AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Plants and endophytes – a partnership for the coumarin production through the microbial systems

Chandrashekar SrinivasaaGovindappa MellappabShashank M. PatilcRamith RamucBhargav ShreevatsacChandan DharmashekarcShiva Prasad Kollurd,eAsad SyedfChandan Shivamalluc( )
Department of Studies in Biotechnology, Davangere University, Davangere, India
Department of Studies in Botany, Davangere University, Davangere, India
Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India
School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of South Pacific, Suva, Fiji
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
Show Author Information

Abstract

Plant-based secondary metabolite production system is well established. However, host–endophyte interaction in the production of secondary metabolite is a new less exploited area that is overcoming barriers and evolving as one of the prospective fields. Endophytes such as bacteria or fungi have the ability to produce some of the secondary metabolites that mimic the plant metabolites therefore escaping the host defence system. Coumarin is one such metabolite with immense biological functions. Most of the studies have demonstrated coumarin production from fungal endophytes but not bacterial endophytes. Herein, we present an overview of all the coumarin derivatives produced from endophytic sources and their biosynthetic pathways. Furthermore, the review also throws light on the isolation of these coumarins and different derivatives with respect to their biological activity. The biotransformation of coumarin derivatives by the action of endophytic fungi is also elaborated. The present review provides an insight on the challenges faced in the coumarin production through fungal endophytes.

References

 

Bacon CW, Porter JK, Robbins JD, Luttrell ES. 1977. Epichloetyphina from toxic tall fescue grasses. Appl Environ Microbiol. 34(5):576–581. doi: 10.1128/aem.34.5.576-581.1977.

 

Borges WDS, Borges KB, Bonato PS, Said S, Pupo MT. 2009. Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem. 13(12):1137–1163. doi: 10.2174/138527209788921783.

 

Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology. 27: 30–37. doi: 10.1016/j.copbio.2013.09.012.

 

Costa TM, Tavares LBB, de Oliveira D. 2016. Fungi as a source of natural coumarins production. Appl Microbiol Biotechnol. 100(15):6571–6584. doi: 10.1007/s00253-016-7660-z.

 
de Bary A. 1866. Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. In: de Bary, A editors. Hofmeister’s handbook of physiological botany. Vol. Ⅱ. Leipzig (Germany): Engelmann.
 

Debbab A, Aly AH, Proksch P. 2013. Mangrove derived fungal endophytes – a chemical and biological perception. Fungal Divers. 61:1–27. doi:10.1007/s13225-013-0243-8.

 

Gagana SL, Kumaraswamy BE, Shivanna MB. 2020. Diversity, antibacterial and antioxidant activities of the fungal endophytes associated with Schleichera oleosa (Lour.) Merr. S Afr J Bot. 134:369–381. doi:10.1016/j.sajb.2020.06.012.

 

Guerin P. 1898. Sur la presence d’un champignon dansl’ivraie. J Botanique. 12(1898):230–238.

 

Han Z, Mei W, Zhao Y, Deng Y, Dai H. 2009. A new cytotoxic isocoumarin from endophytic fungus Penicillium sp. 091402 of the mangrove plant Bruguiera sexangula. Chem Nat Compd. 45(6):805–807. doi:10.1007/s10600-010-9503-y.

 

Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B. 2015. Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem. 50(9):1327–1341. doi:10.1016/j.procbio.2015.05.017.

 

Islam MR, Omar M, PK MMU, Mia MR, Phytochemicals K. 2015. Ganoderma lucidum and Lentinula edodes accessible in Bangladesh. Am J Biol Life Sci. 3(2):31–35.

 

Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J. 2008. Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol. 78(2):241–247. doi:10.1007/s00253-007-1305-1.

 

Lv X, Ma B, Warren A, Gong J. 2013. Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek. 104(5):759–768. doi:10.1007/s10482-013-9984-3.

 

Melappa G. 2020. Identification of Bioactive Coumarin (s) from Three Endophytic Fungal Species of Calophyllum tomentosum. Nat Prod J. 10(4):502–512. doi:10.2174/2210315509666190430145906.

 

Mousa WK, Raizada MN. 2013. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Frontiers in Microbiology. 4:65. doi:10.3389/fmicb.2013.00065.

 

Nicoletti R, Fiorentino A. 2015. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture. 5(4):918–970. doi:10.3390/agriculture5040918.

 

Parshikov IA, Woodling KA, Sutherland JB. 2015. Biotransformations of organic compounds mediated by cultures of Aspergillus Niger. Appl Microbiol Biotechnol. 99(17):6971–6986. doi:10.1007/s00253-015-6765-0.

 

Qin W, Liu C, Jiang W, Xue Y, Wang G, Liu S. 2019. A coumarin analogue NFA from endophytic Aspergillus fumigatus improves drought resistance in rice as an antioxidant. BMC Microbiol. 19(1):1–11. doi:10.1186/s12866-019-1419-5.

 

Salvatore MM, Andolfi A, Nicoletti R. 2020. The thin line between pathogenicity and endophytism: the case of Lasiodiplodiatheobromae. Agriculture. 10(10):488. doi:10.3390/agriculture10100488.

 

Schardl CL, Leuchtmann A, Spiering MJ. 2004. Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology. 55:315–340. doi:10.1146/annurev.arplant.55.031903.141735.

 

Shaaban M, El-Metwally MM, Laatsch H. 2016. New bioactive metabolites from Penicillium purpurogenum MM. Zeitschrift Für Naturforschung B. 71(4):287–295. doi:10.1515/znb-2015-0185.

 

Shirahatti PS, Ramu R, Lakkapa DB, Prasad MNN. 2015 Oct. In vitro inhibitory activity of medicinal plants against phomopsis azadirachtae, the incitant die back disease of neem. Int J Pharm Pharmaceut Sci.7(13):199–04.

 

Srikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K. 2007. Camptothecin: therapeutic potential and Biotechnology. Curr Pharm Biotechnol. 8:196–202. doi:10.2174/138920107781387447.

 

Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science. 260:214–216. doi:10.1126/science.8097061.

 
Sudharshana TN, Venkatesh HN, Nayana B, Manjunath K, and Mohana DC. Anti-microbial and anti-mycotoxigenic activities of endophytic Alternaria alternata isolated from Catharanthus roseus (L.) G. Don.: molecular characterisation and bioactive compound isolation. Mycology. 2019 Jan 2;10(1):40–8.
 

Symeonidis T, Chamilos M, Hadjipavlou-Litina DJ, Kallitsakis M, Litinas KE. 2009. Synthesis of hydroxycoumarins and hydroxybenzo [f]-or [h] coumarins as lipid peroxidation inhibitors. Bioorg Med Chem Lett. 19(4):1139–1142. doi:10.1016/j.bmcl.2008.12.098.

 

TabishRehman M, U Khan A. 2015. Understanding the interaction between human serum albumin and anti-bacterial/anti-cancer compounds. Curr Pharm Des. 21(14):1785–1799. doi:10.2174/1381612821666150304161201.

 

Taechowisan T, Lu C, Shen Y, Lumyong S. 2007. Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J Cancer Res Ther. 3(2):86. doi:10.4103/0973-1482.34685.

 

Tandon R, Ponnan P, Aggarwal N, Pathak R, Baghel AS, Gupta G, Bose M. 2011. Characterization of 7-amino-4-methylcoumarin as an effective antitubercular agent: structure–activity relationships. J Antimicrob Chemother. 66(11):2543–2555. doi:10.1093/jac/dkr355.

 

Tian H, Li XP, Zhao J, Gao HW, Xu QM, Wang JW. 2021. Biotransformation of artemisinic acid to bioactive derivatives by endophytic Penicillium oxalicum B4 from Artemisia annua L. Phytochemistry. 185:112682. doi:10.1016/j.phytochem.2021.112682.

 

Umashankar T, Govindappa M, Ramachandra YL. 2012. In vitro antioxidant and anti-HIV activity of endophytic coumarin from Crotalaria pallida Aiton. Planta Med. 78(5):P_102. doi:10.1055/s-0032-1307610.

 
Valdez-Nuñez RA, Castro-Tuanama R, Castellano-Hinojosa A, Bedmar EJ, and Ríos-Ruiz WF. 2019. PGPR characterization of non-nodulating bacterial endophytes from root nodules of Vignaunguiculata (L.) Walp. In: Zúñiga-Dávila, D, González-Andrés, F, and Ormeño-Orrillo, E editors. Microbial probiotics for agricultural systems. Cham: Springer; p. 111–126.
 

Wang Y, and Guo LD. A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Botany. 2007 Oct; 85(10):911–7.

 

Xu J, Kjer J, Sendker J, Wray V, Guan H, Edrada R, … Proksch P. 2009. Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorg Med Chem. 17(20):7362–7367. doi:10.1016/j.bmc.2009.08.031.

 

Yamazaki T, Tokiwa T. 2010. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits matrix metalloproteinase-7 expression and cell invasion of human hepatoma cells. Biol Pharm Bull. 33(10):1716–1722. doi:10.1248/bpb.33.1716.

Mycology
Pages 243-256
Cite this article:
Srinivasa C, Mellappa G, Patil SM, et al. Plants and endophytes – a partnership for the coumarin production through the microbial systems. Mycology, 2022, 13(4): 243-256. https://doi.org/10.1080/21501203.2022.2027537

378

Views

18

Crossref

18

Web of Science

20

Scopus

Altmetrics

Received: 17 November 2021
Accepted: 06 January 2022
Published: 07 February 2022
© 2022 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return