AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Recent Developments in Industrial Mycozymes: A Current Appraisal

Suresh NathNaveen Kango( )
Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
Show Author Information

Abstract

Fungi, being natural decomposers, are the most potent, ubiquitous and versatile sources of industrial enzymes. About 60% of market share of industrial enzymes is sourced from filamentous fungi and yeasts. Mycozymes (myco-fungus; zymes-enzymes) are playing a pivotal role in several industrial applications and a number of potential applications are in the offing. The field of mycozyme production, while maintaining the old traditional methods, has also witnessed a sea change due to advents in recombinant DNA technology, optimisation protocols, fermentation technology and systems biology. Consolidated bioprocessing of abundant lignocellulosic biomass and complex polysaccharides is being explored at an unprecedented pace and a number of mycozymes of diverse fungal origins are being explored using suitable platforms. The present review attempts to revisit the current status of various mycozymes, screening and production strategies and applications thereof.

References

 

Aaa EA, Saleh SA, Eid BM, Ibrahim NA, Mostafa FA. 2018. Thermodynamics characterization and potential textile applications of Trichoderma longibrachiatum KT693225 xylanase. Biocatal Agric Biotechnol. 14:129–137. doi:10.1016/j.bcab.2018.02.011.

 

Abrera AT, Chang H, Kracher D, Ludwig R, Haltrich D. 2020. Characterization of pyranose oxidase variants for bioelectrocatalytic applications. BBA - Proteins and Proteomics. 1868:140–335

 

Aggarwal R, Dutta T, Sheikh J. 2019. Extraction of amylase from the microorganism isolated from textile mill effluent vis a vis desizing of cotton. Sustain Chem Pharm. 14:100–178.

 

Ahirwar S, Soni H, Prajapati BP, Kango N. 2017. Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycol. 8(3):125–134. doi:10.1080/21501203.2017.1337657.

 

Ahmed A, Khan M, Ahmad A, Khan S, Sohail M. 2018. Optimization of pectinase production from Geotrichum candidum AA15 using response surface methodology. Pak J Bot. 51. doi:10.30848/PJB2019-2(41).

 

Alazi E, Ram AFJ. 2018. Modulating Transcriptional Regulation of Plant Biomass Degrading Enzyme Networks for Rational Design of Industrial Fungal Strains, Front. Bioeng Biotechnol. 6:133.

 

Allison SD, Romero-Olivares AL, Lu Y, Taylor JW, Treseder KK. 2018. Temperature sensitivities of extracellular enzyme V max and K m across thermal environments. Change Biol. 24(7):2884–2897. doi:10.1111/gcb.14045.

 

Almeida Carvalho E, Mendes dos Santos Góes L, Apt U, Galvão Paranhos da Silva E, Brito RL, Priminho PC, Miura da Costa A. 2016. Thermoresistant xylanases from Trichoderma stromaticum: application in bread making and manufacturing xylo-oligosaccharides. Food Chem. 10:101–144.

 

Aro N, Pakula T, Penttila M. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 29(4):719–739. doi:10.1016/j.femsre.2004.11.006.

 

Asimov I. 1982. Asimov’s Biographical Encyclopedia of Science and Technology. Ⅱ ed. New York: Doubleday.

 

Bagewadi ZK, Mulla SI, Ninnekar HZ. 2018. Response surface methodology based optimization of keratinase production from Trichoderma harzianum isolate HZN12 using chicken feather waste and its application in dehairing of hide. J Environ Chem Eng. 6(4):4828–4839. doi:10.1016/j.jece.2018.07.007.

 

Baker SE. 2018. Protein hyperproduction in fungi by design, Appl. Microbiol Biotechnol. 102(20):8621–8628. doi:10.1007/s00253-018-9265-1.

 

Bali V, Panesar PS, Bera MB, Panesar R. 2015. Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr. 55(11):1475–1490. doi:10.1080/10408398.2012.694084.

 

Bao M, Niu C, Xua X, Zheng F, Liu C, Wang J, Li Q. 2019. Identification, soluble expression, and characterization of a novel endo-inulinase from Lipomyces starkeyi NRRL Y-11557. Int J Biol Macromol. 137:537–544. doi:10.1016/j.ijbiomac.2019.06.096.

 

Baskar G, Garrick BG, Lalitha K, Chamundeeswari M. 2018. Gold nanoparticle mediated delivery of fungal asparaginase against cancer cells. J Drug Deliv Sci Technol. 44. doi:10.1016/j.jddst.2018.02.007.

 

Basu M, Kumar V, Shukla P. 2018. Recombinant approaches for microbial xylanases: recent advances and perspectives. Curr Protein Pept Sci. 19:87–99.

 

Batista JMS, Brandão - Costa, RMP, da Cunha HMNC, Rodrigues OS, Porto ALF. 2020. Purification and biochemical characterization of an extracellular fructosyltransferase - rich extract produced by Aspergillus tamarii Kita UCP1279. Biocatal Agric Biotechnol. 26:101–647. doi:10.1016/j.bcab.2020.101647.

 

Beatriz B, Cardoso Sara C, Silvério Abrunhosa L, José A, Teixeira Lígia R, Rodrigues. 2017. β-galactosidase from Aspergillus lacticoffeatus: a promising biocatalyst for the synthesis of novel prebiotics Int. J Food Microbiol. 257:67–74. doi:10.1016/j.ijfoodmicro.2017.06.013.

 

Bennett TP, Frieden E. 1969. Modern Topics in Biochemistry. London: Macmillan Ltd.

 

Bernasconi R, Molinari M. 2011. ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr Opin Cell Biol. 23(2):176–183. doi:10.1016/j.ceb.2010.10.002.

 

Bhardwaj N, Verma VK, Chaturvedi V, Verma P. 2020. Cloning, expression and characterization of a thermo-alkali-stable xylanase from Aspergillus oryzae LC1 in Escherichia coli BL21(DE3). Protein Expr Purif. 168:105–551. doi:10.1016/j.pep.2019.105551.

 

Blibech M, Ellouz Ghorbel RE, Chaari F, Dammak I, Bhiri F, Neifar M, Ellouz Chaabouni SE. 2011. Improved mannanase production from Penicillium occitanis by fed-batch fermentation using acacia seeds. ISRN Microbiol. 1–5. doi:10.5402/2011/938347.

 

Boyce A, Walsh G. 2012. Identification of fungal proteases potentially suitable for environmentally friendly cleaning-in-place in the dairy industry. Chemosphere. 88(2):211–218. doi:10.1016/j.chemosphere.2012.03.022.

 

Bruno C, Aitaa Stéfani S, Spannemberga Schmaltza S, Giovani L, Zabotb Marcus V, Tresb Raquel C, Kuhna Marcio A, Mazutti. 2019. Production of cell-wall degrading enzymes by solid-state fermentation using agro-industrial residues as substrates. J Environ Chem Eng. 7:103–193.

 

Carrasco M, Alcaíno J, Cifuentes V, Baeza M. 2017. Purification and characterization of a novel cold adapted fungal glucoamylase. Microb Cell Factories. 16(1):75. doi:10.1186/s12934-017-0693-x.

 
Chen H. 2013. Modern solid state fermentation. Theory and practice. The Netherlands: Springer. doi:10.1007/978-94-007-6043-1.
 

Choukade R, Kango N. 2019. Characterization of a mycelial fructosyltransferase from Aspergillus tamarii NKRC 1229 for efficient synthesis of fructooligosaccharides. Food Chem. 286:434–440. doi:10.1016/j.foodchem.2019.02.025.

 

Choukade R, Kango N. 2020. Applications of Fungal Inulinases. Reference Module in Life Sciences. doi:10.1016/B978-0-12-819990-9.00016-0

 

Da Cunhaa MC, Silvab LC, Satoa HH, De Castroa RJS. 2018. Using response surface methodology to improve the L-asparaginase production by Aspergillus niger under solid-state fermentation. Biocatal Agric Biotechnol. 16:31–36. doi:10.1016/j.bcab.2018.07.018.

 

Daljit SA, Rakesh KS. 2009. Ligninolytic Fungal Laccases and their Biotechnological Applications. Appl Biochem Biotechnol. 160:1760–1788.

 

Dandan N, Xiaojing T, Peace MN, Chao J, Suren S, Xiaoguang L, Prior Bernard A, Fuping L. 2017. Biochemical characterization of three Aspergillus niger β-galactosidases. Electron J Biotechnol. 27:37–43. doi:10.1016/j.ejbt.2017.03.001.

 

Darwesh OM, El-Maraghyb SH, Abdel-Rahmanb HM, Zaghloul RA. 2020. Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. Fuel. 262:116–518. doi:10.1016/j.fuel.2019.116518.

 

De La Cruz R, Ascacio-Valdés J, Buenrostro Figueroa J, Sepúlveda L, Rodriguez R, Prado LA, Contreras-Esquivel J, Aguilera A, Aguilar C. 2017. Optimization of Ellagitannase Production by Aspergillus Niger GH1 by Solid-State Fermentation. Prep Biochem Biotechnol. 45(7). doi:10.1080/10826068.2014.940965.

 

De Medeiros IP, Rozental S, Costa AS, Macrae A, Hagler AN, Jose RA, Vermelho AB. 2016. Biodegradation of keratin by Trichosporum loubieri RC-S6 isolated from tannery/leather waste. Int Biodeterior Biodegradation. 115:199–204. doi:10.1016/j.ibiod.2016.08.006.

 

Descamps F, Brouta F, Vermout S, Monod M, Losson B, Mignon B. 2003. Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunol. Med Microbiol. 38:29–34.

 

Deshpande N, Wilkins MR, Packer N, Nevalainen H. 2008. Protein glycosylation pathways in filamentous fungi. Glycobiol. 18(8):626–637. doi:10.1093/glycob/cwn044.

 

Dolashki A, Abrashev R, Stevanovi S, Stefanova L, Abid Ali S, Velkova L, Hristova R, Angelova M, Voelter W, Devreese B, et al. 2008. Biochemical properties of Cu/Zn-superoxide dismutase from fungal strain Aspergillus niger 26. Spectrochim. Acta A Mol Biomol Spectrosc. 71(3):975–983. doi:10.1016/j.saa.2008.02.023.

 

Dong-sheng X, Yuan-long L, Dong-qiang L, Chun-jie G, Shan-Jing Y. 2017. Halostable catalytic properties of exoglucanase from a marine Aspergillus niger and secondary structure change caused by high salinities. Process Biochem, 58. http://dx.doi.org/10.1016/j.procbio.2017.02.005

 

Elena V, Eneyskaya Alexander M, Golubev Farid M, Ibatullin Gustav S. 2009. Transglycosylating and hydrolytic activities of the β-mannosidase from Trichoderma reesei. Biochimie. 91(5):632–638. doi:10.1016/j.biochi.2009.03.009.

 

Escarambonia B, Fernández Núñezb EG, Azevedo Carvalhoa AF, Oliva Neto P. 2018. Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions. Ind Crops Prod. 112:368–377. doi:10.1016/j.indcrop.2017.12.004.

 

Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST. 2013. Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol. 130:296–305. doi:10.1016/j.biortech.2012.11.140.

 

Fatimi A, Wahab AF, Abdul Karim NA, Ling JG, Hasan NS, Yee YH, Bharudin I, Kamaruddin S, Abu Bakar FD, Abdul Murad AM. 2018. Functional characterisation of cellobiohydrolase I (Cbh1) from Trichoderma virens UKM1 expressed in Aspergillus niger. Protein Expr Purif. 154:52–61.

 

Gabriela AM, Tatiana FP. 2005. A rapid screening method for cutinase producing microorganisms. Braz J Microbiol. 36:388–394.

 

Ganaie MA, Rawat HK, Wani OA, Gupta US, Kango N. 2014. Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructooligosaccharides. Process Biochem. 49(5):840–844. doi:10.1016/j.procbio.2014.01.026.

 

Gao J, Xu X, Huang K, Liang Z. 2021. Fungal G-Protein-Coupled Receptors: a Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol. 12:193. doi:10.3389/fmicb.2021.631392.

 

Gao Y, Zhao J, Zu Y, Fu Y, Liang L, Luo M, Wang W, Efferth T. 2012. Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res Int. 49(1):147–152. doi:10.1016/j.foodres.2012.08.001.

 

Garcia NFL, Da Silva Santos FR, Bocchini DA, da Paza MF, Fonseca GG, Leite RSR. 2018. Catalytic properties of cellulases and hemicellulases produced by Lichtheimia ramosa: potential for sugarcane bagasse saccharification. Ind Crops Prod. 122:49–56. doi:10.1016/j.indcrop.2018.05.049.

 

Gilmore SP, Lillington SP, Haitjema CH, de Groot R, O’Malley MA. 2020. Designing chimeric enzymes inspired by fungal cellulosomes. Synth Syst Biotechnol. 5(1):23–32. doi:10.1016/j.synbio.2020.01.003.

 

Gopalan N, Nampoothiri KM, Szakacs G, Parameswaran B, Pandey A. 2016. Solid-state fermentation for the production of biomass valorizing feruloyl esterase. Biocatal Agric Biotechnol. 7:7–13.

 

Griebeler N, Polloni AE, Remonatto D, Arbter F, Vardanega R, Cechet JL, Di Luccio M, De Oliveira M, Treichel H, Cansian RL, et al. 2011. Isolation and Screening of Lipase-Producing Fungi with Hydrolytic Activity. Food Bioproc Technol. 4(4):578–586. doi:10.1007/s11947-008-0176-5.

 

Guerberoff GK, Camusso CC. 2019. Effect of laccase from Trametes versicolor on the oxidative stability of edible vegetable oils. Food Sci Hum. 8(4):356–361.

 

Gürköka S, Söylerb B, Bielyc P, Ögel ZB. 2009. Cloning and heterologous expression of the extracellular alpha-galactosidase from Aspergillus fumigatus in Aspergillus sojae under the control of gpdA promoter. J Mol Catal B Enzym. 64(3–4):146–149. doi:10.1016/j.molcatb.2009.09.012.

 

Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S. 2013. Chitinases: an update. J Pharm Bioallied Sci. 5(1):21–29. doi:10.4103/0975-7406.106559.

 

Hao Y, Chen Y, Li Q, Gao Q. 2010. Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydr Polym. 184:171–177. doi:10.1016/j.carbpol.2017.12.042.

 

Hasan F, Ali Shah A, Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb Technol. 39(2):235–251. doi:10.1016/j.enzmictec.2005.10.016.

 

Hassan SS, Tiwari BK, Williams GA. 2019. Bioprocessing of brewer’s spent grain for production of xylanopectinolytic enzymes by Mucor sp. Bioresour Technol Rep. 9:100–371.

 

Homthong M, Kubera A, Srihuttagum M, Hongtrakul V. 2016. Isolation and characterization of chitinase from soil fungi, Paecilomyces sp. Agric Nat Resour. 50(4):232–242.

 

Hosseini H, Ghorbani M, Jafari SM, Mahoonak AS. 2018. Investigating the effect of lipase from Candida rugosa on the production of EPA and DHA concentrates from Kilka fish (Clupeonella cultiventris caspia). LWT - Food Sci Technol. 90:534–541. doi:10.1016/j.lwt.2018.03.066.

 
Hou CT, Shimada Y. 2009. Applied Microbiology: Industrial Lipases. In: Encyclopedia of Microbiology. Third ed. Amsterdam.: Elsevier Inc.: p. 385–392.
 

Hu W, Liu X, Li Y, Liu D, Kuang Z, Qian C, Yao D. 2017. Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enzyme Microb Technol. 97:82–89. doi:10.1016/j.enzmictec.2016.11.005.

 

Hui Shan GT, Bin Y, Philip C, Quan Liu S. 2011. Lipase-catalysed synthesis of natural aroma-active 2-phenylethyl esters in coconut cream. Food Chem. 124(1):80–84. doi:10.1016/j.foodchem.2010.05.108.

 

Huixing L, Zhang R, Tang L, Zhang J, Zhonggui M. 2014. Manganese Peroxidase Production from Cassava Residue by Phanerochaete chrysosporium in Solid State Fermentation and Its Decolorization of Indigo Carmine. Chin J Chem Eng. 23(1):227–233.

 

Ismail SA, Hassan AA, Emran MA. 2019. Economic production of thermoactive endo β-mannanase for the removal of food stain and production of antioxidant mannooligosaccharides. Biocatal Agric Biotechnol. 22:101–387. doi:10.1016/j.bcab.2019.101387.

 

I-Son N, Chen-Wei L, Shuang-Pi C, Jiun-Ly C, Po Ting C, Chii-Gong T, Su-May Y, Tuan-Hua DH. 2010. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour Technol. 101(4):1310–1317. doi:10.1016/j.biortech.2009.08.049.

 

Jana UK, Kango N. 2020. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int J Biol Macromol. 149:931–940. doi:10.1016/j.ijbiomac.2020.01.304.

 

Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N. 2018. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. Bioresour Technol. 268:308–314. doi:10.1016/j.biortech.2018.07.143.

 

Jiang H, Ma Y, Chi Z, Liu GL, Chi ZM. 2016. Production, purification, and gene cloning of a β-fructofuranosidase with a high inulin-hydrolyzing activity produced by a novel yeast Aureobasidium sp. p6 isolated from a mangrove ecosystem. Mar Biotechnol. 18(4):500–510. doi:10.1007/s10126-016-9712-x.

 

Ge J, Jiang X, Liu W, Wang Y, Huang H, Bai Y, Su X, Yao B, Luo H. 2020. Characterization, stability improvement, and bread baking applications of a novelcold-adapted glucose oxidase from Cladosporium neopsychrotolerans SL16. Food Chem. 310:125-970.

 

Jing L, Zhenming C, Xiang HW. 2010. Cloning of the SAP6 gene of Metschnikowia reukaufii and its heterologous expression and characterization in Escherichia coli. Microbiol Res. 165(3):173–182. doi:10.1016/j.micres.2008.08.003.

 

Jun H, Kieselbach T, Jönsson LJ. 2011. Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Factories. 10(1):68. doi:10.1186/1475-2859-10-68.

 

Jun-Jin D, Dan S, He-hua M, Zhi-wei L, Shuang L, Ye K, Xiao-chun L. 2019. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. Int J Biol Macromol. 134:113–121. doi:10.1016/j.ijbiomac.2019.04.177.

 

Juodeikiene G, Basinskiene L, Vidmantiene D, Makaravicius T, Bartkiene E, Schols H. 2011. The use of β-xylanase for increasing the efficiency of biocatalytic conversion of crop residues to bioethanol. Catalysis Today. 167(1):113–121. doi:10.1016/j.cattod.2011.02.059.

 

Jus S, Stachel I, Schloegl W, Pretzler M, Friess W, Meyer M, Birner-Gruenberger R, Guebitz GM. 2011. Cross-linking of collagen with laccases and tyrosinases. Mater Sci Eng C. 31(5):1068–1077. doi:10.1016/j.msec.2011.03.007.

 

Kango N, Agarwal SC, Jain PC. 2005. Production and properties of thermostable xylanase by Thermomyces lanuginosus NK-2 grown on lignocelluloses. Biotechnol. 5(2):148–152.

 

Kango N, Jain PC. 2011. Production and Properties of Microbial Inulinases: recent Advances. Food Biotechnol. 25(3):165–212. doi:10.1080/08905436.2011.590763.

 

Karima KMR, Husaini A, Ngui Sing N, Tasnimc T, Sinang FS, Hussain H, Hossain MA, Roslan H. 2019. Characterization and expression in Pichia pastoris of a raw starch degrading glucoamylase (GA2) derived from Aspergillus flavus NSH9. Protein Expr Purif. 164:105–462.

 

Katrolia P, Liu X, Zhao Y, Kopparapu NK, Zheng X. 2019. Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). Int J Biol Macromol. 146:897–906. doi:10.1016/j.ijbiomac.2019.09.212.

 

Katrolia P, Yan Q, Jia H, Li Y, Jiang Z, Song C. 2011. Molecular cloning and high-level expression of a β-galactosidase gene from Paecilomyces aerugineus in Pichia pastoris. J Mol Catal B Enzym. 69(3–4):112–119. doi:10.1016/j.molcatb.2011.01.004.

 

Khangwal I, Nath S, Kango N, Shukla P. 2020. Endo-xylanase induced xylooligosaccharide production from corn cobs, its structural features, and concentration-dependent antioxidant activities. Biomass Conv Bioref. doi:10.1007/s13399-020-00997-3

 

Klein N, Zouraria A, Lortal S. 2002. Peptidase activity of four yeast species frequently encountered in dairy products—comparison with several dairy bacteria. Int Dairy J. 12(10):853–861. doi:10.1016/S0958-6946(02)00081-X.

 

Knob A, Izidoro SC, Lacerda LT, André R, De Lima VA. 2020. A novel lipolytic yeast Meyerozyma guilliermondii: efficient and low-cost production of acid and promising feed lipase using cheese whey. Biocatal Agric Biotechnol. 24:101–565. doi:10.1016/j.bcab.2020.101565.

 

Kruthi D, Devarai SK. 2016. Isolation and screening of L-asparaginase free of glutaminase and urease from fungal sp. 3 Biotech. 6:239.

 

Kuhne W. 1877. Uber das Verhalten verchiedener organisirter und sog. Ungeformter Fermente. Verhandlungen des heidelb, Naturhist -Med Vereins Neue Folge. 1(3):190–193.

 

Kumar NV, Rani ME, Gunaseeli R, Kannan ND. 2018. Enhanced biobleaching efficacy and heavy metal remediation through enzyme mediated lab-scale paper pulp deinking process. J Clean Prod. 203:926–932. doi:10.1016/j.jclepro.2018.08.335.

 

Kumara BV, Sarabhaia S, Prabhasankar P. 2019. Targeted degradation of gluten proteins in wheat flour by prolyl endo-protease and its utilization in low immunogenic pasta for gluten sensitivity population. J Cereal Sci. 87:59–67. doi:10.1016/j.jcs.2019.03.001.

 

Li K, Meng K, Pan X, Ma R, Yang P, Huang H, Yao B, Su X. 2015. Two thermophilic fungal pectinases from Neosartorya fischeri P1: gene cloning, expression and biochemical characterization. J Mol Catal B Enzym. 118:70–78. doi:10.1016/j.molcatb.2015.05.005.

 

Li S, Sing S, Wang Z. 2011. Improved expression of Rhizopus oryzae α-amylase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 79(1):142–148. doi:10.1016/j.pep.2011.05.007.

 

Li Y, Yi P, Wang N, Liu J, Liu X, Yan Q, Jiang Z. 2017. High level expression of β-mannanase (RmMan5A) in Pichia pastoris for partially hydrolyzed guar gum production. Int J Biol Macromol. 105:1171–1179. doi:10.1016/j.ijbiomac.2017.07.150.

 

Lin MI, Nagata T, Katahira M. 2018. High yield production of fungal manganese peroxidases by E. coli through soluble expression, and examination of the activities. Protein Expr Purif. 145:45–52. doi:10.1016/j.pep.2017.12.012.

 

Lin X, Dong L, Yu D, Wang B, Pan L. 2019. High-level expression and characterization of the thermostable leucine aminopeptidase Thelap from the thermophilic fungus Thermomyces lanuginosus in Aspergillus niger and its application in soy protein hydrolysis. Protein Expr Purif. 167:105–544.

 

Liu Y, Li Y, Tong S, Yuan M, Wang X, Wang J, Fan Y. 2020b. Expression of a Beauveria bassiana chitosanase (BbCSN-1) in Pichia pastoris and enzymatic analysis of the recombinant protein. Protein Expr Purif. 166:105–519. doi:10.1016/j.pep.2019.105519.

 

Liu Z, Ning C, Yuan M, Yang S, Wei X, Xiao M, Fu X, Zhu C, Mou H. 2019. High level expression of a thermophilic and acidophilic β-mannanase from Aspergillus kawachii IFO 4308 with significant potential in mannooligosaccharide preparation. Bioresour Technol. 295:122–257.

 

Lópeza DN, Galantea M, Ruggieria G, Piaruchia J, Diba ME, Durana MN, Lombardia J, De Sanctisa M, Boerisa V, Rissoa PH, et al. 2018. Peptidase from Aspergillus niger NRRL 3: optimization of its production by solid-state fermentation, purification and characterization. LWT - Food Sci Technol. 98:485–491. doi:10.1016/j.lwt.2018.09.013.

 

Maalej-Achouri I, Guerfali M, Belhaj-Ben Romdhane I, Gargouri A, Belghith H. 2012. The effect of Talaromyces thermophilus cellulase-free xylanase and commercial laccase on lignocellulosic components during the bleaching of kraft pulp. Int Biodeterior Biodegradation. 75:43–48. doi:10.1016/j.ibiod.2012.04.015.

 

Mahmoodi M, Najafpour GD, Mohammadi M. 2019. Bioconversion of agroindustrial wastes to pectinases enzyme via solid state fermentation in trays and rotating drum bioreactors. Biocatal Agric Biotechnol. 21:101–280. doi:10.1016/j.bcab.2019.101280.

 

Malherbe AR, Rose SH, Viljoen-Bloom M, Van Zyl WH. 2014. Expression and evaluation of enzymes required for the hydrolysis of galactomannan. J Ind Microbiol Biotechnol. 41(8):1201–1209. doi:10.1007/s10295-014-1459-7.

 

Mandari V, Nema A, Devarai SK. 2019. Sequential optimization and large scale production of lipase using tri-substrate mixture from Aspergillus niger MTCC 872 by solid state fermentation. Process Bioch. 43:1.

 

Mansora MS, Ramlia NY, Abdul Rashida N, Samatb MN, Lanid SA, Sharifudina S, Raseethac. 2019. Evaluation of selected agri-industrial residues as potential substrates for enhanced tannanase production via solid-state fermentation. Biocatal Agric Biotechnol. 20:101–216.

 

Marraiki N, Viayaraghavan P, Elgorban AM, DeepaDhas DS, Al-Rashed S, Yassin V. 2020. Low cost feedstock for the production of Endoglucanase in solid state fermentation by Trichoderma hamatum NGL1 using response surface methodology and saccharification efficacy. J King Saud Univ Sci. 32(2):1718–1724. doi:10.1016/j.jksus.2020.01.008.

 

Martínez-Pachecoa MM, Flores-Garcíaa A, Zamudio-Jaramillob MA, Chávez-Pargab MC, Alvarez-Navarrete M. 2019. Optimization of production of xylanases with low cellulases in Fusarium solani by means of a solid-state fermentation using statistical experimental design. Rev Argent Microbiol. 52(4):328–338. doi:10.1016/j.ram.2019.12.003.

 

Masuoa N, Itob K, Yoshimunea K, Hoshinoa M, Matsushimab K, Koyamab Y, Moriguchi M. 2004. Molecular cloning, overexpression, and purification of Micrococcus luteus K-3-type glutaminase from Aspergillus oryzae RIB40. Protein Expr Purif. 38(2):272–278. doi:10.1016/j.pep.2004.09.003.

 

Matkawala F, Nighojkar S, Kumar A, Nighojkar A. 2019. Enhanced production of alkaline protease by Neocosmospora sp. N1 using custard apple seed powder as inducer and its application for stain removal and dehairing. Biocatal Agric Biotechnol. 21:101–310. doi:10.1016/j.bcab.2019.101310.

 

Melikoglu M, Lin CSK, Webb C. 2015. olid state fermentation of waste bread pieces by Aspergillus awamori: analysing the effects of airflow rate on enzyme production in packed bed bioreactors. Food Bioprod Process. 95:63–75. doi:10.1016/j.fbp.2015.03.011.

 

Melnichuk N, Braia MJ, Anselmi PA, Meini MR, Romanini D. 2020. Valorization of two agro-industrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Management. 106:155–161. doi:10.1016/j.wasman.2020.03.025.

 

Mittal A, Singh G, Goyal V, Yadav A, Aneja KR, Gautam SK, Aggarwal NK. 2011. Isolation and biochemical characterization of acido-thermophilic extracellular phytase producing bacterial strain for potential application in poultry feed. Jundishapur J Microbiol. 4(4):273–282.

 
Mudgil D. 2017. The interaction between insoluble and soluble fiber. In: rodney ASamaan, Editor. Dietary Fiber for the Prevention of Cardiovascular Disease. New York: Academic press; p. 35–59.
 

Murthy PS, Palakshappa SH, Padela J, Kusumoto KI. 2020. Amelioration of cocoa organoleptics using A. oryzae cysteine proteases. LWT - Food Sci Technol. 120:108–919. doi:10.1016/j.lwt.2019.108919.

 

Naik B, Goyal SK, Tripathi AD, Kumar V. 2019. Screening of agro-industrial waste and physical factors for the optimum production of pullulanase in solid-state fermentation from endophytic Aspergillus sp. Biocatal Agric Biotechnol. 22:101–423. doi:10.1016/j.bcab.2019.101423.

 

Navada KK, Kulal A. 2019. Enhanced production of laccase from gamma irradiated endophytic fungus: a study on biotransformation kinetics of aniline blue and textile effluent decolourisation. J Environ Chem Eng. 8(2):103–550.

 

Okongo RN, Puri AK, Wang Z, Singh S, Permaul K. 2019. Comparative biocontrol ability of chitinases from bacteria and recombinant chitinases from the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng. 127(6):663–671. doi:10.1016/j.jbiosc.2018.11.007.

 

Omrane Benmrad M, Moujehed E, Ben Elhoul M, Mechri S, Bejar S, Zouari R, Baffoun A, Jaouadi B. 2018. Production, purification, and biochemical characterization of serine alkaline protease from Penicillium chrysogenium strain X5 used as excellent bio-additive for textile processing. Int J Biol Macromol. 119:1002–1016. doi:10.1016/j.ijbiomac.2018.07.194.

 

Ortiz-Monsalve S, Dornelles J, Poll E, Ramirez-Castrillon M, Valente P, Gutterres M. 2017. Biodecolourisation and biodegradation of leather dyes by a native isolate of Trametes villosa. Process Saf Environ. 109:437–451. doi:10.1016/j.psep.2017.04.028.

 

Oumer OJ, Abate D. 2018. Screening and molecular identification of pectinase producing microbes from coffee pulp. Biomed Res Int. Article ID 2961767. 7 pages. 10.1155/2018/2961767

 

Panesar PS, Kaur R, Singh RS. 2016. Isolation and screening of fungal strains for β-Galactosidase production. Int J Biol Biomol Agri Food Biotechnol Eng. 10:7.

 

Parashar D, Satyanarayana T. 2017. Engineering a chimeric acid-stable α-amylase-glucoamylase (Amy-Glu) for one step starch saccharification. Int J Biol Macromol. 99:274–281. doi:10.1016/j.ijbiomac.2017.02.083.

 

Payen A, Persoz JF. 1833. Memoir of diastase, the principal products of its reactions, and their applications to the industrial arts. Annales de Chimie et de Physique. 53:73–92.

 
Peberdy JF. 1994. Protein secretion in filamentous fungi- trying to understand a highly productive black box. In: Trends Biotechnol. Elsevier ltd. Amsterdam. p. 12.
 

Pérez S, Tvaroška I. 2014. Carbohydrate–Protein Interactions. Adv Carbohydr Chem Biochem. 71:9–136.

 

Pires EBE, de Freitas AJ, Souza FF. 2019. Production of fungal phytases from agroindustrial byproducts for pig diets. Sci Rep. 9(1):9256. doi:10.1038/s41598-019-45720-z.

 

Pradoa DZ, Okino-Delgadoa CH, Zanutto-Elguia MR, Gomes da Silvab RB, Pereiraa MS, Jahnc L, Ludwig-Mullerc J, Ribeiro da Silvab M, Velinib EV, Fleuri LF. 2019. Screening of Aspergillus, Bacillus and Trichoderma strains and influence of substrates on auxin and phytases production through solid-state fermentation. Biocatal Agric Biotechnol. 19:101–165.

 

Prajapati BP, Kumar Suryawanshi R, Agrawal S, Ghosh M, Kango N. 2018. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol. 250:733–740. doi:10.1016/j.biortech.2017.11.099.

 

Ramanjaneyulu G, Praveen Kumar RG, Dileep Kumar K, Rajasekhar Reddy B. 2015. Isolation and Screening of Xylanase Producing Fungi from Forest Soils. Int J Curr Microbiol Appl Sci. 4(9):586–591.

 

Ramos OL, Malcata FX. 2011. Food-Grade Enzymes. Comprehensive Biotechnol. 3:555–569.

 

Rawat HK, Jain SC, Kango N. 2015. Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin-rich vegetal infusions. J Biocatal Biotransfor. 33(1):61–68. doi:10.3109/10242422.2015.1018188.

 

Regina Gern Sandra MM, Furlan Jorge A, Jonas NR. 2001. Screening for microorganisms that produce only endo-inulinase. Appl Microbiol Biotechnol. 55(5):632–635. doi:10.1007/s002530000578.

 

Ribeiro Corrêa TL, de Queiroz MV, de Araújo EF. 2014. Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum. Microbiol Res. 12:107–205.

 
Rodrıguez-Couto S. 2018. Chapter 11 - Solid-State Fermentation for Laccases Production and Their Applications. In: Curr. Dev. Biotechnol. Bioeng. Elsevier B.V. Amsterdam. p. 211–234.
 

Rungrattanakasina B, Premjet S, Thanonkeo S, Klanrita P, Thanonkeo P. 2018. Cloning and expression of an endoglucanase gene from the thermotolerant fungus Aspergillus fumigatus DBiNU-1 in Kluyveromyces lactis. Braz J Microbiol. 49(3):647–655. doi:10.1016/j.bjm.2017.10.001.

 

Sadeghian-Abadi S, Rezaei S, Yousefi-Mokri M, Faramarzi MA. 2019. Enhanced production, one-step affinity purification, and characterization of laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme. J Environ Manag. 244:235–246. doi:10.1016/j.jenvman.2019.05.058.

 

Saeed H, Ali H, Soudan H, Embaby A, El-Sharkawy A, Farag A, Husseina A, Atay F. 2018. Molecular cloning, structural modeling and production of recombinant Aspergillus terreus L-asparaginase in Escherichia coli. Int J Biol Macromol. 106:1041–1051. doi:10.1016/j.ijbiomac.2017.08.110.

 

Sahay S, Chouhan D. 2018. Study on the potential of cold-active lipases from psychrotrophic fungi for detergent formulation. J Genet Eng Biotechnol. 16(2):319–325. doi:10.1016/j.jgeb.2018.04.006.

 

Saini S, Chutani P, Kumar P, Sharma KK 2020. Development of an eco-friendly deinking process for the production of bioethanol using diverse hazardous paper wastes. Renew. Energy. 146:2362–2373.

 

Schuster FPW, Maffessoni C, De Angelis DA, Giachini AJ, Cardoso DH, Moroni LS, Skoronski E, Kempka AP. 2019. Screening and evaluation of filamentous fungi potential for protease production in swine plasma and red blood cells-based media: qualitative and quantitative methods. Biocatal Agric Biotechnol. 21:101–313.

 

Senthivelana T, Kanagaraja J, Pandab RC, Narayanib T. 2019. Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnol Rep. 23:3–44.

 

Shanmugavel M, Vasantharaj S, Yazhmozhi A, Bhavsar P, Aswin P, Felshia C, Mani U, Ranganathan B, Gnanamani A. 2018. A study on pectinases from Aspergillus tamarii: toward greener approach for cotton bioscouring and phytopigments processing. Biocatal Agric Biotechnol. 15:295–303. doi:10.1016/j.bcab.2018.06.013.

 

Sheludko YV, Fessner WD. 2020. Winning the numbers game in enzyme evolution – fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol. 63:1–11. doi:10.1016/j.sbi.2020.05.003.

 

Singh RS, Chauhan K, Kaur K. 2018. Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. Bioresour Technol Rep. 9:100–364.

 

Singh RS, Singh T, Pandey A. 2019. Microbial Enzymes—An Overview. Adv Enzym Technol.Amsterdam: Elsevier B.V. 1–40.

 

Singhania RR, Patel AK, Zoclo CR, Pandey A. 2008. Recent advances in solid-state fermentation. Biochem Eng J. 44(1):13–18. doi:10.1016/j.bej.2008.10.019.

 

Soni H, Rawat HK, Pletschke BI, Ahirwar N. 2016. Purification and characterization of β-mannanase from Aspergillus terreus and its applicability in depolymerization of mannans and saccharification of lignocellulosic biomass. 3 Biotech. 6(2):1–36. doi:10.1007/s13205-016-0454-2.

 

Spiropulos Gonçalves EC, Martí PM, Vici AC, Santos Salgado JC, de Souza Rocha M, Zaghetto de Almeida P, da Conceição Infante J, Sílvia de Almeida Scarcella A, Coutinho de Lucas R, Vieira AT, et al. 2020. Potential biodiesel production from Brazilian plant oils and spent coffee grounds by Beauveria bassiana lipase 1 expressed in Aspergillus nidulans A773 using different agroindustry inputs. J Clean Prod. 256:120–513.

 

Sun Q, Chen F, Geng F, Luo Y, Gong S, Jiang Z. 2017. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem. 245:570–577. doi:10.1016/j.foodchem.2017.10.113.

 

Sung HJ, Khan MF, Kim YH. 2019. Recombinant lignin peroxidase-catalyzed decolorization of melanin using in-situ generated H2O2 for application in whitening cosmetics. Int J Biol Macromol. 136:20–26. doi:10.1016/j.ijbiomac.2019.06.026.

 

Tanriseven A, Aslan Y. 2005. Immobilization of pectinex ultra SP-L to produce fructooligosaccharides. Enzym Microb Technol. 36(4):550–554. doi:10.1016/j.enzmictec.2004.12.001.

 

Tao Y, Yang L, Yin L, Lai C, Huang C, Li X, Yong Q. 2019. Novel approach to produce biomass-derived oligosaccharides simultaneously by recombinant endoglucanase from Trichoderma reesei. Enzym Microb Technol. 134:109–481.

 

Trivedi S, Divecha J, Shah A. 2012. Optimization of inulinase production by a newly isolated Aspergillus tubingensis CR16 using low cost substrates. Carbohydr Polym. 90(1):483–490. doi:10.1016/j.carbpol.2012.05.068.

 

Vaidya S, Srivastava PK, Rathore P, Pandey AK. 2015. Amylases: a prospective enzyme in the field of biotechnology. J Appl Biosci. 41:1–18.

 

Veerapagu M, Jeya KR, Sankaranarayanan A. 2016. Screening and production of fungal amylase from Aspergillus sp. by SSF. J Global Biosci. 5(8):4443–4450.

 

Verma D, Fortunati E. 2019. Biopolymer processing and its composites. Biomass, Biopolymer-Based Materials, and Bioenergy. Woodhead Publishing. Cambridge. England. 3–23.

 

Vidhate RP, Bhide AJ, Gaikwad SM, Giri AP. 2019. A potent chitin-hydrolyzing enzyme from Myrothecium verrucaria affects growth and development of Helicoverpa armigera and plant fungal pathogens. Int J Biol Macromol. 141:517–528. doi:10.1016/j.ijbiomac.2019.09.031.

 

Vidya CH, Gnanesh Kumar BS, Chinmayee CV. 2020. Purification, characterization and specificity of a new GH family 35 galactosidase from Aspergillus awamori. Int J Biol Macromol. 156:885–895. doi:10.1016/j.ijbiomac.2020.04.013.

 

Wahlström RM, Suurnäkki A. 2015. Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem. 17(2):694–714. doi:10.1039/C4GC01649A.

 

Wang D, Li FL, Wang SA. 2016d. A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydr Polym. 151:1220–1226. doi:10.1016/j.carbpol.2016.06.059.

 

Wang G, Zhang D, Chen S. 2014. Effect of earlier unfolded protein response and efficient protein disposal system on cellulase production in Rut C30. World J Microbiol Biotechnol. 30(10):2587–2595. doi:10.1007/s11274-014-1682-4.

 

Wang H, Kaur G, Pensupa N, Uisan K, Du C, Yang X, Lin CSK. 2018. Textile waste valorization using submerged filamentous fungal fermentation. Process Saf Environ. 118:143–151. doi:10.1016/j.psep.2018.06.038.

 

Wang J, Kang L, Liu Z, Yuan S. 2016a. Gene cloning, heterologous expression and characterization of a Coprinopsis cinerea endo-β-1,3(4)-glucanase. Fungal Biol. 121(1):61–68. doi:10.1016/j.funbio.2016.09.003.

 

Wang Q, Zhong C, Xiao H. 2020a. Genetic Engineering of Filamentous Fungi for Efficient Protein Expression and Secretion. Front Bioeng Biotechnol. 8:293. doi:10.3389/fbioe.2020.00293.

 

Wang Y, Zhao N, Ma J, Liu J, Yan Q, Jiang Z. 2019a. High-level expression of a novel α-amylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int J Biol Macromol. 127:683–692.

 

Wang YC, Hu HF, Ma JW, Yan QJ, Liu HJ, Jiang ZQ. 2020b. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem. 305:125–447. doi:10.1016/j.foodchem.2019.125447.

 

Wang Z, Hea Z, Shen Q, Gua Y, Li S, Yuan Q. 2005. Purification and partial characterization of recombinant Cu, Zn containing superoxide dismutase of Cordyceps militaris in E. coli. J. Chromatogr B Biomed Appl. 826(1–2):114–121. doi:10.1016/j.jchromb.2005.08.010.

 

Li XJ. Zheng RC. Wu ZM. Ding X. Zheng YG. 2014. Thermophilic esterase from Thermomyces lanuginosus: molecular cloning, functional expression and biochemical characterization. Protein Expr Purif. 101:1–7. doi:10.1016/j.pep.2014.05.006.

 

Xu G, Wang J, Yin Q, Fang W, Xiao Y, Fang Z. 2018. Expression of a thermo and alkali-philic fungal laccase in Pichia pastoris and its application. Protein Expr Purif. 154:16–24. doi:10.1016/j.pep.2018.09.015.

 

Xu-Cong L, Qi-Qi C, Xin-Xin K, Chen F, Ping-Fan R, Li N. 2015. Characterization of fungal community and dynamics during the traditional brewing of Wuyi Hong Qu glutinous rice wine by means of multiple culture-independent methods. Food Control. 54:231–239. doi:10.1016/j.foodcont.2015.01.046.

 

Yang X, Zhang Y. 2019. Expression of recombinant transglutaminase gene in Pichia pastoris and its uses in restructured meat products. Food Chem. 291:245–252. doi:10.1016/j.foodchem.2019.04.015.

 

You X, Qin Z, Li Y, Yan Q, Li B, Jiang Z. 2018. Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase. Biochim Biophys Acta Gen Subj BBA-GEN SUBJECTS. 1862(6):1376–1388. doi:10.1016/j.bbagen.2018.03.016.

 

Yu XW, Wang LL, Xu Y. 2009. Rhizopus chinensis lipase: gene cloning, expression in Pichia pastoris and properties. J Mol Catal (B): Enzym. 57(1–4):304–311. doi:10.1016/j.molcatb.2008.10.002.

 

Zhao J, Yuan PST, Huang H, Li Z, Meng K, Yang P, Yao B. 2012. Purification, gene cloning and characterization of an acidic β-1,4-glucanase from Phialophora sp. G5 with potential applications in the brewing and feed industries. J Biosci Bioeng. 114(4):379–384. doi:10.1016/j.jbiosc.2012.04.021.

 

Zheng F, Songa L, Basita A, Liua J, Miaoa T, Wena J, Caob Y, Jiang W. 2020a. An endoxylanase rapidly hydrolyzes xylan into major product xylobiose via transglycosylation of xylose to xylotriose or xylotetraose. Carbohydr Polym. 237:116–121. doi:10.1016/j.carbpol.2020.116121.

 

Zheng L, Yu X, Wei C, Qiu L, Yu C, Xing Q, Fan Y, Deng Z. 2020b. Production and characterization of a novel alkaline protease from a newly isolated Neurospora crassa through solid-state fermentation. LWT - Food Sci Technol. 122:108–990. doi:10.1016/j.lwt.2019.108990.

 

Zhi NY, Wen Jia W, Zhen SC, Fan LH, Bo CW, Qi Ping Z, Gui ZL, Xuan X, Juan MJ, Kun Y, et al. 2019. Antioxidant and Anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomed Environ Sci. 32(1):11–21.

 

Znameroski EA, Samuel Coradetti T, Christine Roche M, Jordan Tsaia C, Anthony Iavarone T, Jamie Catea HD, Louise Glass N. 2012. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. PNAS. 109(16):6012–6017. doi:10.1073/pnas.1118440109.

Mycology
Pages 81-105
Cite this article:
Nath S, Kango N. Recent Developments in Industrial Mycozymes: A Current Appraisal. Mycology, 2022, 13(2): 81-105. https://doi.org/10.1080/21501203.2021.1974111

203

Views

6

Crossref

4

Web of Science

7

Scopus

Altmetrics

Received: 05 November 2020
Accepted: 25 August 2021
Published: 16 September 2021
© 2021 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return