AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Glyceroglycolipids from the solid culture of Ophiocordyceps sinensis strain LY34 isolated from Tibet of China

Baosong Chena,*,Jinghan Lina,b,*Ao XucDan YucDorji PhurbudHuanqin Daia,bYi Lic,( )Hongwei Liua,b,( )
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
Savaid Medicine School, University of Chinese Academy of Sciences, Beijing, P. R. China
School of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
Tibet Plateau Institute of Biology, Lhasa, P. R. China

*These authors contributed equally to this work

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Show Author Information

Abstract

Ophiocordyceps sinensis is a well-known entomogenous fungus with its fruiting bodies or cultural mycelium as food and herbal medicines in Asia. While metabolites which could responsible for its potent pharmaceutical effects has long remained to be elucidated. In this work, chemical investigation on the solid culture of O. sinensis strain LY34 led to the discovery of six digalactosyldiacylglycerols (DGDGS, 1–6) including one new. The structure of compound 1 was determined based on the comprehensive spectra analysis, including NMR, MSn, IR, and chemical derivatisation. Bioactivity studies showed a weak cytotoxicity of compounds 1–6 against 293 T cell and medium anti-inflammatory activity of compounds 1 and 2 on Raw 264.7 cell. The discovery of DGDGs in O. sinensis provides new insight into the pharmacologically active substances.

References

 

Åman P, McNeil M, Franzén LE, Darvill AG, Albersheim P. 1981. Structural elucidation, using h.p.l.c.-m.s. and g.l.c.-m.s., of the acidic polysaccharide secreted by Rhizobium meliloti strain 1021. Carbohyd Res. 95(2): 263–282. doi: 10.1016/S0008-6215(00)85582-2.

 

Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GHN. 1999. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry. 51(7): 891–898. doi: 10.1016/S0031-9422(99)00128-4.

 

Chen BS, Han JJ, Bao L, Wang WZ, Ma K, Liu HW. 2020a. Identification and α-glucosidase inhibitory activity of meroterpenoids from Hericium erinaceus. Planta Med. 86(8): 571–578. doi: 10.1055/a-1146-8369.

 

Chen BS, Wang SX, Liu GQ, Bao L, Huang Y, Zhao RL, Liu HW. 2020b. Anti-inflammatory diterpenes and steroids from peels of the cultivated edible mushroom Wolfiporia cocos. Phytochem Lett. 36: 11–16. doi: 10.1016/j.phytol.2020.01.005.

 

Chen BS, Zhang JJ, Han JJ, Zhao RL, Bao L, Huang Y, Liu HW. 2019. Lanostane triterpenoids with glucose-uptake-stimulatory activity from peels of the cultivated edible mushroom Wolfiporia cocos. J Agri Food Chem. 67(26): 7348–7364. doi: 10.1021/acs.jafc.9b02606.

 

Chen CY, Milbury PE, Kwak H-K, Collins FW, Samuel P, Blumberg JB. 2004. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J Nutr. 134(6): 1459–1466. doi: 10.1093/jn/134.6.1459.

 

Chiu JH, Ju CH, Wu LH, Lui WY, Wu CW, Shiao MS, Hong CY. 1998. Cordyceps sinensis increases the expression of major histocompatibility complex class Ⅱ antigens on human hepatoma cell line HA22T/VGH cells. Am J Chin Med. 26(2): 159–170. doi: 10.1142/S0192415X9800021X.

 

Cho J, Kang JS, Long PH, Jing J, Back Y, Chung KS. 2003. Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and Cordyceps mushroom extract. Arch Pharm Res. 26(10): 821–825. doi: 10.1007/BF02980027.

 

Falsone G, Cateni F, Nardini S, Birkofer L, Lucchini V, Wagner H. 1995. Marine natural products. Ⅱ. Digalactosyl diacylglycerols from Fucus. J Ag Pharm Pharmacol Lett. 5(4): 142–145.

 

Fu D, O’Neill RA. 1995. Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal Biochem. 227(2): 377–384. doi: 10.1006/abio.1995.1294.

 

Gao ZP, Ali Z, Khan IA. 2008. Glycerogalactolipids from the fruit of Lycium barbarum. Phytochemistry. 69(16): 2856–2861. doi: 10.1016/j.phytochem.2008.09.002.

 

Hamberg M, Liepinsh E, Otting G, Griffiths W. 1998. Isolation and structure of a new galactolipid from oat seeds. Lipids. 33(4): 355–363. doi: 10.1007/s11745-998-0215-9.

 

Hopping KA, Chignell SM, Lambin EF. 2018. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. P Natl Acad Sci USA. 115(45): 11489–11494. doi: 10.1073/pnas.1811591115.

 

Koh JH, Kim KM, Kim JM, Song JC, Suh HJ. 2003. Antifatigue and antistress effect of the hot-water fraction from mycelia of Cordyceps sinensis. Biol Pharm Bull. 26(5): 691–694. doi: 10.1248/bpb.26.691.

 

Koh JH, Yu KW, Suh HJ, Choi YM, Ahn TS. 2002. Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis. Biosci Biotech Bioch. 66(2): 407–411. doi: 10.1271/bbb.66.407.

 

Kolar MJ, Konduri S, Chang T, Wang H, McNerlin C, Ohlsson L, Harrod M, Siegel D, Saghatelian A. 2019. Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J Biol Chem. 294(27): 10698–10707. doi: 10.1074/jbc.RA118.006956.

 

Leung PH, Zhang QX, Wu JY. 2006. Mycelium cultivation, chemical composition and antitumour activity of a Tolypocladium sp fungus isolated from wild Cordyceps sinensis. J Appl Microbiol. 101(2): 275–283. doi: 10.1111/j.1365-2672.2006.02930.x.

 

Li SP, Su ZR, Dong TT, Tsim KW. 2002. The fruiting body and its caterpillar host of Cordyceps sinensis show close resemblance in main constituents and anti-oxidation activity. Phytomedicine. 9(4): 319–324. doi: 10.1078/0944-7113-00134.

 

Li Y, Wang XL, Jiao L, Jiang Y, Li H, Jiang SP, Lhosumtseiring N, Fu SZ, Dong CH, Zhan Y, et al. 2011. A survey of the geographic distribution of Ophiocordyceps sinensis. J Microbiol. 49(6): 913–919. doi: 10.1007/s12275-011-1193-z.

 

Li YF, Li R, Zhu SL, Zhou RY, Wang L, Du JH, Wang Y, Zhou B, Mai LW. 2015. Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells. Oncol Lett. 9(6): 2541–2547. doi: 10.3892/ol.2015.3066.

 

Napolitano A, Carbone V, Saggese P, Takagaki K, Pizza C. 2007. Novel galactolipids from the leaves of Ipomoea batatas L.: characterization by liquid chromatography coupled with electrospray ionization–quadrupole time-of-flight tandem mass spectrometry. J Agr Food Chem. 55(25): 10289–10297. doi: 10.1021/jf071331z.

 

Peterson DM, Hahn MJ, Emmons CL. 2002. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 79(4): 473–478. doi: 10.1016/S0308-8146(02)00219-4.

 

Rakhee, Mishra J, Yadav RB, Meena DK, Arora R, Sharma RK, Misra K. 2021. Novel formulation development from Ophiocordyceps sinensis (Berk.) for management of high-altitude maladies. 3 Biotech. 11(1): 9. doi: 10.1007/s13205-020-02536-3.

 

Syrov VN, Nabiev AN, Khushbaktova ZA, Sham’yanov ID, Abduazimov BK. 1991. Hepatotropic action of sesquiterpene lactones. Chem Pharma J. 25(2): 42–45.

 

Tarawneh AH, León F, Radwan MM, Rosa LH, Cutler SJ. 2013. Secondary metabolites from the fungus Emericella nidulans. Nat Prod Commun. 8(9): 1285–1288.

 

Wang HM, Wang XL, Li Y, Zhang SJ, Li ZG, Li YH, Cui JL, Lan XZ, Zhang EH, Yuan L, et al. 2021. Structural properties and in vitro and in vivo immunomodulatory activity of an arabinofuranan from the fruits of Akebia quinata. Carbohyd Polym. 256: 117521. doi: 10.1016/j.carbpol.2020.117521.

 

Wang XL, Yao Y-J. 2011. Host insect species of Ophiocordyceps sinensis: a review. Zookeys. 127: 43–59. doi: 10.3897/zookeys.127.802.

 

Yamaguchi Y, Kagota S, Nakamura K, Shinozuka K, Kunitomo M. 2000. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res. 14(8): 647–649. doi: 10.1002/1099-1573(200012)14:8<647::AID-PTR670>3.0.CO;2-W.

 

Yan YJ, Li Y, Wang WJ, He JS, Yang RH, Wu HJ, Wang XL, Jiao L, Tang ZY, Yao YJ. 2017. Range shifts in response to climate, change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biol Conserv. 206: 143–150. doi: 10.1016/j.biocon.2016.12.023.

 
Yang ZL. 2020. Ophiocordyceps sinensis (amended version of 2020 assessment). IUCN Red List Threatened Species. 2020: e.T58514773A179197748. [accessed 2021 Nov 23]. doi: 10.2305/IUCN.UK.2020-3.RLTS.T58514773A179197748.en.
 

Yao YJ, Wei JC, Zhuang WY, Wei T, Li Y, Wei X, Deng H, Liu D, Cai L, Li J, et al. 2020. Threatened species list of Chinas macrofungi. Biodivers Sci. 28(1):20–25. doi:10.17520/biods.2019174

 

Zhang HY, Oh J, Jang TS, Min BS, Na MK. 2012. Glycolipids from the aerial parts of Orostachys japonicus with fatty acid synthase inhibitory and cytotoxic activities. Food Chem. 131(4):1097–1103. doi:10.1016/j.foodchem.2011.09.058.

Mycology
Pages 185-194
Cite this article:
Chen B, Lin J, Xu A, et al. Glyceroglycolipids from the solid culture of Ophiocordyceps sinensis strain LY34 isolated from Tibet of China. Mycology, 2022, 13(3): 185-194. https://doi.org/10.1080/21501203.2022.2036841

248

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 03 December 2021
Accepted: 27 January 2022
Published: 22 February 2022
© 2022 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return