1050. doi:10.1111/j.1365-2958.2008.06105.x.

 

Selker EU, Cambareri EB, Jensen BC, Haack KR. 1987. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell. 51(5):741–752. doi:10.1016/0092-8674(87)90097-3.

 

Shemarova Ⅳ, Nesterov VP. 2005. Evolution of mechanisms of Ca2+-signaling: role of calcium ions in signal transduction in prokaryotes. J Evol Biochem Physiol. 41(1):12–19. doi:10.1007/s10893-005-0029-z.

 

Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. 2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5(7):e1000532. doi:10.1371/journal.ppat.1000532.

 

Song J, Liu X, Zhai P, Huang J, Lu L. 2016. A putative mitochondrial calcium uniporter in A. fumigatus contributes to mitochondrial Ca2+ homeostasis and stress responses. Fungal Genet Biol. 94:15–22. doi:10.1016/j.fgb.2016.07.001.

 

Soriani FM, Malavazi I, da Silva Ferreira ME, Savoldi M, Von Zeska Kress MR, de Souza Goldman MH, Loss O, Bignell E, Goldman GH. 2008. Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol. 67(6):1274–1291. doi:10.1111/j.1365-2958.2008.06122.x.

 

Stathopoulos AM, Cyert MS. 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11(24):3432–3444. doi:10.1101/gad.11.24.3432.

 

Steinbach WJ, Lamoth F, Juvvadi PR. 2015. Potential microbiological effects of higher dosing of echinocandins. Clin Infect Dis. 61(suppl_6):S669–S677. doi:10.1093/cid/civ725.

 

Su L, Ji D, Tao X, Yu L, Wu J, Xia Y. 2017. Recombinant expression, characterization, and application of a phospholipase B from Fusarium oxysporum. J Biotechnol. 242:92–100. doi:10.1016/j.jbiotec.2016.12.009.

 

Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR. 1995. Structure of the first C2 domain of synaptotagmin Ⅰ: a novel Ca2+/phospholipid-binding fold. Cell. 80(6):929–938. doi:10.1016/0092-8674(95)90296-1.

 

Sze H, Liang F, Hwang I, Curran AC, Harper JF. 2000. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Biol. 51(1):433–462. doi:10.1146/annurev.arplant.51.1.433.

 

Takeda T, Yamamoto M. 1987. Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe. Proc Natl Acad Sci. 84(11):3580–3584. doi:10.1073/pnas.84.11.3580.

 

Tamuli R, Kumar R, Deka R. 2011. Cellular roles of neuronal calcium sensor‐1 and calcium/calmodulin‐dependent kinases in fungi. J Basic Microbiol. 51(2):120–128. doi:10.1002/jobm.201000184.

 
Tamuli R, Kumar R, Srivastava DA, Deka R. 2013. Calcium Signalling. In: Kasbekar DP, McCluskey K, editors. Neurospora Geno Mol Biol. First ed. Norfolk: Caister Academic Press; p. 209–226.
 

Thewes S. 2014. Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryot Cell. 13(6):694–705. doi:10.1128/EC.00038-14.

 

Tisi R, Rigamonti M, Groppi S, Belotti F. 2016. Calcium homeostasis and signaling in fungi and their relevance for pathogenicity of yeasts and filamentous fungi. AIMS Mol Sci. 3(4):505–549. doi:10.3934/molsci.2016.4.505.

 

Toda T, Shimanuki M, Yanagida M. 1993. Two novel protein kinase C‐related genes of fission yeast are essential for cell viability and implicated in cell shape control. Embo J. 12(5):1987–1995. doi:10.1002/j.1460-2075.1993.tb05848.x.

 

Ton V-K, Rao R. 2004. Functional expression of heterologous proteins in yeast: insights into Ca2+ signaling and Ca2+--transporting ATPases. Am J Physiol Physiol. 287(3):C580–C589. doi:10.1152/ajpcell.00135.2004.

 

Tsai H-C, Chung K-R. 2014. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the citrus fungal pathogen Alternaria alternata. Microbiol. 160(7):1453–1465. doi:10.1099/mic.0.077818-0.

 

Verkhratsky A, Parpura V. 2014. Calcium signalling and calcium channels: evolution and general principles. Eur J Pharmacol. 739:1–3. doi:10.1016/j.ejphar.2013.11.013.

 

Wang JH, Desai R. 1976. A brain protein and its effect on the Ca2+-and protein modulator-activated cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 72(3):926–932. doi:10.1016/S0006-291X(76)80220-3.

 

Williams RJP. 2006. The evolution of calcium biochemistry. Biochim Biophys Acta (BBA)-Mol Cell Res. 1763(11):1139–1146. doi:10.1016/j.bbamcr.2006.08.042.

 

Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S. 2002. The genome sequence of Schizosaccharomyces pombe. Nature. 415(6874):871. doi:10.1038/nature724.

 

Xiao G, Ying S-H, Zheng P, Wang Z-L, Zhang S, Xie X-Q, Shang Y, Leger RJS, Zhao G-P, Wang C. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2(1):483. doi:10.1038/srep00483.

 

Yamamoto T, Takeuchi H, Kanematsu T, Allen V, Yagisawa H, Kikkawa U, Watanabe Y, Nakasima A, Katan M, Hirata M. 1999. Involvement of EF hand motifs in the Ca2+‐dependent binding of the pleckstrin homology domain to phosphoinositides. Eur J Biochem. 265(1):481–490. doi:10.1046/j.1432-1327.1999.00786.x.

 

York JD, Odom AR, Murphy R, Ives EB, Wente SR. 1999. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Sci. 285(5424):96–100. doi:10.1126/science.285.5424.96.

 

Yoshida T, Toda T, Yanagida M. 1994. A calcineurin-like gene ppb1+ in fission yeast: mutant defects in cytokinesis, cell polarity, mating and spindle pole body positioning. J Cell Sci. 107(7):1725–1735.

 

Zelter A, Bencina M, Bowman BJ, Yarden O, Read ND. 2004. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol. 41(9):827–841. doi:10.1016/j.fgb.2004.05.001.

 

Zeng W, Mak D-OD, Li Q, Shin DM, Foskett JK, Muallem S. 2003. A new mode of Ca2+ signaling by G protein-coupled receptors: gating of IP3 receptor Ca2+ release channels by Gβγ. Curr Biol. 13(10):872–876. doi:10.1016/S0960-9822(03)00330-0.

 

Zhang H, Zhao Q, Liu K, Zhang Z, Wang Y, Zheng X. 2009. MgCRZ1, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett. 293(2):160–169. doi:10.1111/j.1574-6968.2009.01524.x.

Mycology
Pages 10-24
Cite this article:
Roy A, Kumar A, Baruah D, et al. Calcium signaling is involved in diverse cellular processes in fungi. Mycology, 2021, 12(1): 10-24. https://doi.org/10.1080/21501203.2020.1785962

223

Views

31

Crossref

28

Web of Science

27

Scopus

Altmetrics

Received: 31 December 2019
Accepted: 07 June 2020
Published: 14 July 2020
© 2020 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return