AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Optimization for the production of a polyketone 3S,4S-DMD from Panus lecomtei (Agaricomycetes) by submerged fermentation

Si-Xian WangaPing HuangaHongwei LiubYucheng DaicXiao-Ling Wanga( )Gao-Qiang Liua( )
Hunan Provincial Key Laboratory of Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha, China
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
Show Author Information

Abstract

3,4-Dihydroxy-2,2-dimethyl-chroman derivatives have diverse physiological properties. A polyketone (3S,4S)-3,4-Dihydroxy-6-methoxy-2,2-dimethylchromom (3S,4S-DMD) with antibacterial activity was isolated from the solid culture of rare edible fungus Panus lecomtei. However, the yield of 3S,4S-DMD in solid culture of P. lecomtei is very low and the production period are too long. In this work, efficient accumulation of 3S,4S-DMD in P. lecomtei by submerged fermentation is studied. The key fermentation factors of P. lecomtei for 3S,4S-DMD production were optimised by single-factor experiment successively, and then a Box-Behnken design (BBD) experiment was carried out to further enhance 3S,4S-DMD production. A maximum 3S,4S-DMD yield of 196.3 mg/L was obtained at 25.78 g/L glucose, 1.67 g/L MgSO4 · 7H2O, 40℃ and 197 r/min, respectively, which increased by 1.3-fold in comparison with that in the non-optimised fermentation conditions. Furthermore, an enhanced yield of 3S,4S-DMD (261.6 mg/L) was obtained in 5-L agitated fermenter. The 3S,4S-DMD productivity in flask and fermenter reached to 7.26 and 8.07 mg/g per day, respectively, which considerably increased by over 121-fold in comparison with that in the solid fermentation (0.06 mg/g per day). This study presents a potential method for the production of 3S,4S-DMD by submerged fermentation.

References

 

Ahuja SK, Ferreira GM, Moreira AR. 2004. Application of Plackett‐Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium. Biotechnol Bioeng. 85(6):666–675. doi:10.1002/bit.10880.

 

Burke AJ, O’Sullivan WI. 1998. Flavonoid epoxides. Part 22. Establishment of the configuration of the diastereomeric solvolysis products of 2-arylmethylenebenzo[b]furan-3(2H)-one (aurone) epoxides. Tetrahedron. 54(10):2169–2180. doi:10.1016/S0040-4020(97)10429-X.

 

Covino S, Cvancarová M, Muzikácr M, Svobodová K, D’Annibale A, Petruccioli M, Federici F, Kresinová Z, Cajthaml T. 2010. An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices. J Hazard Mater. 183(1–3):669–676. doi:10.1016/j.jhazmat.2010.07.078.

 

David B, Wolfender JL, and Dias DA. 2015. The pharmaceutical industry and natural products, historical status and new trends. Phytochem Rev. 14:299–315. doi:10.1007/s11101-014-9367-z.

 

Drechsler-Santos ER, Wartchow F, Coimbra VRM, Gibertoni TB, Cavalcanti MAQ. 2012. Studies on lentinoid fungi (Lentinus and Panus) from the semiarid region of Brazil. Journal of the Torrey Botanical Society. 139(4):437–446. doi:10.3159/TORREY-D-12-00019.1.

 

Gao J, Xu H, Li QJ, Feng XH, Li S. 2010. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresour Technol. 101(18):7076–7082. doi:10.1016/j.biortech.2010.03.143.

 

Huang D, Xie T-N, Xue Y-R, and Liu C-H. 2019. CTAB-PEG DNA extraction from fungi with high contents of polysaccharides. Mol Biol. 52:621–628.

 

Kim S, Ko H, Son S, Shin KJ, Kim DJ. 2001. Enantioselective syntheses of (+)-decursinol and (+)-trans-decursidinol. Tetrahedron Lett. 42(43):7641–7643. doi:10.1016/S0040-4039(01)01652-5.

 

Kumar V, Ahluwalia V, Saran S, Kumar J, Patel AK, Singhania RR. 2021. Recent developments on solid-state fermentation for production of microbial secondary metabolites: challenges and solutions. Bioresour Technol. 323:124566. eng. doi:10.1016/j.biortech.2020.124566.

 

Ma L, Ma Q, Guo G, Du L, Zhang Y, Cui Y, Xiao D. 2018. Optimization of sodium percarbonate pretreatment for improving 2,3-butanediol production from corncob. Prep Biochem Biotechnol. 48(3):1. doi:10.1080/10826068.2017.1387563.

 

Meraz K, Gnanasekaran KK, Thing R, Bunce RA. 2016. Bismuth(Ⅲ) triflate catalyzed tandem esterification–Fries–oxa-Michael route to 4-chromanones. Tetrahedron Lett. 57(46):5057–5061. doi:10.1016/j.tetlet.2016.10.005.

 

Newman DJ, Cragg GM. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 83(3):770–803. doi:10.1021/acs.jnatprod.9b01285.

 

Ruqayyah TID, Jamal P, Alam MZ, Mirghani MES, Jaswir I, Ramli N, b IJ, c NR. 2014. Application of response surface methodology for protein enrichment of cassava peel as animal feed by the white-rot fungus Panus tigrinus M609RQY. Food Hydrocoll. 42(2):298–303. doi:10.1016/j.foodhyd.2014.04.027

 

Sarchami T, Johnson E, Rehmann L. 2016. Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525. Bioresour Technol. 208:73–80. doi:10.1016/j.biortech.2016.02.062.

 

Schmidt B, Riemer M. 2016. Microwave-promoted deprenylation: prenyl ether as a thermolabile phenol protecting group. Synthesis. 48(9):1399–1406. doi:10.1055/s-0035-1561366.

 

Sharma VP, Kumari B, Annepu SK, and Kamal S. 2020. Nutritional and Biochemical Characterization of Panus lecomtei Mushroom (Agaricomycetes) from India and Its Cultivation. Int J Med Mushrooms. 22(5):501–507. doi:10.1615/IntJMedMushrooms.2020034728.

 

Wang SX, Rui-Lin Z, Cui G, Bao-Song C, Liu HW, LIU G-Q, LIU H-W. 2020. New meroterpenoid compounds from the culture of mushroom Panus lecomtei. Chin J Nat Med. 18(3):1–5. doi:10.1016/S1875-5364(20)30033-9.

 

Wu Q, Li Y, Peng, K, Wang XL, Ding Z, Liu L, Xu Peng, and Liu GQ. 2019. Isolation and characterization of three anti-hypertension peptides from the mycelia of Ganoderma lucidum (Agaricomycetes). J Agri Food Chem. 67(29):8149–8159. doi:10.1021/acs.jafc.9b02276.

 

Yuan LL, Li YQ, Wang Y, Zhang XH, Xu YQ. 2008. Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. J Biosci Bioeng. 105(3):232–237. doi:10.1263/jbb.105.232.

 

Zou Y, Du F, Hu Q, Wang H. 2019. The structural characterization of a polysaccharide exhibiting antitumor effect from Pholiota adiposa mycelia. Sci Rep. 9(1). doi:10.1038/s41598-018-38251-6.

Mycology
Pages 212-222
Cite this article:
Wang S-X, Huang P, Liu H, et al. Optimization for the production of a polyketone 3S,4S-DMD from Panus lecomtei (Agaricomycetes) by submerged fermentation. Mycology, 2022, 13(3): 212-222. https://doi.org/10.1080/21501203.2022.2036842

224

Views

0

Crossref

0

Web of Science

1

Scopus

Altmetrics

Received: 22 December 2021
Accepted: 27 January 2022
Published: 17 February 2022
© 2022 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return