AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Characterization of a new strain of Metarhizium novozealandicum with potential to be developed as a biopesticide

Laura F. Villamizara( )Gloria BarrerabMark HurstaTravis R. Glarec
AgResearch Ltd., Lincoln Research Centre, Christchurch, New Zealand
Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA,Bogotá, Colombia
Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
Show Author Information

Abstract

The fungal species Metarhizium novozealandicum, that occurs only in New Zealand and Australia has been poorly studied. In this work, a new strain of M. novozealandicum isolated from a larva of Wiseana sp. is described based on morphology, genomic multilocus (ITS, EF-1α and β-tubulin) phylogeny, growth in different culture media and insecticidal activity. The isolate AgR-F177 was clustered in the same clade with M. novozealandicum. AgR-F177 colonies developed faster on Sabouraud Dextrose Agar (SDA) than on Potato Dextrose Agar (PDA) when incubated at 25℃, with no growth observed at 30℃ on either media. Conidia yield on an oat-based medium in semisolid fermentation was 7.41 x 108conidia/g of substrate and a higher yield of 1.68 x 109conidia/g of substrate was obtained using solid fermentation on cooked rice. AgR-F177 formed microsclerotia (MS) in liquid fermentation after 7 days reaching the maximum yield of 3.3 × 103 MS/mL after 10 days. AgR-F177 caused mortality in Wiseana copularis, Costelytra giveni and Plutella xylostella larvae with efficacies up to 100%, 69.2%, and 45.7%, respectively. The ease of production of AgR-F177 with different fermentation systems and its pathogenicity against different insect pests reveal its potential as a new biopesticide.

References

 

Aa B, MH W. 1986. ‘Biosynthesis and functions of fungal melanins’. Annu Rev Phytopathol. 24(1): 411–451. doi: 10.1146/annurev.py.24.090186.002211.

 

Aguirre N, Villamizar L, Espinel C, Cotes A. 2009. Effect of pH and water activity over Nomuraea rileyi (Hyphomycetes) development. Rev Colomb Entomol. 35:138–144.

 

Ajdari Z, Ebrahimpour A, Abdul Manan M, Hamid M, Mohamad R, Ariff AB. 2011. Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid state cultivation. J Biomed Biotechnol. 2011:487329. doi: 10.1155/2011/487329.

 

Barra-Bucarei L, Vergara P, Cortes A. 2016. Conditions to optimize mass production of Metarhizium anisopliae (Metschn.) Sorokin 1883 in different substrates. Chil J Agric Res. 76(4): 448–454. doi: 10.4067/S0718-58392016000400008.

 

Beys-da-silva WO, Santi L, Berger M, Calzolari D, Passos DO, Guimarães JA, Moresco JJ, Yates JR. 2014. Secretome of the biocontrol agent Metarhizium anisopliae induced by the cuticle of the cotton pest Dysdercus peruvianus reveals new insights into infection. J Proteome Res. 13(5): 2282–2296. doi: 10.1021/pr401204y.

 

Bhanu Prakash GV, Padmaja V, Siva Kiran RR. 2008. Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresour Technol. 99(6): 1530–1537. doi: 10.1016/j.biortech.2007.04.031.

 

Bonifacio AF, Ballesteros ML, Bonansea RI, Filippi I, Ame MV, Hued AC. 2017. Environmental relevant concentrations of a chlorpyrifos commercial formulation affecttwo neotropical fish species, Cheirodon interruptus and Cnesterodondecemmaculatus. Chemosphere. 188:486–493. doi: 10.1016/j.chemosphere.2017.08.156.

 

Brunner-Mendoza C, Reyes-Montes M, Moonjely S, BidochkaM TC. 2019. A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Sci Tech. 29(1): 83–102. doi: 10.1080/09583157.2018.1531111.

 

Butler MJ, Day AW. 1998. Fungal melanins: a review. Can J Microbiol. 44(12): 1115–1136. doi: 10.1139/w98-119.

 

Chen WH, Han YF, Liang JD, Liang ZQ. 2019. Morphological and phylogenetic characterization of novel Metarhizium species in Guizhou, China. Phytotaxa. 419(2): 189–196. doi: 10.11646/phytotaxa.419.2.5.

 
[EPA] Environmental Protection Authority. 2013. Decision: application for the Reassessment of a Group of Hazardous Substances. https://www.epa.govt.nz/assets/FileAPI/hsno-ar/APP201045/989dca5648/APP201045-APP201045-Decision-Amended-with-s67As-and-APP202142-2015.07.28.pdf. (accessed 5 January 2021.
 

Clifton EH, Gardescu S, Behle RW, Hajek AE. 2020 Dec 9. Optimizing Application Rates of Metarhizium brunneum(Hypocreales: Clavicipitaceae) Microsclerotia for infecting the In-vasive Asian Long Horned Beetle (Coleoptera: Cerambycidae). J EconEntomol. 113(6):2650–2656.

 

Coca-Abia MM, Romero-Samper J. 2016. Establishment of the identity of Costelytra zealandica (White 1846) (Coleoptera: Scarabeidae: Melolonthinae) a species commonly known as the New Zealand grass grub. New Zealand Entomologist. 39(2):129–146. doi:10.1080/00779962.2016.1230254.

 

Driver F, Milner RJ, Trueman JWH. 2000. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol Res. 104(2):134–150. doi:10.1017/S0953756299001756.

 

Duarte RT, Gonçalves KC, Espinosa DJ, Moreira LF, De Bortoli SA, Humber RA, Polanczyk RA. 2016. Potential of entomopathogenic fungi as biological control agents of diamond back moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. J Econ Entomol. 109(2):594–601. doi:10.1093/jee/tow008.

 

Feng P, Shang Y, Cen K, Wang C. 2015. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci USA. 112(36):11365–11370. doi:10.1073/pnas.1503200112.

 

Ferguson CM, Barratt BIP, Bell N, Goldson SL, Hardwick S, Jackson M, Popay AJ, Rennie G, Sinclair S, Townsend R, et al. 2018. Quantifying the economic cost of invertebrate pests to New Zealand’s pastoral industry. NZ J Agri Res. 62(3):255–315. doi:10.1080/00288233.2018.1478860.

 
Fernandes EK, Keyser CA, Chong JP, Rangel DE, Miller MP, Roberts DW. 2010 Jan. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. J ApplMicrobiol.108(1): 115–128.
 

Gao L, Sun MH, Liu XZ, Che YS. 2007. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol Res. 111(1):87–92. doi:10.1016/j.mycres.2006.07.019.

 

García I, Del Pozo E. 1999. Aislamiento y producción de conidios de Nomuraea rileyi (Farlow) Samson y su virulencia en larvas de Spodopterafrugiperda (J. E. Smith). Revista Protección Vegetal. 14(2):95–100.

 

Glare TR. 1994. Stage-dependent synergism using Metarhizium anisopliae and Serratia entomophila against Costelytra zealandica. Biocontrol Science and Technology. 4(3):321–329. doi:10.1080/09583159409355340.

 

Gordee RS, Porter CL. 1961. Structure, germination, and physiology of microsclerotia of Verticillium albo-atrum. Mycologia. 53(2):171–182. doi:10.1080/00275514.1961.12017947.

 

Griffin GJ, Roth DA, Powell NL. 1978. Physical factors that influence the recovery of microsclerotium population of Cylindrocladium crotalariae from naturally infested soils. Phytopathology. 68(6):887–891. doi:10.1094/Phyto-68-887.

 

Hurst MR, Swaminathan J, Wright DA, Hardwick S, Ferguson CM, Beattie A, NK R, Harper L, Moss RA, Cave VM, et al. 2020. Development of abait for control of larvae of the porina moth (Wiseana spp.), a pest of New Zealand improved grassland systems. Pest Manag Sci. 76(1):350–359. doi:10.1002/ps.5521.

 

Jackson MA, Jaronski ST. 2009. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res. 113(8):842–850. doi:10.1016/j.mycres.2009.03.004.

 
Jackson TA, Townsend RJ, Dunbar JE, Ferguson CM, Marshall SDG, Zydenbos SM 2012. Anticipating the unexpected - managing pasture pest outbreaks after large-scale land conversion. Proceedings of the New Zealand Grassland Association. Gore (New Zealand). 74:153–158.
 
Jaronski ST, Jackson MA. 2012. Mass production of entomopathogenic hypocreales. In: Lacey L, editor. Manual of techniques in invertebrate pathology. 2nd ed. London: UK. Academic Press; p. 255–284.
 

JE H, Magan N. 1996. Culture age, temperature, and pH after the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol. 62(7):2435–2442. doi:10.1128/AEM.62.7.2435-2442.1996.

 

Kepler RM, Humber RA, Bischoff JF, Rehner SA. 2014. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia. 106(4):811–829. doi:10.3852/13-319.

 

Kikuchi H, Hoshi T, Kitayama M, Sekiya M, Katou Y, Ueda K, Kubohara Y, Sato H, Shimazu M, Kurata S, et al. 2009. New diterpene pyrone-type compounds, metarhizins A and B, isolated from entomopathogenic fungus, Metarhizium flavoviride and their inhibitory effects on cellular proliferation. Tetrahedron. 65(2):469–477. doi:10.1016/j.tet.2008.11.014.

 

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16(2):111–120. doi:10.1007/BF01731581.

 

Kobori NN, Mascarin GM, Jackson MA, Schisler DA. 2015. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biol. 119(4):179–190. doi:10.1016/j.funbio.2014.12.005.

 

Kozone I, Ueda JY, Watanabe M, Nogami S, Nagai A, Inaba S, Ohya Y, Takagi M, Shin-ya K. 2009. Novel 24-membered macrolides, JBIR-19 and −20 isolated from Metarhizium sp. fE61. J Antibiot (Tokyo). 62(3):159–162. doi:10.1038/ja.2009.5.

 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 35(6):1547–1549. doi:10.1093/molbev/msy096.

 

Latch GVM, Kain WM. 1983. Control of porina caterpillar (Wiseana spp.) in pasture by the fungus Metarhizium anisopliae. N Z J Exp Agric. 11:4351–4354.

 

López-Escudero FJ, Mwanza C, Blanco-López MA. 2006. Production of homogeneous and viable Verticillium dahliaemicrosclerotia effective for Verticillium wilt studies. Biotechnology. 5(4):421–428. doi:10.3923/biotech.2006.421.428.

 

Markina-Iñarrairaegui A, Spielvogel A, Etxebeste O, Ugalde U, Espeso EA. 2020. Tolerance to alkaline ambient pH in Aspergillus nidulans depends on the activity of ENA proteins. Sci Rep. 10(1):14325. doi:10.1038/s41598-020-71297-z.

 

Mascarin GM, Kobori NN, de Jesus Vital RC, Jackson MA, Quintela ED. 2014. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World J Microbiol Biotechnol. 30(5):1583–1590. doi:10.1007/s11274-013-1581-0.

 

Mayerhofer J, Lutz A, Dennert F, Rehner SA, Kepler RM, Widmer F, Enkerli J. 2019. A species-specific multiplexed PCR amplicon assay for distinguishing between Metarhizium anisopliae, M.brunneum, M.pingshaense and M. robertsii. J Invertebr Pathol. 161:23–28. doi:10.1016/j.jip.2019.01.002.

 

Mayo‐Prieto S, AJ P, Á R, Gutiérrez S, Casquero PA. 2020. Evaluation of substrates and additives to Trichoderma harzianum development by qPCR. Agron J. 112(4):3188–3194. doi:10.1002/agj2.20155.

 

Mc Namara L, Dolan SK, Walsh JMD, Stephens JC, Glare TR, Kavanagh K, Griffin CT. 2019. Oosporein, an abundant metabolite in Beauveria caledonica, with a feedback induction mechanism and a role in insect virulence. Fungal Biol. 123(8):601e610. doi:10.1016/j.funbio.2019.01.004.

 

Mejía C, Espinel C, Forero M, Ramos F, Brandão P, Villamizar L. 2020. Improving ecological fitness of Beauveria bassiana conidia to control the sugar cane borer Diatraea saccharalis. Biocontrol Sci Tech. 30(6):513–530. doi:10.1080/09583157.2020.1738343.

 
Milner RJ. 1989. Ecological considerations on the use of Metarhizium for control of soil-dwelling pests. In: Robertson LN, Allsopp PG, editors. Proceedings of a Soil Invertebrate Workshop. Queensland: Queensland Department of Primary Industries Conference and Workshop series QC 89004, Indoorpilly; 10–13.
 

Mishra S, Malik A. 2013. Nutritional optimization of a native Beauveria bassiana isolate (HQ917687) pathogenic to housefly, Musca domestica L. J Parasit Dis. 37(2):199–207. doi:10.1007/s12639-012-0165-5.

 

Mongkolsamrit S, Khonsanit A, Thanakitpipattana D, Tasanathai K, Noisripoom W, Lamlertthon S, Himaman W, Houbraken J, Samson RA, Luangsa-Ard J. 2020. Revisiting Metarhizium and the description of new species from Thailand. Stud Mycol. 95:171–251. doi:10.1016/j.simyco.2020.04.001.

 
Nelson TL, Low L, Glare TR. 1996. Large scale production of New Zealand strain of Beauveria bassiana and Metarhizium sp. In: Proceeding 49thNZ Plant Protection Conference. New Zealand Plant Protection Society (Inc). pp: 257–261.
 

Nishi O, Sato H. 2018. Isolation of Metarhizium spp. from rhizosphere soils of wild plants reflects fungal diversity in soil but not plant specificity. Mycology. 10(1):22–31. doi:10.1080/21501203.2018.1524799.

 

Nishi O, Shimizu S, Sato H. 2017. Metarhizium bibionidarum and M. purpureogenum: new species from Japan. Mycol Progress. 16(10):987–998. doi:10.1007/s11557-017-1333-x.

 

Perry KD, Keller MA, Baxter SW. 2020. Genome-wide analysis of diamond back moth, Plutella xylostella L., from Brassica crops and wild host plants reveals no genetic structure in Australia. Sci Rep. 10(1):12047. doi:10.1038/s41598-020-68140-w.

 

Pham T-L, Bui HM. 2018. Comparison of diazinon toxicity to temperate and tropical freshwater Daphnia Species. J Chem ID. 9217815:5.

 
Popay A 2008. Insect pests of crops, pasture and forestry, In: te Ara - the Encyclopedia of New Zealand, http://www.TeAra.govt.nz/en/insect-pests-of-crops-pasture-and-forestry/print (accessed 2021 Apr 30)
 

Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 97(1):84–98. doi:10.3852/mycologia.97.1.84.

 

Richards NK, Mansfield S, Townsend RJ, Ferguson CM. 2017. Genetic variation within species and haplotypes of the Wiseana (Lepidoptera: hepialidae) complex and development of non-sequenced based identification tools to aid field studies. Pest Manag Sci. 73(11):2334–2344. doi:10.1002/ps.4620.

 

Rivalier E, Seydel S. 1932. Nouveau procedé de culture sur lames gélosésappliqué a l’étudemicroscopique de champignosdeteignes. Ann Parasitol Hum Comp. 10(5):444–452. doi:10.1051/parasite/1932105444.

 

Rivas-Franco F, Hampton J, Altier N, Swaminathan J, Rostás M, Saville D, Jackson T, Jackson M, Glare T, Wessman P. 2019. Production of microsclerotia from entomopathogenic fungi and use in maize seed coating as delivery for biocontrol against Fusarium graminearum. Frontiers in Sustainable Food Systems. 4:242. doi:10.3389/fsufs.2020.606828

 

Rombach MC, Humber RA, Evans HC. 1987. Metarhizium album, a Fungal Pathogen of Leaf- and Planthoppers of Rice. Trans Br Mycol Soc. 88(4):451–459. doi:10.1016/S0007-1536(87)80028-1.

 

Sahayaraj K, Namasivayam KRS. 2008. Mass production of entomopathogenic fungi using agricultural products and byproducts. African J Biote. 7(12):1907–1910. doi:10.5897/AJB07.778.

 

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406–425. doi:10.1093/oxfordjournals.molbev.a040454.

 

Schrank A, Vainstein MH. 2010. Metarhizium anisopliae enzymes and toxins. Toxicon. 56(7):1267–1274. doi:10.1016/j.toxicon.2010.03.008.

 

Sd R, Hachet C, Nelson TL, Brownbridge M, Glare TR. 2007. Persistence of conidia and potential efficacy ofBeauveria bassianaagainst pinhole borers in New Zealand southern beech forests. For Ecol Manage. 246(2–3):232–239. doi:10.1016/j.foreco.2007.04.005.

 

Shearer JF. 2007. Some observations concerning microsclerotia and spore production of Mycoleptodiscus terrestris in culture. Mycologia. 99(1):88–90. doi:10.1080/15572536.2007.11832603.

 

Song Z, Shen L, Zhong Q, Yin Y, Wang Z. 2016. Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as bionematicide. Nematology. 18(6):719–726. doi:10.1163/15685411-00002987.

 

Song Z, Yin Y, Jiang S, Liu J, Wang Z. 2014. Optimization of culture medium for microsclerotia production by Nomuraea rileyi and analysis of their viability for use as a mycoinsecticide. BioControl. 59(5):597–605. doi:10.1007/s10526-014-9589-4.

 

Sorokin, N. 1883. Plant parasites of man and animals as causes of infectious diseases. J Military Med 2 (Suppl. 1), 268–291.

 

Tartar A, Boucias DG, Adams BJ and Becnel JJ. 2002. Phylogenetic identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta). International Journal of Systematic and Evolutionary Microbiology 52:273–279.

 
Valero-Jiménez CA, JAL VK, Koenraadt CJM, Zwaan BJ, Schoustra SE. 2017 Apr 14. Experimental evolution to increase the efficacy of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes: effects on mycelial growth and virulence. Evol Appl. 10(5): 433–443. doi10.1111/eva.12451.
 

Villamizar LF, Nelson TL, Jones SA, Jackson TA, Hurst MR, Marshall SD. 2018. Formation of microsclerotia in three species of Beauveria and storage stability of a prototype granular formulation. Biocontrol Sci Tech. 28(12):1097–1113. doi:10.1080/09583157.2018.1514584.

 

Vu VH, Hong SI, Kim K. 2008. Production of Aerial Conidia of Lecanicillium lecanii 41185 by Solid-State Fermentation for Use as a Mycoinsecticide. Mycobiology. 36(3):183–189. doi:10.4489/MYCO.2008.36.3.183.

 
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols a guide to methods and applications, 315–322. Academic Press, San Diego.
 
Wright D, Zydenbos S, Wessman P, O’Callaghan M, Townsend R, Jackson T, van Koten C, Mansfield S. 2017.Surface coating aids survival of Serratia entomophila (Enterobacteriaceae) in granules for surface application, Biocontrol Science and Technology, 27:12, 1383–1399.
 

Wu FL, Zhang G, Ren A, Dang ZH, Shi L, Jiang AL, Zhao MW. 2016. The pH-responsive transcription factor PacC regulates mycelial growth, fruiting body development, and ganoderic acid biosynthesis in Ganoderma lucidum. Mycologia. 108(6):1104–1113. doi:10.3852/16-079.

 

Xie L, Chen HM, Yang JB. 2012. Conidia Production by Beauveria bassiana on Rice in Solid-State Fermentation Using Tray Bioreactor. Adv Mat Res. 610:3478–3482.

 

Zar Jeds. 1999. Biostatistical analysis. 4th ed. Upper Saddle River, New Jersey Prentice-Hall, Inc. 663 p

 

Zydenbos SM, Townsend RJ, Lane PMS, Mansfield S, O’Callaghan M, van Koten C, Jackson TA. 2016. Effect of Serratia entomophila and diazinon applied with seed against grass grub populations on the North Island volcanic plateau. New Zealand Plant Protection. 69:86–93. doi:10.30843/nzpp.2016.69.5919.

Mycology
Pages 261-278
Cite this article:
Villamizar LF, Barrera G, Hurst M, et al. Characterization of a new strain of Metarhizium novozealandicum with potential to be developed as a biopesticide. Mycology, 2021, 12(4): 261-278. https://doi.org/10.1080/21501203.2021.1935359

202

Views

14

Crossref

12

Web of Science

14

Scopus

Altmetrics

Received: 13 January 2021
Accepted: 23 May 2021
Published: 18 June 2021
© 2021 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return