AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Fungal diversity in deep-sea sediments from the Magellan seamounts as revealed by a metabarcoding approach targeting the ITS2 regions

Ye LuoaXu WeiaShuai YangaYuan-Hao GaoaZhu-Hua Luoa,b,c( )
Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, PR China
Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, PR China
Show Author Information

Abstract

Recent reports have revealed diverse and abundant fungal communities in the deep-sea biosphere, while their composition, distribution, and variations in seamount zones are poorly understood. Using a metabarcoding approach targeting the ITS2 regions, we present the structure of the fungal community in 18 sediment samples from the Magellan seamount area of the northwest Pacific.

A total of 1,979 fungal OTUs was obtained, which were taxonomically assigned to seven phyla, 17 classes, 43 orders, 7 families, and 98 genera. The majority of these OTUs were affiliated to Basidiomycota (873 OTUs, 44.11% of total OTUs) and Ascomycota (486 OTUs, 24.56% of total OTUs), followed by other five minor phyla (Mortierellomycota, Chytridiomycota, Mucoromycota, Glomeromycota, and Monoblepharidomycota). Sordriomycetes is the most abundant class, followed by Eurotiomycetes, and Dothideomycetes. Five genera were common in most of the samples, including worldwide reported genera Aspergillus, Cladosporium, Fusarium, Chaetomium, and Penicillium. The environmental data we collected (sampling depth, sampling location latitude and longitude, organic carbon content, and organic nitrogen content in the sediment) had no significant influence on the composition and distribution of fungal communities. Our findings provide valuable information for understanding the distribution and potential ecological functions of fungi in the deep-sea sediments of the Magellan seamounts.

References

 

Akerman NH, Butterfield DA, Huber JA. 2013. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor epsilonproteo bacteria in diffuse hydrothermal vent fluids. Front Microbiol. 4:185.

 
Alloui T, Boussebough I, Chaoui A, Nouar A, Chettah M 2015. Usearch: A meta search engine based on a new result merging strategy. Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K). Lisbon (LIS): IEEE Computer Society. p. 531–536.
 

Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Laniri G, Jones AC, et al. 2019. Fungi in the marine environment: open questions and unsolved problems. Mbio. 10:1–15.

 

Aoyagi T, Kimura M, Yamada N, Navarro RR, Itoh H, Ogata A, Sakoda A, Katayama Y, Takasaki M, Hori T. 2015. Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments. Front Microbiol. 6:426.

 
Baldrian P. 2010. Chapter 12. Effect of heavy metals on saprotrophic soil fungi. In: Sherameti I, Varma A, editors. Soil heavy metals. Berlin (BE): Springer; p. 263–279.
 

Barone G, Rastelli E, Corinaldesi C, Tangherlini M, Danovaro R, Dell’Anno A. 2018. Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Prog Oceanogr. 168:57–64.

 

Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, et al. 2007. Yeast forms dominate fungal diversity in the deep oceans. Proc Royal Soc B. 274(1629):3069–3077.

 

Bienhold C, Zinger L, Boetius A, Ramette A. 2016. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PloS One. 11(1):e0148016.

 
Boehlert GW, Genin A. 2013. A review of the effects of seamounts on biological processes. In: Barbara HK, Patricia F, Rodey B, George WB, editors. American geophysical union geophysical monograph series. Vol. 43. Seamounts (Islands, and Atolls. Washington (WA)): American Geophysical Union; p. 319-334.
 

Bokulich NA, Subramanian S, Faith JJ, Gordon JI, Knight R, Mills DA, Caporaso JG. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 10:57–59.

 
Booth T, Kenkel N. 1986. Ecological distribution of lignicolous marine fungi: a distribution model based on ordination and classification. In: Moss ST, editor. The biology of marine fungi. Cambridge (UK): Cambridge University Press; p. 297–309.
 

Burgaud G, Arzur D., Durand L., Cambon-Bonavita M-A., Barbier G. 2010. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiology Ecology. 73(1):121-133. doi:10.1111/j.1574-6941.2010.00881.x

 

Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. 2009. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 11(6):1588–1600.

 
Cannon PF, Kirk PM. 2007. Fungal families of the world. Cambridge (UK): CABI.
 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JA, et al. 2010. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 7:335–336.

 

Catherine L, Knight R. 2005. Unifrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 71(12):8228–8235.

 
Cox M, Cox T. 2008. Multidimensional scaling. In: Chen CH, Härdle W, Unwin A, editors.Handbook of data visualization. Berlin (BE): Springer; p. 338–341.
 

Damare S, Raghukumar C, Raghukumar S. 2006. Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res Part Ⅰ Oceanogr Res Pap. 53(1):14–27.

 

Dang HY, Li J, Chen RP, Wang L, Guo LZ, Zhang ZN, Klotz MG. 2010. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol. 76(14):4691–4702.

 

Danovaro R. 2012. Marine biodiversity and ecosystem functioning: frameworks, methodologies, and integration. Chapter 9. Oxford (UK): Oxford University Press; p. 26–115.

 

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797.

 

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 10(10):996–998.

 

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27(16):2194–2200.

 

Esther S, Chong LS, Heidelberg JF, Edwards KJ. 2015. Similar microbial communities found on two distant seafloor basalts. Front Microbiol. 6:1409.

 

Ettoumi B, Bouhajja E, Borin S, Daffonchio D, Boudabous A, Cherif A. 2010. Gammaproteo bacteria occurrence and micro diversity in Tyrrhenian sea sediments as revealed by cultivation-dependent and -independent approaches. Syst Appl Microbiol. 33(4):222–231.

 

Ettoumi B, Chouchane H, Guesmi A, Mahjoubi M, Brusetti L, Neifar M, Borin S, Daffonchio D, Cherif A. 2016. Diversity, ecological distribution, and biotechnological potential of actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian sea. Microbiol Res. 186–187:71–80.

 

Ettoumi B, Guesmi A, Brusetti L, Borin S, Najjari A, Boudabous A, Cherif A. 2013. Microdiversity of deep-sea bacillales isolated from Tyrrhenian sea sediments as revealed by Arisa, 16s rRNA gene sequencing and boxPCR fingerprinting. Microbes Environ. 28(3):361–369.

 

Fortunato CS, Huber JA. 2016. Coupled RNA-sip and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. Isme J. 10:1925–1938.

 

Galkievicz JP, Stellick SH, Gray MA, Kellogg CA. 2012. Cultured fungal associates from the deep-sea coral Lophelia pertusa. Deep Sea Res Part Ⅰ Oceanogr Res Pap. 67:12–20.

 

Gao Z, Johnson ZI, Wang G. 2010. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J. 4(1):111–120. doi:10.1038/ismej.2009.87

 

Genin A, Boehlert GW. 1985. Dynamics of temperature and chlorophyll structures above a seamount: an oceanic experiment. J Mar Res. 43(4):907–924.

 

Gong J, Shi F, Ma B, Pachiadaki M, Zhang XL, Edgcomb VP. 2015. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environ Microbiol. 17(10):3722–3737.

 

Guo X, Zhang Q, Zhang X, Zhang J, Gong J. 2015. Marine fungal communities in water and surface sediment of a sea cucumber farming system: habitat-differentiated distribution and nutrients driving succession. Fungal Ecol. 14:87–98.

 

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, et al. 2011. Chimeric 16s rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21(3):494–504.

 

Hassett BT, Gradinger R. 2016. Chytrids dominate Arctic marine fungal communities. Environ Microbiol. 18:2001–2009.

 

Ishida S, Nozaki D, Grossart HP, Kagami M. 2015. Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environ Microbiol Rep. 7(3):435–441.

 

Jebaraj CS, Raghukumar C. 2009. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res. 113(1):100–109.

 

Jeffries TC, Curlevski NJ, Brown MV, Harrison DP, Doblin MA, Petrou K, Ralph PJ, Seymour JR. 2016. Partitioning of fungal assemblages across different marine habitats. Environ Microbiol Rep. 8:235–238.

 

Jones EBG. 2000. Marine fungi: some factors influencing biodiversity. Fungal Divers. 4:53–73.

 
Kellogg JN, Wedgeworth BS, Freymueller JT. 1987. Isostatic compensation and conduit structures of Western Pacific seamounts: results of three-dimensional gravity modeling. Seamounts, Islands, and Atolls. In: Keating BH, Fryer P, Batiza R, Boehlert GW, editors. Geophysical monograph series. Vol. 43. New York (NY): American Geophysical Union; p. 85-96.
 

Khomich M, Davey ML, Kauserud H, Rasconi S, Andersen T. 2017. Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecol. 27:36–46.

 

Khusnullina AI, Bilanenko EN, Kurakov AV. 2018. Microscopic fungi of White Sea sediments. Contemp Probl Ecol. 11:503–513.

 

Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, et al. 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166(3):1063–1068.

 

Kvile K, Taranto GH, Pitcher TJ, Morato T. 2014. A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework. Biol Conserv. 173:108–120.

 

Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S. 2007. Fungal communities from methane hydrate-bearing deep-sea marine sediments in the South China Sea. Isme J. 1:756–762.

 
Lawrey JD, Diederich P 2018. Lichenicolous fungi-worldwide checklist, including isolated cultures and sequences. [accessed 2016 May 27] http://www.lichenicolous.net.
 

Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P. 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol. 75(20):6415–6421.

 

Lex A, Gehlenborg N. 2014. Sets & intersections. Nat Methods. 11:779.

 

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. Upset: Visualization of intersecting sets. IEEE Trans Vis Comput Graph. 20(12):1983–1992.

 

Li M, Zhou H, Pan X, Xu T, Zhang Z, Zi X, Jiang Y. 2017. Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing. Sci Rep. 7:45697.

 

Li W, Wang M, Burgaud G, Yu H, Cai L. 2019. Fungal community composition and potential depth-related driving factors impacting distribution pattern and trophic modes from epi- to abyssopelagic zones of the Western Pacific Ocean. Microb Ecol. 78:820–831.

 

Li W, Wang MM, Pan HQ, Burgaud G, Liang SK, Guo JJ, Luo T, Li ZX, Zhang SM, Cai L. 2018. Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. Mol Ecol. 27:564–576.

 

Li W, Wang MM, Wang XG, Cheng XL, Guo JJ, Bian XM, Cai L. 2016. Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Sci Rep. 6(1):26528.

 

Liao L, Xu XW, Jiang XW, Wang CS, Zhang DS, Ni JY, Wu M. 2011. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific ocean. FEMS Microbiol Ecol. 78(3):565–585.

 

Lluvia VG, Jennyfers CR, Asunción LL, John LD, Anthony SA, Meritxell R. 2019. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ Microbiol. 21(11):4046–4061.

 

Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B. 2014. . De novo transcriptome assembly for rudimentary leaves in Litchi Chinensis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom. 15(1):805.

 

Luo ZH, Xu W, Li M, Gu JD, Zhong TH. 2015. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean. Antonie Van Leeuwenhoek. 108(2):329–342.

 

Magnus I, Jörn P, Anders T, Curt B, Wolfgang B, Katharina B, Böttcher ME, Ivarsson LN. 2015. Zygomycetes in vesicular basanites from vestries seamount, Greenland basin a new type of cryptoendolithic fungi. PloS One. 10(7):e0133368.

 

Mel’nikov ME, Pletnev SP, Basov IA, Sedysheva TE. 2009. New data on the morphology and geological structure of the Gramberg Guyot (Magellan Seamounts, Pacific Ocean). Russ J Pacific Geol. 3:401–410.

 
Menard HW. 1964. Marine geology of the Pacific. In: Mc Graw-Hill, editor. International series in the earth sciences. New York (NY): Mc Graw-Hill; p. 271.
 

Morato T, Hoyle SD, Allain V, Nicol SJ. 2010. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc Natl Acad Sci USA. 107(21):9707–9711.

 
Nagahama T, Nagano Y. 2012. Biology of Marine Fungi. In: Raghukumar C, editor. Progress in molecular and subcellular biology. Vol. 53. Berlin (BE): Springer; p.173-189.
 

Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M. 2011. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol. 13(8):2359–2370.

 

Nagano Y, Miura T, Nishi S, Lima AO, Nakayama C, Pellizari VH, Fujikura K. 2017. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Res Part Ⅱ Top Stud Oceanogr. 146:59–67.

 

Nagano Y, Nagahama T. 2012. Fungal diversity in deep-sea extreme environments. Fungal Ecol. 5(4):463–471.

 

Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K. 2010. Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fungal Ecol. 3(4):316–325.

 

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Kennedy PG. 2016. FUNGuild an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20:241–248.

 

Ondov BD, Nicholas HB, Adam MP. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12(1):385.

 

Op De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J, JV C. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PloS One. 9:1–11.

 

Orsi W, Biddle JF, Edgcomb V. 2013. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces. PloS One. 8(2):e56335.

 

Paul FK, Josephine YA. 2010. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol. 47:161–177.

 

Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, et al. 2019. Microbial community diversity within sediments from two geographically separated hadal trenches. Front Microbiol. 10:347.

 

Phuphumirat W, Ferguson DK, Gleason FH. 2016. The colonization of palynomorphs by chytrids and thraustochytrids during pre-depositional taphonomic processes in tropical mangrove ecosystems. Fungal Ecol. 23:11–19.

 
Powell MJ, Letcher PM. 2014. Systematics and Evolution. Berlin (BE): Springer. (McLaughlin D, Spatafora J, editors. The Mycota; vol.7A.).
 

Preez CD, Curtis JMR, Clarke ME. 2016. The structure and distribution of benthic communities on a shallow seamount (cobb seamount, northeast Pacific ocean). PloS One. 11(10):e0165513.

 

Quattrini AM, Nizinski MS, Chaytor JD, Demopoulos AWJ, Brendan RE, France SC, Moore JA, Heyl T, Auster PJ, Kinlan B, et al. 2015. Exploration of the canyon-incised continental margin of the northeastern united states reveals dynamic habitats and diverse communities. PloS One. 10(10):e0139904.

 

Raghukumar C, Raghukumar S. 1998. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol. 15(2):153–163.

 

RaghuKumar C, Raghukumar S, Sheelu G, Gupta SM, Nath BN, Rao BR. 2004. Buried in time culturable fungi in a deep-sea sediment core from the Chagos Trench. The Indian Ocean. Deep Sea Res Part Ⅰ Oceanogr Res Pap. 51(11):1759–1768.

 
Raghukumar S. 2017. Chapter 2, The marine environment and the role of fungi. In: Raghukumar S, editor.Fungi in coastal and oceanic marine ecosystems. Berlin (BE): Springer International Publishing; p. 15–36.
 

Rämä T, Hassett BT, Bubnova E. 2017. Arctic marine fungi: from filaments and flagella to operation taxonomic units and beyond. Bot Mar. 60:433–452.

 

RédouV, Ciobanu MC, Pachiadaki MG, Edgcomb V, Alain K, Barbier G, Burgaud G. 2014. In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiol Ecol. 90(3):908–921.

 

Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G. 2015. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol. 81(10):3571–3583.

 

Roth FJ, Orpurt PA, Ahearn DJ. 1964. Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot. 42(4):375–383.

 

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ. 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75:7537–7541.

 

Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, Küpper FC, Gleason FH. 2016. Zoosporic parasites infecting marine diatoms - a black box that needs to be opened. Fungal Ecol. 19:59–76.

 

Singh P, Raghukumar C, Verma P, Shouche Y. 2010. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers. 40:89–102.

 

Singh P, Raghukumar C, Verma P, Shouche Y. 2011. Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol. 61(13):507–517.

 

Singh P, Raghukumar C, Verma P, Shouche Y. 2012. Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol. 28(2):659–667.

 

Sterkenburg E, Bahr A, Mikael BD, Karina EC, Björn DL. 2015. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 207(4):1145–1158.

 

Takami H, Inoue A, Fuji F, Horikoshi K. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett. 152(2):279–285.

 

Takeshita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T. 2007. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep, surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles. 11(4):563–576.

 

Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, et al. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 10(10):1–43.

 

Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, et al. 2014. Global diversity and geography of soil fungi. Science. 346(6213):1256688.

 

Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U. 2010. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist. 188(1):291-301. doi:10.1111/j.1469-8137.2010.03373.x

 

Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K. 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 90:135–159.

 

Ü, ODP.. 1993. History of Pacific Guyots uncovered. Geotimes. 38(1):18–19.

 

Thaler AD, van Dover CL, Vilgalys R. 2012. Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol. 5(2):270–273.

 

Tisthammer KH, Cobian GM, Amend AS. 2016. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 19:39–46.

 

Toju H, Tanabe AS, Yamamoto S, Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PloS One. 7(7):e40863.

 

Treseder KK, Lennon JT. 2015. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 79(2):243–262.

 

Tseytlin VB. 1985. Energetics of fish populations inhabiting seamounts. Oceanology (Wash DC). 25:237–239.

 

Vargas-Gastelum L, Chong-Robles J, Lago-Leston A, Darcy JL, Amend AS, Riquelme M. 2019. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ Microbiol. 21(11):4046–4061.

 

Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S. 2016. Bacterial diversity and community composition from the sea surface to subseafloor. Isme J. 10:979–989.

 

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 73:5261–5267.

 

Wang Y, Sen B, He Y, Xie N, Wang G. 2018. Spatiotemporal Distribution and Assemblages of Planktonic Fungi in the Coastal Waters of the Bohai Sea. Front Microbiol. 9:584.

 

Wu J, Gao W, Johnson RH, Zhang W, Meldrum DR. 2013. Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of the North Pacific ocean. Mar Drugs. 11(10):3777–3801.

 

Xu W, Gao YH, Gong LF, Li M, Pang KL, Luo ZH. 2019. Fungal Diversity in the Deep Sea Hadal Sediments of the Yap Trench by Cultivation and High Throughput Sequencing Methods based on the ITS rRNA gene. Deep Sea Res Part Ⅰ Oceanogr Res. Pap.145:125–136.

 

Xu W, Gong LF, Pang KL, Luo ZH. 2018b. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep Sea Res Part Ⅰ Oceanogr Res Pap. 131:16–26.

 

Xu W, Guo SS, Gong LF, He GY, Pang KL, Luo ZH. 2018a. Cultivable fungal diversity in deep-sea sediment of the East Pacific Ocean. Geomicrobiol J. 35(9):1–8.

 

Xu W, Guo SS, Pang KL, Luo ZH. 2017. Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity, and abundance. Deep Sea Res Part Ⅰ Oceanogr Res Pap. 123:48–55.

 

Xu W, Luo ZH, Guo SS, Pang KL. 2016. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions. Deep Sea Res Part Ⅰ Ocanogr Res ePap. 109:51–60.

 

Xu W, Pang KL, Luo ZH. 2014. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microb Ecol. 68:688–698.

 

Zhang J, Sun QL, Zeng ZG, Chen S, Sun L. 2015. Microbial diversity in the deep-sea sediments of the north and the ridge, Okinawa trough. Microbiol Res. 177:43–52.

 

Zhang X, Xu W, Liu Y, Cai M, Luo Z, Li M. 2018. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a hadal biosphere at the Yap Trench. Front Microbiol.9:2402.

 

Zhang XY, Tang GL, Xu XY, Nong XH, Qi SH. 2014. Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PloS One. 9(10):1–11.

 

Zhang XY, Wang GH, Xu XY, Nong XH, Wang J, Amin M, Qi SH. 2016. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing. Deep Sea Res Part Ⅰ Oceanogr Res Pap. 116:99–105.

 

Zhang X-Y., Zhang Y, Xu X-Y., Qi S-H.. 2013. Diverse Deep-Sea Fungi from the South China Sea and Their Antimicrobial Activity. Curr Microbiol. 67(5):525-530. doi:10.1007/s00284-013-0394-6

 

Zhao LH, Jin XL, Gin JY, Li JB. 2010. 麦哲伦海山链漂移史及可能的来源. [The research on the drifting history and possible origin of the Magellan seamount trail]. Hai Yang Xue Bao. 32: 3. Chinese.

 

Zhou S, Huang Y, Lai X, Cao L, Tan H, Fang S. 2007. Fungal communities from methane hydrate-bearing deep-sea marine sediments in south china sea. Isme J. 1:756–762.

 

Zhu BD, Liang DH, Cui ZG. 2011. 西太平洋麦哲伦海山链的海山地貌及成因[Geomorphologic characteristics and genesis of the Magellan seamount chain in the western Pacific]. Cent South Univ. 42: 2. Chinese.

Mycology
Pages 214-229
Cite this article:
Luo Y, Wei X, Yang S, et al. Fungal diversity in deep-sea sediments from the Magellan seamounts as revealed by a metabarcoding approach targeting the ITS2 regions. Mycology, 2020, 11(3): 214-229. https://doi.org/10.1080/21501203.2020.1799878

251

Views

19

Crossref

15

Web of Science

17

Scopus

Altmetrics

Received: 16 January 2020
Accepted: 03 July 2020
Published: 02 August 2020
© 2020 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return