AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Endophytic fungi: a tool for plant growth promotion and sustainable agriculture

Noemi Carla BaronEverlon Cid Rigobelo ( )
Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
Show Author Information

Abstract

Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.

References

 

Ahmad I, Jimenez-Gasco MD, Luthe DS, Shakeel SN, Barbercheck ME. 2020. Endophytic metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biological Control. May; 144:10. doi: 10.1016/j.biocontrol.2019.104167.

 

Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SO. 2018. Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol. Dec; 9:26. doi: 10.3389/fmicb.2018.02992.

 

Aly AH, Debbab A, Proksch P. 2011. Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 90(6):1829–1845. doi: 10.1007/s00253-011-3270-y.

 

Anjum R, Afzal M, Baber R, Khan MAJ, Kanwal W, Sajid W, Raheel A. 2019. Endophytes: as potential biocontrol agent—review and future prospects. J Agric Sci. 11:113.

 

Arnold A. 2008. Hidden within our botanical richness, a treasure trove of fungal endophytes. Plant Press. 32:13–15.

 

Arnold AE, Lutzoni F. 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?. Ecology. 88(3):541–549. doi: 10.1890/05-1459.

 

Bader AN, Salerno GL, Covacevich F, Consolo VF. 2020. Native trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (solanum lycopersicum L.). Journal of King Saud University - Science. Jan; 32(1):867–873. doi: 10.1016/j.jksus.2019.04.002.

 

Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Holmes KA. 2006. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four trichoderma species. Planta. 224(6):1449–1464. doi: 10.1007/s00425-006-0314-0.

 

Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang LD. 2018. Fungal endophytes: beyond herbivore management. Front Microbiol. Mar; 9:11. doi: 10.3389/fmicb.2018.00544.

 

Baron NC, Costa NTA, Mochi DA, Rigobelo EC. 2018. First report of aspergillus sydowii and aspergillus brasiliensis as phosphorus solubilizers in maize. Ann Microbiol. Dec; 68(12):863–870. doi: 10.1007/s13213-018-1392-5.

 

Baron NC, Pollo AD, Rigobelo EC. 2020. Purpureocillium lilacinum and metarhizium marquandii as plant growth-promoting fungi. Peerj. May; 8:25. doi: 10.7717/peerj.9005.

 

Baron NC, Rigobelo EC, Zied DC. 2019. Filamentous fungi in biological control: current status and future perspectives. Chilean Journal of Agricultural Research. Apr-Jun; 79(2):307–315. doi: 10.4067/S0718-58392019000200307.

 

Behie SW, Bidochka MJ. 2014. Ubiquity of insect-derived Nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil Nitrogen cycle. Appl Environ Microbiol. Mar; 80(5):1553–1560. doi: 10.1128/AEM.03338-13.

 

Behie SW, Zelisko PM, Bidochka MJ. 2012. Endophytic insect-parasitic fungi translocate Nitrogen directly from insects to plants. Science. Jun; 336(6088):1576–1577. doi: 10.1126/science.1222289.

 

Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. Aug; 84(1):11–18. doi: 10.1007/s00253-009-2092-7.

 

Berg G, Eberl L, Hartmann A. 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol. 7(11):1673–1685. doi: 10.1111/j.1462-2920.2005.00891.x.

 

Bömke C, Rojas MC, Gong F, Hedden P, Tudzynski B. 2008. Isolation and characterization of the gibberellin biosynthetic gene cluster in sphaceloma manihoticola. Appl Environ Microbiol. 74(17):5325–5339. doi: 10.1128/AEM.00694-08.

 

Bömke C, Tudzynski B. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry. 70(15–16):1876–1893. doi: 10.1016/j.phytochem.2009.05.020.

 

Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol. 55(1):61–83. doi: 10.1146/annurev-phyto-080516-035641.

 

Busby PE, Ridout M, Newcombe G. 2016. Fungal endophytes: modifiers of plant disease. Plant Mol Biol. Apr; 90(6):645–655. doi: 10.1007/s11103-015-0412-0.

 

Card S, Johnson L, Teasdale S, Caradus J. 2016. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol. Aug; 92(8):19. doi: 10.1093/femsec/fiw114.

 

Card SD, Faville MJ, Simpson WR, Johnson RD, Voisey CR, Acm DB, Hume DE. 2014. Mutualistic fungal endophytes in the Triticeae-survey and description. FEMS Microbiol Ecol. Apr; 88(1):94–106. doi: 10.1111/1574-6941.12273.

 
Carneiro FF, Pignati WA, Rigotto RM, Silva-Augusto LG, Pinheiro ARO, Faria NMX, Friedrich K, Mello MSC. 2015. Segurança alimentar e nutricional e saúde. In: Dossiê Abrasco: um alerta sobre os impactos dos agrotóxicos na saúde. Carneiro FF, Augusto LGS, Rigotto RM, Friedrich K, Campos A. Rio de Janeiro/São Paulo: Expressão Popular; p. 46–89
 

Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A. 2015. An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol. Sep; 197(7):869–881. doi: 10.1007/s00203-015-1130-3.

 

Chen WH, Wu SJ, Sun XL, Feng KM, Rahman K, Tan HY, … Han T. 2020. High-throughput sequencing analysis of endophytic fungal diversity in cynanchum sp. South African Journal of Botany. 134:349–358. doi: 10.1016/j.sajb.2020.04.010.

 

Chitnis VR, Suryanarayanan TS, Nataraja KN, Prasad SR, Oelmuller R, Shaanker RU. 2020. Fungal endophyte-mediated crop improvement: the way ahead. Front Plant Sci. Oct; 11:10. doi: 10.3389/fpls.2020.561007.

 

Chowdappa S, Jagannath S, Konappa N, Udayashankar AC, Jogaiah S. 2020. Detection and characterization of antibacterial siderophores secreted by endophytic fungi from cymbidium aloifolium. Biomolecules. Oct; 10(10):18. doi: 10.3390/biom10101412.

 

Dash CK, Bamisile BS, Keppanan R, Qasim M, Lin YW, Ul Islam S, Hussain M, Wang LD. 2018. Endophytic entomopathogenic fungi enhance the growth of phaseolus vulgaris L. (fabaceae) and negatively affect the development and reproduction of tetranychus urticae koch (acari: tetranychidae). Microb Pathog. Dec; 125:385–392. doi: 10.1016/j.micpath.2018.09.044.

 

De Bary A. 1886. Ueber einige Sclerotinien und Sclero. Botanische Zeitung. 44:377–474.

 

Demain AL. 2000. Microbial natural products: a past with a future. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY. 257:3–16.

 

Deyett E, Rolshausen PE. 2020. Endophytic microbial assemblage in grapevine. FEMS Microbiol Ecol. 96(5):fiaa053. doi: 10.1093/femsec/fiaa053.

 
DunhamTrimmer. 2020. Global biocontrol market overview: trends, drivers & insights. http://dunhamtrimmer.com/?page_id=58
 

Egamberdieva D, Sj W, Aa A, Abd AEF, Hashem A. 2017. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol. Oct; 8:14. doi: 10.3389/fmicb.2017.02104.

 

Eslahi, N, Kowsari, M, Motallebi, M, Zamani, MR, Moghadasi, Z. (2020). Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L) by increased root colonization and induction of root growth related genes. Scientia Horticulturae, 261, 108932.

 

Faeth SH. 2002. Are endophytic fungi defensive plant mutualists?. Oikos. 98(1):25–36. doi: 10.1034/j.1600-0706.2002.980103.x.

 

Faeth SH, Saari S. 2012. Fungal grass endophytes and arthropod communities: lessons from plant defence theory and multitrophic interactions. Fungal Ecol. 5(3):364–371. doi: 10.1016/j.funeco.2011.09.003.

 

Finch SC, Pennell CGL, Kerby JWF, Cave VM. 2016. Mice find endophyte-infected seed of tall fescue unpalatable - implications for the aviation industry. Grass and Forage Science. Dec; 71(4):659–666. doi: 10.1111/gfs.12203.

 

Finch SC, Thom ER, Babu JV, Hawkes AD, Waugh CD. 2013. The evaluation of fungal endophyte toxin residues in milk. N Z Vet J. 61(1):11–17. doi: 10.1080/00480169.2012.704626.

 

Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van der Lelie D, Barac T, Dowling DN. 2004. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol. 48(1):109–118. doi: 10.1016/j.femsec.2003.12.009.

 

Gimenez C, Cabrera R, Reina M, Gonzalez-Coloma A. 2007. Fungal endophytes and their role in plant protection. Curr Org Chem. 11(8):707–720. doi: 10.2174/138527207780598765.

 

Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S. 2017. Gibberellins producing endophytic fungus porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol. Apr; 8:13. doi: 10.3389/fmicb.2017.00686.

 

Hamayun M, Khan SA, Ahmad N, Tang DS, Kang SM, Na CI, … Lee IJ. 2009b. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol. 25(4):627–632. doi: 10.1007/s11274-009-9982-9.

 

Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, … Lee IJ. 2010. Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (cucumis sativus L.). Mycologia. 102(5):989–995. doi: 10.3852/09-261.

 

Hamayun M, Khan SA, Khan MA, Khan AL, Kang SM, Kim SK, Lee IJ. 2009a. Gibberellin production by pure cultures of a new strain of aspergillus fumigatus. World J Microbiol Biotechnol. 25(10):1785–1792. doi: 10.1007/s11274-009-0078-3.

 

Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews. Sep; 79(3):293–320. doi: 10.1128/MMBR.00050-14.

 

Hiruma K, Kobae Y, Toju H. 2018. Beneficial associations between brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host-symbiont molecular mechanisms. Curr Opin Plant Biol. Aug; 44:145–154. doi: 10.1016/j.pbi.2018.04.009.

 

Hyde KD, Soytong K. 2008. The fungal endophyte dilemma. Fungal Divers. Nov;33:163–173.

 

Ikram M, Ali N, Jan G, FG J, IU R, Iqbal A, Hamayun M. 2018. IAA producing fungal endophyte penicillium roqueforti thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. Plos One. Nov; 13(11):22. doi: 10.1371/journal.pone.0208150.

 

Ismail HM, Hussain A, Iqbal A, Khan SA, Lee IJ. 2020. Aspergillus niger boosted heat stress tolerance in sunflower and soybean via regulating their metabolic and antioxidant system. Journal of Plant Interactions. 15(1):223–232. doi: 10.1080/17429145.2020.1771444.

 

Jaber LR, Enkerli J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth?. Biocontrol Science and Technology. 27(1):28–41. doi: 10.1080/09583157.2016.1243227.

 

Jan FG, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee IJ. 2019. An endophytic isolate of the fungus yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol. Jan;19:10.

 

Jaroszuk-Ściseł J, Kurek E, Trytek M. 2014. Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by fusarium culmorum strains with different effects on cereal growth. Biologia. 69(3):281–292. doi: 10.2478/s11756-013-0328-6.

 

Johnson LJ, De Bonth AC, Briggs LR, Caradus JR, Finch SC, Fleetwood DJ, Card SD. 2013. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers. 60(1):171–188. doi: 10.1007/s13225-013-0239-4.

 

Kaddes A, Fauconnier ML, Sassi K, Nasraoui B, Jijakli MH. 2019. Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules. Mar; 24(6):16. doi: 10.3390/molecules24061065.

 

Kemen E, Jones JD. 2012. Obligate biotroph parasitism: can we link genomes to lifestyles?. Trends Plant Sci. 17(8):448–457. doi: 10.1016/j.tplants.2012.04.005.

 

Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of paecilomyces formosus LHL10. BMC Microbiol. Jan; 12(1):14. doi: 10.1186/1471-2180-12-3.

 

Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ. 2015. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol. Mar; 35(1):62–74. doi: 10.3109/07388551.2013.800018.

 

Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH. 2008. Plant growth promotion and penicillium citrinum. BMC Microbiol. Dec; 8(1):10. doi: 10.1186/1471-2180-8-231.

 

Krell V, Unger S, Jakobs-Schoenwandt D, Patel AV. 2018. Endophytic metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecol. Aug; 34:43–49. doi: 10.1016/j.funeco.2018.04.002.

 

Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ. 2007. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytologist. 174(3):648–657. doi: 10.1111/j.1469-8137.2007.02008.x.

 
Kulkarni S, Goswami A 2019, Feb. Effect of excess fertilizers and nutrients: a review on impact on plants and human population. In Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.
 

Kusari S, Hertweck C, Spiteller M. 2012. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol. 19(7):792–798. doi: 10.1016/j.chembiol.2012.06.004.

 

Latz MAC, Jensen B, Collinge DB, Jorgensen HJL. 2018. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol Divers. Nov; 11(5–6):555–567. doi: 10.1080/17550874.2018.1534146.

 

Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH. 2017. Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol. 18(3):469–473.

 

Lopez DC, Sword GA. 2015. The endophytic fungal entomopathogens beauveria bassiana and purpureocillium lilacinum enhance the growth of cultivated cotton (gossypium hirsutum) and negatively affect survival of the cotton bollworm (helicoverpa zea). Biological Control. Oct; 89:53–60. doi: 10.1016/j.biocontrol.2015.03.010.

 

Lr J. 2018. Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta. Dec; 248(6):1525–1535. doi: 10.1007/s00425-018-2991-x.

 

Lugtenberg BJJ, Caradus JR, Johnson LJ. 2016. Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol. Dec; 92(12):17. doi: 10.1093/femsec/fiw194.

 
MAPA - Ministério da Agricultura, Pecuária e Abastecimento. 2020. Programa Nacional de Bioinsumos. Accessed 10 October 2020. https://www.gov.br/agricultura/pt-br/assuntos/bioinsumos
 

Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 37(5):634–663. doi: 10.1111/1574-6976.12028.

 

Moraga EQ. 2020. Entomopathogenic fungi as endophytes: their broader contribution to IPM and crop production. Biocontrol Science and Technology. Sep; 30(9):864–877. doi: 10.1080/09583157.2020.1771279.

 

Murphy BR, Doohan FM, Hodkinson TR. 2018. From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi. Mar; 4(1):11. doi: 10.3390/jof4010024.

 

Numponsak T, Kumla J, Suwannarach N, Matsui K, Lumyong S. 2018. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, colletotrichum fructicola CMU-A109. Plos One. Oct; 13(10):17. doi: 10.1371/journal.pone.0205070.

 

Ortega-Garcia JG, Montes-Belmont R, Rodriguez-Monroy M, Ramirez-Trujillo JA, Suarez-Rodriguez R, Sepulveda-Jimenez G. 2015. Effect of trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Sci Hortic (Amsterdam). Nov; 195:8–16. doi: 10.1016/j.scienta.2015.08.027.

 

Poveda J, Abril-Urias P, Escobar C. 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: trichoderma, mycorrhizal and endophytic fungi. Front Microbiol. May; 11:14. doi: 10.3389/fmicb.2020.00992.

 

Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, Marostica MR. 2014. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis. Feb; 62(2):63–79. doi: 10.1007/s13199-014-0273-3.

 

Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK. 2020. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. Aug; 113(8):1075–1107. doi: 10.1007/s10482-020-01429-y.

 

Rashmi M, Kushveer JS, Sarma VV. 2019. A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere. 10(1):798–1079. doi: 10.5943/mycosphere/10/1/19.

 

Ribeiro ADS, Polonio JC, Costa AT, Dos Santos CM, Rhoden SA, Azevedo JL, Pamphile JA. 2018. Bioprospection of culturable endophytic fungi associated with the ornamental plant pachystachys lutea. Curr Microbiol. 75(5):588–596. doi: 10.1007/s00284-017-1421-9.

 

Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytologist. 182(2):314–330. doi: 10.1111/j.1469-8137.2009.02773.x.

 

Sabarwal A, Kumar K, Singh RP. 2018. Hazardous effects of chemical pesticides on human health-cancer and other associated disorders. Environ Toxicol Pharmacol. Oct; 63:103–114. doi: 10.1016/j.etap.2018.08.018.

 

Savci S. 2012. An agricultural pollutant: chemical fertilizer. International Journal of Environmental Science and Development. 3(1):73. doi: 10.7763/IJESD.2012.V3.191.

 

Schulz B, Haas S, Junker C, Andrée N, Schobert M. 2015. Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci. 109(1):39–45.

 

Sieber, TN. (2007). Endophytic fungi in forest trees: are they mutualists?. Fungal biology reviews, 21(2–3), 75–89.

 

Souza BD, dos Santos TT. 2017. Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. Journal of Bioenergy and Food Science. Apr-Jun; 4(2):113–126. doi: 10.18067/jbfs.v4i2.121.

 

Spagnoletti FN, Tobar NE, Di Pardo AF, Chiocchio VM, Lavado RS. 2017. Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Applied Soil Ecology. 111:25–32. doi: 10.1016/j.apsoil.2016.11.010.

 

Sr I, Sakamoto K, Kuwahara N. 2020. Performance of tomato and lettuce to arbuscular mycorrhizal fungi and penicillium pinophilum EU0013 inoculation varies with soil, culture media of inoculum, and fungal consortium composition. Rhizosphere. Dec;16:10.

 

Strobel GA, Dirkse E, Sears J, Markworth C. 2001. Volatile antimicrobials from muscodor albus, a novel endophytic fungus. Microbiology. 147(11):2943–2950. doi: 10.1099/00221287-147-11-2943.

 

Suebrasri T, Harada H, Jogloy S, Ekprasert J, Boonlue S. 2020. Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere. Dec; 16:9. doi: 10.1016/j.rhisph.2020.100271.

 

Turbat A, Rakk D, Vigneshwari A, Kocsube S, Thu H, Szepesi A, Bakacsy L, Skrbic BD, Jigjiddorj EA, Vagvolgyi C. 2020. Characterization of the plant growth-promoting activities of endophytic fungi isolated from sophora flavescens. Microorganisms. May; 8(5):15. doi: 10.3390/microorganisms8050683.

 

Van Lexmond MB, Bonmatin JM, Goulson D, Noome DA. 2015. Worldwide integrated assessment on systemic pesticides. Environmental Science and Pollution Research. Jan; 22(1):1–4. doi: 10.1007/s11356-014-3220-1.

 

Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH. 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. Nov; 2(4):149–159. doi: 10.1016/j.funeco.2009.05.001.

 

Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, Arnold AE. 2010. Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico. Fungal Ecol. 3(3):122–138. doi: 10.1016/j.funeco.2009.07.002.

 

Vega V. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia. 110(1):4–30. doi: 10.1080/00275514.2017.1418578.

 

Vidal S, Jaber LR. 2015. Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Curr Sci. 109 (1):46–54.

 

Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. 2012. Endophytic fungi produce gibberellins and Indoleacetic Acid and promotes host-plant growth during stress. Molecules. Sep; 17(9):10754–10773. doi: 10.3390/molecules170910754.

 

Wawra S, Fesel P, Widmer H, Timm M, Seibel J, Leson L, Zuccaro A. 2016. The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat Commun. 7(1):1–11. doi: 10.1038/ncomms13188.

 

Yan L, Zhu J, Zhao XX, Shi JL, Jiang CM, Shao DY. 2019. Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol. Mar; 103(8):3327–3340. doi: 10.1007/s00253-019-09713-2.

 
Zhang W, Card S, McGill C, Mace W, Christensen M, Matthew C 2015. The seed of life–investigating epichloë embryo colonisation. In Proceedings of the 9th International Symposium on Fungal Endophytes of Grasses, Melbourne: AgriBio, Centre for AgriBioscience. p. 129.
 

Zhou WQ, Wheeler TA, Starr JL, Valencia CU, Sword GA. 2018. A fungal endophyte defensive symbiosis affects plant-nematode interactions in cotton. Plant Soil. Jan; 422(1–2):251–266. doi: 10.1007/s11104-016-3147-z.

 

Zikankuba VL, Mwanyika G, Ntwenya JE, James A. 2019. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food & Agriculture. Apr; 5(1):15. doi: 10.1080/23311932.2019.1601544.

Mycology
Pages 39-55
Cite this article:
Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 2022, 13(1): 39-55. https://doi.org/10.1080/21501203.2021.1945699

301

Views

145

Crossref

117

Web of Science

148

Scopus

Altmetrics

Received: 16 February 2021
Accepted: 16 June 2021
Published: 29 June 2021
© 2021 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return