AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius

Jessica Mélanie Wong China( )Daneshwar PuchooaaTheeshan BahorunbRajesh Jeewonc
Department of Agricultural and Food Science, University of Mauritius, Réduit, Republic of Mauritius
Department of Biosciences and Ocean Studies, ANDI Centre for Biomedical and Biomaterials Research (CBBR) and University of Mauritius, Réduit, Republic of Mauritius
Department of Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
Show Author Information

Abstract

Purpose of the study

Marine fungi of Mauritius have been poorly studied. There are numerous reports on the bioactive secondary metabolites that are produced by fungi around the world. Yet, research on the molecular characterisation and the pharmaceutical potential of marine fungi in Mauritius is rather scanty.

Method

The samples, which consisted of three sponges Haliclona sp., Iotrochota sp. and Biemna sp. and two brown algae Turbinaria conoides and Sargassum portierianum, were collected in the North of Mauritius during winter. No sporulating structures were observed from the fungal cultures making morphological analysis impossible. The molecular characterisation of the selected isolates was carried out by the amplification of the ITS regions and phylogenetic analysis. The antimicrobial properties were then determined using the disc diffusion and the minimum inhibitory concentration (MIC) assay.

Results

Genus level identification was made from molecular data and for some isolates, species-level identification was even possible. Twelve fungi that showed the best antimicrobial properties were identified as Peniophora sp., Aspergillus cristatus, Acremonium sp., Cordyceps memorabilis, Aspergillus ochraceus, Biscogniauxia sp., Aspergillus keratitidis, Exserohilum rostratum, Chromocleista sp., Nigrospora oryzae, Aspergillus flavipes and Mycosphaerella. The lowest MIC result of 0.0098 mg/mL was obtained with Chromocleista sp. mycelium extract against Staphylococcus aureus. The MIC of the mycelium extracts was lower than the broth extracts for most isolates indicating that the antimicrobial compounds are not secreted.

Conclusion

Marine fungi from the Mauritian waters have immense potential in the search for natural products against antibiotic-resistant bacteria.

References

 

Aiatwani RRH. 2016. In vitro, optimization of antibacterial activity of secondary metabolites produced by endophytic fungus Stemphylium radicinum in Iraq. Eur Acad Res. 3(11): 11957–11967.

 

An C, Ma S, Shi X, Xue W, Liu C, Ding H. 2020. Isolation, diversity, and antimicrobial activity of fungal endophytes from Rohdea chinensis (Baker) N. Tanaka (synonym Tupistra chinensis Baker) of Qinling Mountains, China. Peer J. 8:1–20. doi: 10.7717/peerj.9342.

 

Attia EZ, Farouk HM, Abdelmohsen UR, El-Katatny ME. 2019. Antimicrobial and extracellular oxidative enzyme activities of endophytic fungi isolated from alfalfa (Medicago sativa) assisted by metabolic profiling. S Afr J Bot. 1–7.

 

Bagur H, Poojari CC, Melappa G, Rangappa R, Chandrasekhar N, Somu P. 2020. Biogenically Synthesized Silver Nanoparticles Using Endophyte Fungal Extract of Ocimum tenuiflorum and Evaluation of Biomedical Properties. Journal of Cluster Science. 31(6): 1241–1255. doi: 10.1007/s10876-019-01731-4.

 

Barbosa F, Pinto E, Kijjoa A, Pinto M, Sousa E. 2020. Targeting antimicrobial drug resistance with marine natural pro-ducts. Int J Antimicrob Agents. 56(1): 1–29. doi: 10.1016/j.ijantimicag.2020.106005.

 

Bart MC, De Kluijver A, Hoetjes S, Absalah S, Mueller B, Kenchington E, Rapp HGT, Goeij JM DE. 2020. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Scientific Rep. 10(17515): 1–13.

 

Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. 2016. Marine natural products. Nat Prod Rep. 33:382–431.

 

Bolaños J, De León LF, Ochoa E, Darias J, Raja HA, Shearer CA, Miller AN, Vanderheyden P, Porras-Alfaro A, Caballero-George C. 2015. Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors. Mar Biotechnol (NY). 17(5): 533–564. doi: 10.1007/s10126-015-9634-z.

 

Bovio E, Garzoli L, Poli A, Luganini A, Villa P, Musumeci R, McCormack GP, Cocuzza CE, Gribaudo G, Mehiri M, et al. 2019. Marine Fungi from the Sponge Grantia compressa: biodiversity, Chemodiversity, and Biotechnological Potential. Mar Drugs. 17(4): 220. doi: 10.3390/md17040220

 

Bovio E, Garzoli L, Poli A, Prigione V, Firsova D, McCormack GP, Varese GC. 2018. The culturable mycobiota associated with three Atlantic sponges, including two new species: thelebolus balaustiformis and T. spongiae. Fungal Systematics and Evolution. 1(1): 141–167. doi: 10.3114/fuse.2018.01.07.

 

Brenelli LB, Persinoti GF, Cairo JPLF, Liberato MV, Gonçalves TA, Otero IVR, Mainardi PH, Felby C, Sette LD, Squina FM. 2019. Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Scientific Rep. 9(17564).

 

Chen B, Sun Y, Luo F, Wang C. 2020. Bioactive Metabolites and Potential Mycotoxins Produced by Cordyceps Fungi: a Review of Safety. Toxins. 12(6): 410. doi: 10.3390/toxins12060410.

 

Chen Z, Song Y, Chen Y, Huang H, Zhang W, Ju J. 2012. Cyclic heptapeptides, cordyheptapeptides C-E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod. 75(6): 1215–1219. doi: 10.1021/np300152d.

 

Christaki E, Marcou M, Tofarides A. 2020. Antimicrobial Resistance in Bacteria: mechanisms, Evolution, and Persistence. J Mol Evol. 88(1): 26–40. doi: 10.1007/s00239-019-09914-3.

 

Chung D, Baek K, Bae SS, Jung J. 2019. Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J Microbio, 57.

 

Costa D, Tavares RM, Baptista P, Lino-Neto T. 2020. Cork Oak Endophytic Fungi as Potential Biocontrol agents Against Biscogniauxia mediterranea and Diplodia corticola. J Fungi. 6(4): 1–21. doi: 10.3390/jof6040287.

 

De Felício R, Pavão GB, De Oliveira ALL, Erbert C, Conti R, Pupo MT, Furtado NAJC, Ferreira EG, Costa-Lotufo LV, Young MCM, et al. 2015. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Revista Brasileira De Farmacognosia. 25(6): 641–650. doi: 10.1016/j.bjp.2015.08.003

 
De Queiroz CB, Santana MF. 2020. Prediction of the secretomes of endophytic and nonendophytic fungi reveals similarities in host plant infection and colonization strategies. Mycologia.
 

Ding L, Yuan W, Peng Q, Sun H, Xu S. 2016a. Secondary Metabolites Isolated From The Sponge-Associated Fungus Nigrospora Oryzae. Chem Nat Comp. 52(5): 969–970. doi:10.1007/s10600-016-1837-7.

 

Ding LJ, Yuan W, Liao XJ, Han BN, Wang SP, Li ZY, Xu SH, Zhang W, Lin HW. 2016b. cyclodepsipeptide from the sponge-derived fungus Nigrospora oryzae PF18. J Nat Prod. 79(8): 2045–2052. doi:10.1021/acs.jnatprod.6b00349.

 

Dong JJ, Bao J, Zhang XY, Xu XY, Nong XH, Qi SH. 2014. Alkaloids and citrinins from amrine-derived fungus Nigrospora oryzae SCSGAF 0111. Tetrahedron Lett. 55 (16): 2749–2753. doi:10.1016/j.tetlet.2014.03.060.

 

Fouillaud M, Venkatachalam M, Llorente M, Magalon H, Cuet P, Dufossé L. 2017. Biodiversity of pigmented fungi isolated from marine environment in La Réunion Island, Indian Ocean: new resources for colored metabolites. J Fungi. 3 (3): 36. doi:10.3390/jof3030036.

 

Fries N. 1979. Physiological characteristics of Mycosphaerella ascophylli, a fungal endophyte of the marine brown alga Ascophyllum nodosum. Physiol Plant. 45(1): 117–121. doi:10.1111/j.1399-3054.1979.tb01674.x.

 

Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, et al. 2015. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol. 38(8): 1143–1152. doi:10.1007/s00300-015-1672-5

 
Guiry MD, Guiry GM 2019. AlgaeBase. [Accessed 2018 Aug 14]. https://www.algaebase.org
 

Guo L, Zhang F, Wang X, Chen H, Wang Q, Guo J, Cao X, Wang L. 2019. Antibacterial activity and action mechanism of questin from marine Aspergillus flavipes HN4-13 against aquatic pathogen. Vibrio Harveyi. 3(9): 14.

 

Han L, Zhou X, Zhao Y, Zhu S, Wu L, He Y, Ping X, Lu X, Huang W, Qian J, et al. 2020. Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. J Int Plant Biol. 62(9).

 

Handayani D, Ahdinur RF, Rustini R. 2015. Antimicrobial activity of endophytic fungi from marine Sponge Haliclona fascigera. J Appl Pharm Sci. 5(10): 154–156. doi:10.7324/JAPS.2015.501027.

 

Hao Y, Aluthmuhandiram JVS, Chethana KWT, Manawasinghe IS, Li X, Liu M, Hyde KD, Phillips AJL, Zhang W. 2020. Nigrospora Species Associated with Various Hosts from Shandong Peninsula, China. Mycobiology. 48(3): 169–183. doi:10.1080/12298093.2020.1761747.

 

Hsiao G, Wang SW, Chiang YR, Chi W, Kuo YH, Phong DA, Chen CY, Lee TH. 2020. Anti-inflammatory effects of peptides from a marine algicolous fungus Acremonium sp. NTU492 in BV-2 microglial cells. J Food & Drug Anal. 28(2): 89–97.

 

Jeewon R, Ittoo J, Mahadeb D, Jaufeerally-Fakim Y, Wang HK, Liu AR. 2013. DNA based identification and phylogenetic characterisation of endophytic and saprobic fungi from Antidesma madagascariense, a medicinal plant in Mauritius. J Mycol. 2013.

 

Julianti E, Oh H, Lee HS, Oh DC, Oh KB, Shin J. 2012. Acremolin, a new 1H-azirine metabolite from the marine-derived fungus Acremonium strictum. Tetrahedron Lett. 53(23): 2885–2886. doi:10.1016/j.tetlet.2012.03.133.

 

Kamat S, Kumari M, Sajna KV, Jayabaskaran C. 2020a. Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of Chrysin. Scientific Rep. 10(1).

 

Kamat S, Kumari M, Taritla S, Jayabaskaran C. 2020b. Endophytic Fungi of Marine Alga From Konkan Coast, India—A Rich Source of Bioactive Material. Front Mar Sci. 52(5). doi:10.3389/fmars.2020.00031.

 
Khalil AMA, Abdelaziz AM, Khaleil MM, Hashem AH. 2020. Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Letters Appl Microbiol.
 

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16(2): 111–120. doi:10.1007/BF01731581.

 

Kossuga MH, Romminger S, Xavier C, Milanetto MC, Do Valle MZ, Pimenta EF, Morais RP, De Carvalho E, Mizuno CM, Coradello LFC, et al. 2012. Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Rev Bras Farmacogn. 22 (2): 257–267. doi:10.1590/S0102-695X2011005000222

 

Lee J, Lee J, Kim GJ, Yang I, Wang W, Nam JW, Choi H, Nam SJ, Kang H. 2019. Mycousfurans A and B, antibacterial usnic acid con-geners from the fungus Mycosphaerella sp., isolated from marine sediment. Mar Drugs. 17(7): 422. doi:10.3390/md17070422.

 

Lee YM, Kim MJ, Li H, Zhang P, Bao B, Lee KJ, Jung JH. 2013. Marine-derived Aspergillus species are a source of bioactive secondary metabolites. Marine Biotech. 15(5): 499–519. doi:10.1007/s10126-013-9506-3.

 

Lekshmi N, Umar MD, Dhaneesha M, Rojin J, Ravinesh R, Sajeevan TP. 2020. Endophytic Fungi Isolated from the Marine Sponges as a Source of Potential Bioactive Compounds. J Aqua Biol & Fisheries. 8:58–66.

 

Li SJ, Jiao FW, Li W, Zhang X, Yan W, Jiao RH. 2020. Cytotoxic Xanthone Derivatives from the Mangrove-Derived Endophytic Fungus Peniophora incarnata Z4. J Nat Prod. 83 (10): 2976–2982. doi:10.1021/acs.jnatprod.0c00523.

 

Liu YY, Zhao H, Xie J, Zou J, Hu D, Guo L, Chen GD, Yao XS, Gao H. 2019. New phthalide derivatives from the Bicogniauxia sp. and their activities. Fitoterapia. 137:104184.

 

Luo M, Zang R, Wang X, Chen Z, Song X, Ju J, Huang H. 2019. Natural Hydroxamate-Containing Siderophore Acremonpeptides A-D and an Aluminum Complex of Acremonpeptide D from the Marine-Derived Acremonium persicinum SCSIO 115. Journal of Natural Products. 82 (9): 2594–2600. doi:10.1021/acs.jnatprod.9b00545.

 
Manju IBP 2019. Screening of Peniophora nuda (a white rot fungus) for the presence of commercially important bioac-tive metabolites. Vegetos.
 
Öztürk BY, Gürsu BY, Dağ I. 2019. Antibiofilm and Antimicrobial Activities of Green Synthesized Silver Nanoparticles using marine red algae Gelidium corneum. Proc Biochem.
 

Miao F, Li X, Liu X, Cichewicz RH, Ji N. 2012. Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs. 10(12): 131–139. doi:10.3390/md10010131.

 

Miao L, Kwong TFN, Qian PY. 2006. Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c. f. saccharicola. Appl Microbial Cell Physiol. 72:1063–1073.

 

Nicoletti R, Vinale F. 2018. Bioactive Compounds from Marine-Derived Aspergillus, Penicillium, Talaromyces and Trichoderma Species. Mar Drugs. 16(11): 408. doi:10.3390/md16110408.

 

Overy D. 2017. Does Osmotic Stress Affect Natural Product Expression in Fungi? Mar Drugs. 15(8): 254. doi:10.3390/md15080254.

 

Park YC, Gunasekera SP, Lopez JV, McCarthy PJ, Wright AE. 2006. Metabolites from the Marine-Derived Fungus Chromocleista sp. Isolated from a Deep-Water Sediment Sample Collected in the Gulf of Mexico. J Nat Prod. 69(4): 580–584.

 

Petersen LE, Marner M, Labes A, Tasdemir D. 2019. Rapid Metabolome and Bioactivity Profiling of Fungi Associated with the Leaf and Rhizosphere of the Baltic Seagrass Zostera marina. Mar Drugs. 53(7): 419. doi:10.3390/md17070419.

 

Qiu P, Liu Z, Chen Y, Cai R, Chen G, She Z. 2019. Secondary Metabolites with α-Glucosidase Inhibitory Activity from the Mangrove Fungus Mycosphaerella sp. SYSU-DZG01. Mar Drugs. 16(2): 1–11. doi:10.3390/md17080483.

 

Rahim HR. 2020. GC-MS Analysis of extract for Endophytic fungus Acremonium coenophialum and its Antimicrobial and Antidiabetic. Res J Pharm and Technol. 13(1): 119–123. doi:10.5958/0974-360X.2020.00024.4.

 

Rushdi MI, Iam A-R, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Hassan HM, Elmaidomy AH, Abdelmohsen UR. 2020. Pharmacological and natural products diversity of the brown algae genus Sargassum. Spec Publ R Soc Chem. 10:24951–24972.

 

Sharma D, Pramanik A, Agrawal PK. 2016. Evaluation of bioac-tive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. Biotech. 6(2): 210.

 

Shrestha B, Tanaka E, Hyun MW, Han JG, Kim C, Jo JW, Han SK, Oh J, Sung GH. 2016. Coleopteran and Lepidopteran Hosts of the Entomopathogenic Genus Cordyceps sensu lato. J Mycol. 2016:1–14. doi:10.1155/2016/7648219.

 

Stincone P, Brandelli A. 2020. Marine bacteria as source of antimicrobial compounds. Crit Rev Biotechnol. 40(3): 306–319. doi:10.1080/07388551.2019.1710457.

 

Subramani R, Kumar R, Prasad P, Aalbersberg W, Retheesh ST. 2013. Cytotoxic and antibacterial substances against multidrug resistant pathogens from marine sponge symbiont: citrinin, a secondary metabolite of Penicillium sp. Asian Pac J Trop Biomed. 17(8): 483–486. doi:10.1016/S2221-1691(13)60065-9.

 

Subramaniam Y, Mazlan N, Hassan H, Jaafar JN, Young TT, Anua SM, Saud SN. 2020. Antimicrobial Activity of Musa acuminata Peel Extract against Gram-Positive Bacteria. Int J Life Sci Biotechnol. 3(2): 191–196. doi:10.38001/ijlsb.747883.

 

Summerbell RC, Gueidan C, Guarro J, Eskalen A, Crous PW, Gupta AK, Gene J, Canno-Lira JF, Van Iperen A, Starink M, et al. 2018. The Protean Acremonium. A. sclerotigenum/egyptiacum: revision, Food Contaminant, and Human Disease. Microorganisms. 2016(3): 88. doi:10.3390/microorganisms6030088

 

Sun XP, Xu Y, Cao F, Xu RF, Zhang XL, Wang CY. 2014. Isoechinulin-type alkaloids from a soft coral-derived fungus Nigrospora oryzae. Chem Nat Comp. doi:10.1007/s10600-014-1189-0

 
Suryanarayanan TS. 2012. Fungal Endosymbionts of Seaweeds. In: Raghukumar C, editor. Biology of Marine Fungi. Berlin: Springer- Verlag Berlin Heidelberg.
 

Suryanarayanan TS, Johnson JA. 2014. Fungal endosymbionts of macroalgae: need for enquiries into diversity and technical potential. Oceanography. 2:1.

 
Swofford DL. 2002. PAUP* Version 4.0 b10 Phylogenetic Analysis Using Parsimony *and other methods. Sunderland: Sinauer.
 

Synytsya A, Monkai J, Bleha R, Macurkova A, Ruml T, Ahn J, Chukeatirote E. 2017. Antimicrobial activity of crude extracts prepared from fungal mycelia. Asian Pac J Trop Biomed. 7(3): 257–261.

 

Tang RX, Jensen PR, Willliams PG, Fenical W. 2004. Isolation and Structure Assignments of Rostratins A−D, Cytotoxic Disulfides Produced by the Marine-Derived Fungus Exserohilum r ostratum. J Nat Prod. 6(3): 1374–1382. doi: 10.1021/np049920b.

 

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22): 4673–4680. doi:10.1093/nar/22.22.4673.

 

Trisuwan K, Rukachaisirikul V, Sukpondma Y, Preedanon S, Phongpaichit S, Rungjindamai N, Sakayaroj J. 2008. Epoxydons and a pyrone from the marine-derived fungus Nigrospora sp. PSU-F5. J Nat Prod. 71(8): 1323–1326. doi:10.1021/np8002595.

 
Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, De Voogd NJ, Alvarez B, Hadju E, Pisera AB, Manconi R, Schönberg C, et al. 2019. World Porifera Database. [Accessed 2018 Aug 16]. http://www.marinespecies.org/porifera
 

VanderMolen KM, Raja HA, El-Elimat T, Oberlies NH. 2013. Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Expr. 3(1): 71. doi:10.1186/2191-0855-3-71.

 

Venkatachalam A, Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS. 2015. Endophytic fungi of marine algae and seagrasses: a novel source of chitin modifying enzymes. Mycosphere. 6(3): 345–355. doi:10.5943/mycosphere/6/3/10.

 

Wang C, Tang S, Cao S. 2020. Antimicrobial compounds from marine fungi. Phytochem Rev. doi:10.1007/s11101-020-09705-5

 

Wang M, Kornsakulkarn J, Srichomthong K, Feng T, Liu JJK, Isaka M, Thongpanchang C. 2019. Antimicrobial anthraquinones from cultures of the ant pathogenic fungus Cordyceps morakotii BCC 56811. J Antibiot (Tokyo). 72(3): 141–147. doi:10.1038/s41429-018-0135-y.

 

Wang XF, Wang MM, Zhao Y, Li CL, Li W. 2018. Diversity of culturable fungi associated with marine macroalgae from coast of Qingdao, China. Mycosystema. 37(3): 281–293.

 

Wang Y, Lu Z, Sun K, Zhu W. 2011. Effects of High Salt Stress on Secondary Metabolite Production in the Marine-Derived Fungus Spicaria elegans. Mar Drugs. 9(4): 535–542. doi:10.3390/md9040535.

 
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. California: Academic Press; p. 315–322.
 
WHO: Antimicrobial resistance. 2020. [Accessed 2020 Nov 1]. https://www.who.int/health-topics/antimicrobial-resistance
 

Wu B, Wiese J, Schmaljohann R, Johannes F. 2016. Biscogniauxone, a new isopyrrolonaphthoquinone compound from the fungus Biscogniauxia Mediterranean isolated from deep-sea sediments. Mar Drugs. 14 (11): 204.

 
Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI 2008. Detection and identification of fungi intimately associated with seaweed Fucus serratus. Applied and Environmental Microbiology.
Mycology
Pages 231-244
Cite this article:
Chin JMW, Puchooa D, Bahorun T, et al. Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius. Mycology, 2021, 12(4): 231-244. https://doi.org/10.1080/21501203.2021.1895347

225

Views

9

Crossref

9

Web of Science

13

Scopus

Altmetrics

Received: 16 December 2020
Accepted: 19 February 2021
Published: 22 April 2021
© 2021 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return