AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Fomitopsis meliae CFA 2, a novel brown rot for endoglucanase: emphasis towards enhanced endoglucanase production by statistical approach

Amisha PatelaJyoti DivechabAmita Shaha( )
P. G. Department of Biosciences, Sardar Patel University, Satellite Campus, Anand, Gujarat, India
Department of Statistics, Sardar Patel University, Gujarat, India
Show Author Information

Abstract

Brown rot basidiomycetes are a principal group of wood-decaying fungi which degrade wood cellulose and hemicellulose by the combination of carbohydrate active enzymes and non-enzymatic oxidation reactions. Very scant information is available on carbohydrate active enzymes of brown rot fungi. In this context, present study focused on the production of cellulolytic–hemicellulolytic enzymes from newly isolated brown rot Fomitopsis meliae CFA 2. Under solid-state fermentation using wheat bran as the substrate Fomitopsis meliae CFA 2 was able to produce a maximum of 1391.12 ± 21.13 U/g of endoglucanase along with other cellulolytic and hemicellulolytic enzymes. Various fermentation parameters were optimised for enhanced production of endoglucanase by employing Plackett-Burman design followed by Box-Behnken design. A well-fitted regression equation with R2 value of 98.91% was attained for endoglucanase. The yield of endoglucanase was enhanced by 1.83-fold after executing statistical optimisation of various fermentative parameters. The newly isolated Fomitopsis meliae CFA 2 was found to be a potential producer of endoglucanase. Enzymatic saccharification of alkali-treated wheat straw and rice straw resulted in release of 190.8 and 318.8 mg/g of reducing sugars, respectively.

References

 

Bailey MJ, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 23(3): 257–270. doi: 10.1016/0168-1656(92)90074-J.

 

Bansal N, Tewari R, Soni R, Soni SK. 2012. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 32(7): 1341–1346. doi: 10.1016/j.wasman.2012.03.006.

 

Cha J-H, Yoon -J-J, Cha C-J. 2018. Functional characterization of a thermostable endoglucanase belonging to glycoside hydrolase family 45 from Fomitopsis palustris. Appl Microbiol Biotechnol. 102(15): 6515–6523. doi: 10.1007/s00253-018-9075-5.

 

Da Silva T, De Cássia V, De Souza Coto AL, De Carvalho Souza R, Bertoldi Sanchez Neves M, Gomes E, Bonilla-Rodriguez GO. 2016. Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungus Myceliophthora heterothallica F. 2.1.4. obtained by solid-state and submerged cultivation. Biochem Res Int. 2016.

 

Das A, Bhattacharya S, Roopa KS, Yashoda SS. 2011. Microbial utilization of agronomic wastes for cellulase production by Aspergillus niger and trichoderma viride using solid state fermentation. Dyn Biochem Process Biotech Mol Biol. 5:18–22.

 

Deswal D, Khasa YP, Kuhad RC. 2011. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol. 102(10): 6065–6072. doi: 10.1016/j.biortech.2011.03.032.

 

Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D. 2009. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crops Prod. 29(2–3): 404–411. doi: 10.1016/j.indcrop.2008.07.008.

 

El-Bondkly AMA, El-Gendy MMA. 2012. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. Antonie Van Leeuwenhoek. 101(2): 331–346. doi: 10.1007/s10482-011-9639-1.

 
Eriksson K-EL, Blanchette RA, Ander P. 2012. Microbial and enzymatic degradation of wood and wood components. Springer Science & Business Media. Springer-Verlag Berlin Heidelberg
 

Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y. 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol. 99(16):7623–7629. doi:10.1016/j.biortech.2008.02.005.

 
Ghosh T. 1994. Measurement of cellulase activities, commission on biotechnology. IUPAC OpenURL. Great Britain
 

Gilbertson RL. 1981. North American wood-rotting fungi that cause brown rots. Mycotaxon. 12:372–416.

 
Goering HK, Van Soest PJ. 1970. Forage fibre analysis (apparatus, reagent, procedure and some applicants). In: Agric. Res. Serv. USDA. p. p. 20. Washington, DC: USDA. USDA agriculture handbook.
 
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symp Ser. Vol. 41, c1979-c2000. London: Information Retrieval Ltd; p. 95–98.
 

Herculano PN, Porto TS, Moreira KA, Pinto GAS, Souza-Motta CM, Porto ALF. 2011. Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Appl Biochem Biotechnol. 165(3–4):1057–1067. doi:10.1007/s12010-011-9321-0.

 

Jain L, Agrawal D. 2018. Performance evaluation of fungal cellulases with dilute acid pretreated sugarcane bagasse: a robust bioprospecting strategy for biofuel enzymes. Renew Energy. 115:978–988. doi:10.1016/j.renene.2017.09.021.

 

Ji H-W, Cha C-J. 2010. Identification and functional analysis of a gene encoding β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris. J Microbiol. 48(6):808–813. doi:10.1007/s12275-010-0482-2.

 

Joo A-R, Jeya M, Lee K-M, Sim W-I, Kim J-S, Kim I-W, Kim Y-S, Oh D-K, Gunasekaran P, Lee J-K. 2009. Purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl Microbiol Biotechnol. 83(2):285–294. doi:10.1007/s00253-009-1861-7.

 

Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V. 2006. Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J Microbiol Biotechnol. 22(4):391–397. doi:10.1007/s11274-005-9046-8.

 

Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ. 2003. Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem. 38(7):1099–1104. doi:10.1016/S0032-9592(02)00242-X.

 

Kuhad RC, Gupta R, Singh A. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 2011:2011. doi:10.4061/2011/280696.

 
Kuhad RC, Singh A, Eriksson K-EL. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Biotechnol pulp Pap Ind. Springer; p. 45–125. Springer, Berlin, Heidelberg
 

Lechner BE, Papinutti VL. 2006. Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem. 41(3):594–598. doi:10.1016/j.procbio.2005.08.004.

 

Lee JK, Kim YS, Keum S, Jeya M. 2010. Purification and characterization of a thermostable xylanase from Fomitopsis pinicola. J Microbiol Biotechnol. 20(10):1415–1423. doi:10.4014/jmb.1003.03031.

 

Li H-J, Han M-L, Cui B-K. 2013. Two new Fomitopsis species from southern China based on morphological and molecular characters. Mycol Prog. 12(4):709–718. doi:10.1007/s11557-012-0882-2.

 

Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q. 2011. Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegradation. 65(5):717–725. doi:10.1016/j.ibiod.2011.04.005.

 

Marques NP, De Cassia Pereira J, Gomes E, Da Silva R, Araújo AR, Ferreira H, Rodrigues A, Dussán KJ, Bocchini DA. 2018. Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crops Prod. 122:66–75. doi:10.1016/j.indcrop.2018.05.022.

 

Medeiros RG, Hanada R, Ferreira Filho EX. 2003. Production of xylan-degrading enzymes from Amazon forest fungal species. Int Biodeterior Biodegradation. 52(2):97–100. doi:10.1016/S0964-8305(02)00179-8.

 

Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3):426–428. doi:10.1021/ac60147a030.

 

Montgomery DC. 1991. Experiments with a single factor: the analysis of variance. Des Anal Exp. 7:87–89.

 

Murrill WA. 1903. The polyporaceae of North America.-III. the genus fomes. Bull Torrey Bot Club. 30(4):225–232. doi:10.2307/2478780.

 
Myers RH, Montgomery DC, Anderson-Cook CM. 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons. Hoboken, New Jersey
 

Narahara H, Koyama Y, Yoshida T, Pichanigkura S, Ueda R, Taguchi H. 1982. Growth and enzyme production in a solid-state culture of Aspergillus oryzae. J Ferment Technol. 60:311–319.

 

Narra M, Dixit G, Divecha J, Kumar K, Madamwar D, Shah AR. 2014. Production, purification and characterization of a novel GH 12 family endoglucanase from Aspergillus terreus and its application in enzymatic degradation of delignified rice straw. Int Biodeterior Biodegradation. 88:150–161. doi:10.1016/j.ibiod.2013.12.016.

 

Navya PN, Pushpa SM. 2013. Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk. Bioprocess Biosyst Eng. 36(8):1115–1123. doi:10.1007/s00449-012-0865-3.

 

Nguyen KA, Kumla J, Suwannarach N, Penkhrue W, Lumyong S. 2019. Optimization of high endoglucanase yields production from polypore fungus, Microporus xanthopus strain KA038 under solid-state fermentation using green tea waste. Biol Open. 8(11):bio047183. doi:10.1242/bio.047183.

 

Okamoto K, Sugita Y, Nishikori N, Nitta Y, Yanase H. 2011. Characterization of two acidic β-glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris. Enzyme Microb Technol. 48(4–5):359–364. doi:10.1016/j.enzmictec.2010.12.012.

 

Panagiotou G, Kekos D, Macris BJ, Christakopoulos P. 2003. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod. 18(1):37–45. doi:10.1016/S0926-6690(03)00018-9.

 

Park AR, Park J-H, Ahn H-J, Jang JY, Yu BJ, Um B-H, Yoon -J-J. 2015. Enhancement of β-glucosidase activity from a brown rot fungus Fomitopsis pinicola KCTC 6208 by medium optimization. Mycobiology. 43:57–62.

 

Patel H, Divecha J, Shah A. 2016. Optimization of ethanol production from enzymatic hydrolysate of maize stover. Adv Recycl Waste Manag. 1(1):2475–7675. doi:10.4172/2475-7675.1000105.

 

Patel H, Divecha J, Shah A. 2017. Microwave assisted alkali treated wheat straw as a substrate for co-production of (hemi)cellulolytic enzymes and development of balanced enzyme cocktail for its enhanced saccharification. J Taiwan Inst Chem Eng. 71:298–306. doi:10.1016/j.jtice.2016.12.032.

 

Picart P, Diaz P, Pastor FIJ. 2007. Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Lett Appl Microbiol. 45(1):108–113. doi:10.1111/j.1472-765X.2007.02148.x.

 

Rahnama N, Mamat S, Shah UKM, Ling FH, Rahman NAA, Ariff AB. 2013. Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources. 8(2):2881–2896. doi:10.15376/biores.8.2.2881-2896.

 

Ray MJ, Leak DJ, Spanu PD, Murphy RJ. 2010. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy. 34(8):1257–1262. doi:10.1016/j.biombioe.2010.03.015.

 

Sajith S, Sreedevi S, Priji P, Unni KN, Benjamin S. 2014. Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1. Ann Microbiol. 64(2):763–771. doi:10.1007/s13213-013-0711-0.

 

Saratale GD, Kshirsagar SD, Sampange VT, Saratale RG, Oh S-E, Govindwar SP, Oh M-K. 2014. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl Biochem Biotechnol. 174(8):2801–2817. doi:10.1007/s12010-014-1227-1.

 

Shah A, Patel H, Narra M. 2017. Bioproduction of fungal cellulases and hemicellulases through solid state fermentation. Fungal Metab. 349–393.

 

Shah AR, Madamwar D. 2005. Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem. 40(5):1763–1771. doi:10.1016/j.procbio.2004.06.041.

 

Shah F, Mali T, Lundell TK, Kelly RM. 2018. Polyporales brown rot species Fomitopsis pinicola: enzyme Activity profiles, oxalic acid production, and Fe 3+-reducing metabolite secretion. Appl Environ Microbiol. 84(8):e02662–17. doi:10.1128/AEM.02662-17.

 

Shimokawa T, Shibuya H, Nojiri M, Yoshida S, Ishihara M. 2008. Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from Fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis. Appl Environ Microbiol. 74(18):5857–5861. doi:10.1128/AEM.00435-08.

 

Silvestro D, Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution. 12(4):335–337. doi:10.1007/s13127-011-0056-0.

 

Song B-C, Kim K-Y, Yoon -J-J, Sim S-H, Lee K, Kim Y-S, Kim Y-K, Cha C-J. 2008. Functional analysis of a gene encoding endoglucanase that belongs to glycosyl hydrolase family 12 from the brown-rot basidiomycete Fomitopsis palustris. J Microbiol Biotechnol. 18(3):404–409.

 

Sukumaran RK, Singhania RR, Mathew GM, Pandey A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy. 34(2):421–424. doi:10.1016/j.renene.2008.05.008.

 
Sun X, Liu Z, Qu Y, Li X. 2007.
 

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6:molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729. doi:10.1093/molbev/mst197.

 

Thompson JD, Gibson TJ, Higgins DG. 2003. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinforma. 1:2–3.

 

Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM, Savage AV, Coughlan MP. 2002. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol. 1596(2):366–380. doi:10.1016/S0167-4838(01)00308-9.

 

Underwood LM. 1897. Some new fungi, chiefly from Alabama. Bull Torrey Bot Club. 24(2):81–86. doi:10.2307/2477799.

 

Wang W, Yuan T, Wang K, Cui B, Dai Y. 2012. Statistical optimization of cellulase production by the brown rot fungi, Fomitopsis palustris, and its application in the enzymatic hydrolysis of LHW-pretreated woody biomass. Process Biochem. 47(12):2552–2556. doi:10.1016/j.procbio.2012.08.004.

 

Wen Z, Liao W, Chen S. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour Technol. 96(4):491–499. doi:10.1016/j.biortech.2004.05.021.

 

Xu Z-H, Bai Y-L, Xu X, Shi J-S, Tao W-Y. 2005. Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate. World J Microbiol Biotechnol. 21(4):575–581. doi:10.1007/s11274-004-3491-7.

 

Yoon -J-J, Cha C-J, Kim Y-S, Son D-W, Kim Y-K. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J Microbiol Biotechnol. 17(5):800–805.

 

Yoon -J-J, Cha C-J, Y-s K, Kim W. 2008. Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol Lett. 30(8):1373–1378. doi:10.1007/s10529-008-9715-4.

 

Yoon -J-J, Kim Y-K. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. J Microbiol. 43(6):487–492.

 

Zhang H, Sang Q. 2012. Statistical optimization of cellulases production by Penicillium chrysogenum QML-2 under solid-state fermentation and primary application to chitosan hydrolysis. World J Microbiol Biotechnol. 28(3):1163–1174. doi:10.1007/s11274-011-0919-8.

Mycology
Pages 325-340
Cite this article:
Patel A, Divecha J, Shah A. Fomitopsis meliae CFA 2, a novel brown rot for endoglucanase: emphasis towards enhanced endoglucanase production by statistical approach. Mycology, 2021, 12(4): 325-340. https://doi.org/10.1080/21501203.2021.1918277

209

Views

4

Crossref

4

Web of Science

4

Scopus

Altmetrics

Received: 02 February 2021
Accepted: 13 April 2021
Published: 30 April 2021
© 2021 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return