AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Lignocellulose hydrolytic enzymes production by Aspergillus flavus KUB2 using submerged fermentation of sugarcane bagasse waste

Nattida Namnucha,Anon Thammasittironga,bSutticha Na-Ranong Thammasittironga,b( )
Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, Thailand
Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, Thailand

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Show Author Information

Abstract

Lignocellulosic wastes, rice straw, sugarcane bagasse, rice bran and sawdust, and pure commercial carboxymethyl cellulose (CMC) and xylan were used as substrates to cultivate cellulolytic fungus, Aspergillus flavus KUB2, in submerged fermentation at 30°C. Of all the substrates, sugarcane bagasse was a good source for the production of cellulolytic and also hemicellulolytic enzymes. The maximum activities of endoglucanase (CMCase), total cellulase (FPase) and xylanase using sugarcane bagasse as substrate were 8%, 75% and 165%, respectively, higher than those of the commercial substrates. The time course determination of enzyme production revealed that the highest CMCase (1.27 U/ml), FPase (0.72 U/ml) and xylanase (376.81 U/ml) activities were observed at 14 days of fermentation. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analyses confirmed the efficient structural alteration of sugarcane bagasse caused by enzymatic actions during A. flavus KUB2 cultivation. Based on the results of the hydrolytic enzyme activities, FTIR and SEM, A. flavus KUB2 is suggested as an efficient hydrolytic enzymes producer and an effective lignocellulose degrader, while sugarcane bagasse can be applied as a low-cost carbon source for the economical production of lignocellulose hydrolytic enzymes by A. flavus KUB2.

References

 
Adney B, Baker J. 2008. Measurement of cellulase activities: LAP-006 NREL analytical procedure. Colorado (CO): national renewable energy laboratory; p. 1–8.
 

Ang SK, Shaza EM, Adibah Y, Suraini AA, Madihah MS. 2013. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48:1293–1302. doi:10.1016/j.procbio.2013.06.019.

 

Ang SK, Yahya A, Abd Aziz S, Md Salleh M. 2015. Isolation, screening, and identification of potential cellulolytic and xylanolytic producers for biodegradation of untreated oil palm trunk and its application in saccharification of lemongrass leaves. Prep Biochem Biotech. 45:279–305. doi:10.1080/10826068.2014.923443.

 

Bailey MJ, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 23:257–270. doi:10.1016/0168-1656(92)90074-J.

 

Bano A, Chen X, Prasongsuk S, Akbar A, Lotrakul P, Punnapayak H, Anwar M, Sajid S, Ali I. 2019. Purification and characterization of cellulase from obligate halophilic Aspergillus flavus (TISTR 3637) and its prospects for bioethanol production. Appl Biochem Biotechnol. 189:1327–1337. doi:10.1007/s12010-019-03086-y.

 

Bedade D, Berezina O, Singhal R, Deska J, Shamekh S. 2017. Extracellular xylanase production from a new xylanase producer Tuber maculatum mycelium under submerged fermentation and its characterization. Biocatal Agric Biotechnol. 11:288–293. doi:10.1016/j.bcab.2017.07.008.

 

Bhat MK. 2000. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 18(5):355–383. doi:10.1016/S0734-9750(00)00041-0.

 

Bhushan B, Pal A, Jain V. 2012. Isolation, screening and optimized production of extracellular xylanase under submerged condition from Aspergillus flavus MTCC 9390. Enzyme Eng. 1:1–6. doi:10.4172/eeg.1000103.

 

Castoldi R, Bracht A, de Morais GR, Baesso ML, Correa RCG, Peralta RA, Moreira R, Polizeli M, de Souza CGM, Peralta RM. 2014. Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chem Eng J. 258:240–246. doi:10.1016/j.cej.2014.07.090.

 

Corrêa RCG, da Silva BP, Castoldi R, Kato CG, de Sá-nakanishi AB, Peralta RA, de Souza CGM, Bracht A, Peralta RM. 2016. Spent mushroom substrate of Pleurotus pulmonarius: a source of easily hydrolyzable lignocellulose. Folia Microbiol. 61:439–448. doi:10.1007/s12223-016-0457-8.

 

Cunha FM, Esperança MN, Zangirolami TC, Badino AC, Farinas CS. 2012. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol. 112:270–274. doi:10.1016/j.biortech.2012.02.082.

 

de Alencar Guimaraes NC, Sorgatto M, Peixoto-Nogueira S, Betini JHA, Zanoelo FF, Marques R, de Moraes Polizeli M, Giannesi GC. 2013. Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. SpringerPlus. 2(1):380. doi:10.1186/2193-1801-2-380.

 

Dutt D, Kumar A. 2014. Optimization of cellulase production under solid-state fermentation by Aspergillus flavus (AT-2) and Aspergillus niger (AT-3) and its impact on stickies and ink particle size of sorted office paper. Cell Chem Technol. 48:285–298.

 

Ferreira FL, Dall’Antonia CB, Shiga EA, Alvim LJ, Pessoni RAB. 2018. Sugarcane bagasse as a source of carbon for enzyme production by filamentous fungi. Hoehnea. 45:134–142. doi:10.1590/2236-8906-40/2017.

 

Florencio C, Couri S, Farinas CS. 2012. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. 2012:7. doi:10.1155/2012/793708.

 

Ghose TK. 1987. Measurement of cellulase activities. Pure Appl Chem. 59:257–268. doi:10.1351/pac198759020257.

 

Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol. 61:1323–1330. doi:10.1128/AEM.61.4.1323-1330.1995.

 

Gonzalez-Mendoza D, Argumedo-Delira R, Morales-Trejo A, Pulido-Herrera A, Cervantes-Diaz L, Grimaldo-Juarez O, Alarcon A. 2010. A rapid method for isolation of total DNA from pathogenic filamentous plant fungi. Genet Mol Res. 9(1):162–166. doi:10.4238/vol9-1gmr680.

 
Hagen J. 2015. Industrial catalysis: A practical approach. In: Ley C, Volk S, editors. Chapter 13, catalytic processes with renewable materials industrial catalysis. Weinheim: Wiley; p. 361–380.
 

Herrera-Franco PJ, Valadez-Gonzalez AA. 2005. A study of the mechanical properties of short natural-fiber reinforced composites. Compos B Eng. 36:597–608. doi:10.1016/j.compositesb.2005.04.001.

 

Hong S-B, Go S-J, Shin H-D, Frisvad JC, Samson RA. 2005. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 97:1316–1329. doi:10.1080/15572536.2006.11832738.

 

Irfan M, Tayyab A, Hasan F, Khan S, Badshah M, Shah AA. 2017. Production and characterization of organic solvent-tolerant cellulase from Bacillus amyloliquefaciens AK9 isolated from hot spring. Appl Biochem Biotechnol. 182(4):1390–1402. doi:10.1007/s12010-017-2405-8.

 

Ja’afaru MI. 2013. Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol. 2013:1–7. doi:10.1155/2013/283423.

 

Kogo T, Yoshida Y, Koganei K, Matsumoto H, Watanabe T, Ogihara J, Kasumi T. 2017. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source. Bioresour Technol. 233:67–73. doi:10.1016/j.biortech.2017.01.075.

 

Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M. 2016. Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sust Energ Rev. 55:249–272. doi:10.1016/j.rser.2015.10.132.

 

Kumar A, Dutt D, Gautam A. 2016. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications. J Genet Eng Biotechnol. 14:107–118. doi:10.1016/j.jgeb.2016.06.004.

 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35:1547–1549. doi:10.1093/molbev/msy096.

 

Lamb J, Loy T. 2005. Seeing red: the use of Congo Red dye to identify cooked and damaged starch grains in archaeological residues. J Archaeol Sci. 32(10):77–91. doi:10.1016/j.jas.2005.03.020.

 

Lin C, Shen Z, Qin W. 2017. Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus N2 and its efficient saccharification of barley straw. Appl Biochem Biotechnol. 182:559–569. doi:10.1007/s12010-016-2344-9.

 

Mohapatra S, Padhy S, Das Mohapatra PK, Thatoi HN. 2018. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. Bioresour Technol. 253:262–272. doi:10.1016/j.biortech.2018.01.023.

 

Nazarpour F, Abdullah DK, Abdullah N, Motedayen N, Zamiri R. 2013. Biological pretreatment of rubberwood with Ceriporiopsis subvermispora for enzymatic hydrolysis and bioethanol production. Biomed Res Int. 2013:1–9. doi:10.1155/2013/268349.

 

Sarkar N, Aikat K. 2014. Aspergillus fumigatus NITDGPKA3 provides for increased cellulase production. Int J Chem Eng. 2014:1–9. doi:10.1155/2014/959845.

 

Saroj PM, Narasimhulu K. 2018. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresour Bioprocess. 5:1–14. doi:10.1186/s40643-018-0216-6.

 

Sharma KM, Kumar R, Panwar S, Kumar A. 2017. Microbial alkaline proteases: optimization of production parameters and their properties. J Genet Eng Biotechnol. 15(1):115–126. doi:10.1016/j.jgeb.2017.02.001.

 

Shi J, Li J. 2012. Metabolites and chemical group changes in the wood-forming tissue of pinus koraiensis under inclined conditions. BioResources. 7:3463–3475.

 

Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E. 2005. Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe. Braz J Microbiol. 36:235–241. doi:10.1590/S1517-83822005000300006.

 

Sohail M, Ahmad A, Khan SA. 2016. Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. 3 Biotech. 6: 103–103. doi:10.1007/s13205-016-0420-z.

 
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JT, White TJ, editors. PCR protocols: A guide to methods and applications. New York (NY): Academic Press; p. 315–322.
 

Xu X, Xu Z, Shi S, Lin M. 2017. Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation. Bioresour Technol. 241:415–423. doi:10.1016/j.biortech.2017.05.087.

Mycology
Pages 119-127
Cite this article:
Namnuch N, Thammasittirong A, Thammasittirong SN-R. Lignocellulose hydrolytic enzymes production by Aspergillus flavus KUB2 using submerged fermentation of sugarcane bagasse waste. Mycology, 2021, 12(2): 119-127. https://doi.org/10.1080/21501203.2020.1806938

225

Views

43

Crossref

38

Web of Science

45

Scopus

Altmetrics

Received: 01 June 2020
Accepted: 31 July 2020
Published: 18 August 2020
© 2020 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return