AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Influence of plant growth-promoting endophytes Colletotrichum siamense and Diaporthe masirevici on tomato plants (Lycopersicon esculentum Mill.)

Shalene da Silva SantosaAngela Aparecida da SilvaaJulio Cesar Polonioa ( )Andressa Domingos PolliaRavely Casarotti OrlandelliaJoão Arthur dos Santos OliveiraaJosé Usan Torres Brandão-FilhobJoão Lúcio AzevedocJoão Alencar Pamphilea,
Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, Brazil
Department of Agronomy, Universidade Estadual de Maringá, Maringá, Brazil
Department of Genetics, College of Agriculture Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil

in memoriam

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Show Author Information

Abstract

The protective and growth-promoting activities of Colletrotrichum and Diaporthe endophytes on tomato plants (Lycopersicon esculentum Mill.) are underexplored. We screened 40 endophytic fungi associated with Mexican shrimp plant (Justicia brandegeana) using an in vitro dual culture assay for Fusarium oxysporum, one of the most important phytopathogens of tomato plants. The three best antagonists, Colletotrichum siamense (JB224.g1), C. siamense (JB252.g1), and Diaporthe masirevicii (JB270), were identified based on multilocus sequence analysis. They were assessed in vitro for their inhibition of F. oxysporum and phosphate solubilisation capacity, and for the production of indole acetic acid. Greenhouse experiments verified the growth-promoting effects of these endophytes and the suppression of F. oxysporum symptoms in tomato plants. Under greenhouse conditions, the JB252.g1 and JB270 isolates showed positive results for seedling emergence speed. The radicular system depth of plants inoculated with JB270 was greater than that in uninoculated plants (27.21 vs 21.95 cm). The soil plant analysis development chlorophyll metre (SPAD) index showed statistically significant results, especially for the endophyte JB224.g1 (36.99) compared to the control plants (30.90) and plants infected solely with F. oxysporum (33.64).

References

 

Abdel-Monaim MF, Ismail ME, Morsy KM. 2011. Induction of systemic resistance of benzothiadiazole and humic acid in soybean plants against Fusarium wilt disease. Mycobiology. 39(4):290–298. doi: 10.5941/MYCO.2011.39.4.290.

 

Aldana BRV, Arellano JB, Cuesta MJ, Mellado-Ortega E, Gonzalez V, Zabalgogeazcoa I. 2021. Screening fungal endophytes from a wild grass for growth promotion in tritordeum, an agricultural cereal. Plant Sci. 303: 110762. doi: 10.1016/j.plantsci.2020.110762.

 

Alwathnani HA, Perveen K. 2012. Biological control of Fusarium wilt of tomato by antagonist fungi and cyanobacteria. African J Biotechnol. 11: 1100–1105.

 

Aly AH, Debbab A, Proksch P. 2011. Fungal endophytes: unique plant inhabitants with grat promises. Appl Microbiol Biotechnol. 90: 1829. doi: 10.1007/s00253-011-3270-y.

 

Atugala D, Deshappriya N. 2015. Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J Natl Sci Found. 43: 173–187.

 

Badalyan SM, Innocenti G, Garibyan NG. 2002. Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathol Mediterr. 41: 220–225.

 

Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A. 2018. Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis. 76: 117–127. doi: 10.1007/s13199-018-0545-4.

 

Bouzouina M, Kouadria R, Lotmani B. 2021. Fungal endophytes alleviate salt stress in wheat in terms of growth, ion homeostasis and osmoregulation. J Appl Microbiol. 130(3):913–925. doi: 10.1111/jam.14804.

 
Brazil. 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: Mapa/ACS; p. 399. [Accessed 2017 Jul 25]. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf
 

Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 64(1):807–838. doi:10.1146/annurev-arplant-050312-120106.

 

Campanile G, Ruscelli A, Luisi N. 2007. Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in plant tests. Eur J Plant Pathol. 117:237–246. doi:10.1007/s10658-006-9089-1.

 

Díaz-González S, Marín P, Sánchez R, Arribas C, Kruse J, González-Melendi P, Brunner F, Sacristán S. 2020. Mutualistic fungal endophyte Colletotrichum tofieldiae Ct0861 colonizes and increases growth and yield of maize and tomato plants. Agronomy. 10(10):1493. doi:10.3390/agronomy10101493.

 
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 1997. Manual de métodos de análise de solo. Centro Nacional de Pesquisa de Solos. 2.ed.rev.atual. Rio de Janeiro, 212p. [Accessed 2017 Jul 25]. https://www.agencia.cnptia.embrapa.br/Repositorio/Manual±de±Metodos_000fzvhotqk02wx5ok0q43a0ram31wtr.pdf.
 
FAO (Food and Agriculture Organization of the United Nations). 2020. [Accessed 2021 Mar 20]. http://www.fao.org/faostat/en/#data/QC/visualize.
 

Ferreira DF. 2011. Sisvar: a computer statistical analysis system. Ciênc Agrotec. 35(6):1039–1042. doi:10.1590/S1413-70542011000600001.

 

Fontanelle ADB, Guzzo SD, Lucon CMM, Harakava R. 2011. Growth promotion and inducion of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Protection. 30:1492–1500. doi:10.1016/j.cropro.2011.07.019.

 

Gazis R, Chaverri P. 2015. Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: is this evidence of protective mutualism? Fungal Ecol. 17:18–29. doi:10.1016/j.funeco.2015.04.001.

 

Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S, et al. 2017. Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol. 8:686. doi:10.3389/fmicb.2017.00686.

 

Hernandez-Leal TI, Carrion G, Heredia G. 2011. Solubilización in vitro de fosfatos por una cepa de Paecilomyces lilacinus (Thom) Samson. Agrociencia. 45:881–892.

 

Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell RJ, et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell. 165(2):464–474. doi:10.1016/j.cell.2016.02.028.

 

Katoh K, Rozewicki J and Yamada K D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. 10.1093/bib/bbx108

 

Khalil AMA, Hassan SE-D, Alsharif SM, Eid AM, Ewais EE-D, Azab E, Gobouri AA, Elkelish A, Fouda A. 2021. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules. 11(2):140. doi:10.3390/biom11020140.

 

Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol. 12:1–14. doi:10.1186/1471-2180-12-3.

 

Khan AL, Lee IJ. 2013. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol. 13:86. doi:10.1186/1471-2229-13-86.

 

Kumar S, Kaushik N. 2013. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. Plos One. 8:e56202. doi:10.1371/journal.pone.0056202.

 
Kusari S, Spiteller M. 2012. Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U, editor. Metabolomics (p. 241–266). London, United Kingdom: IntechOpen
 

Maguire JD. 1962. Speeds of germination-aid selection and evaluation for seedling emergence and vigor. Crop Sci. 2:176–177. doi:10.2135/cropsci1962.0011183X000200020033x.

 

Marra LM, Crfs S, Oliveira SM, Ferreira PAA, Soares BL, Carvalho RF, Lima JM, Moreira FMS. 2012. Biological nitrogen fixation and phosphate solubilization by bactéria isolated from tropicals soils. Plant Soil. 357:289. doi:10.1007/s11104-012-1157-z.

 

McGovern RJ. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 73:78–92. doi:10.1016/j.cropro.2015.02.021.

 

Mercado-Blanco J, Lugtenberg B. 2014. Biotechnological applications of bacterial endophytes. Current Biotechnol. 3:60–75. doi:10.2174/22115501113026660038.

 

Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wie C, Zhang X. 2016. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci. 7:644. doi:10.3389/fpls.2016.00644.

 

Murali M, Sudisha J, Amruthesh KN, Ito SI, Shekar SH. 2013. Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biol. 15:111–118. doi:10.1111/j.1438-8677.2012.00617.x.

 

Mwangi MW, Monda EO, Okoth SA, Jefwa JM. 2011. Inoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhizal fungi and their effect on growth and control of wilt in tomato seedlings. Braz J Microbiol. 42:508–5013. doi:10.1590/S1517-83822011000200015.

 

Nagaraju A, Sudisha J, Murthy MS, Ito SI. 2012. Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incitant of sunflower downy mildew disease. Australas J Plant Pathol. 41:609–620. doi:10.1007/s13313-012-0165-z.

 

Nopparat C, Jatupornpipat M, Rittiboon A. 2009. Optimization of the phosphate-solubilizing fungus, Aspergillus japonicus sa22p3406, in solid-state cultivation by response surface methodology. Kasetsart J (Nat Sci). 43:172–181.

 
Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. Vigo, Spain: Uppsala University, Evolutionary Biology Centre.
 

Oliveira JAS, Polli AD, Polonio JC, Orlandelli RC, Conte H, Azevedo JL, Pamphile JA. 2020. Bioprospection and molecular phylogeny of culturable endophytic fungi associated with yellow passion fruit. Acta Sci Biol Sci. 42(1):e48321. doi:10.4025/actascibiolsci.v42i1.48321.

 

Orlandelli RC, Alberto RN, Almeida TT, Azevedo JL, Pamphile JA. 2012. In vitro antibacterial activity of crude extracts produced by endophytic fungi isolated from Piper hispidum Sw. J App Pharm Sci. 2:137.

 

Pamphile JA, Azevedo JL. 2002. Molecular characterization of endophytic strains of Fusarium verticillioides (= Fusarium moniliforme) from maize (Zea mays. L). World J Microbiol Biotechnol. 18:391–396. doi:10.1023/A:1015507008786.

 
Rambaut A 2009. FigTree v1. 3.1: tree figure drawing tool. [Accessed 2021 Mar 20]. http://tree.bio.ed.ac.uk/software/figtree
 

Rashid S, Charles TC, Glick BR. 2012. Isolation and characterization of new plant growth promoting bacterial endophytes. Appl Soil Ecol. 61:217–224. doi:10.1016/j.apsoil.2011.09.011.

 

Ribeiro AS, Polli AD, Oliveira A, Oliveira JAS, Emmer A, Alves LH, Pereira OCN, Pamphile (In Memorian) JA. 2021. Ornamental plant Pachystachys lutea as a source of promising endophytes for plant growth and phytoprotective activity. Acta Sci Biol Sci. 43(1):e51737. doi:10.4025/actascibiolsci.v43i1.51737.

 

Ripa FA, W-d C, Tong S, J-g S. 2019. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. 2019. BioMed Res Int. 3:1–12. doi:10.1155/2019/6105865.

 

Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araujo IS, Mattos CRR, Goes-Neto A. 2011. Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers. 47:75–84. doi:10.1007/s13225-010-0044-2.

 

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Huelsenbeck JP, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542. doi:10.1093/sysbio/sys029.

 
Santos JRM. 1997. Methodology for screening tomato for Fusarium wilt, Verticillium wilt, gray leaf spot, early blight and Septoria leaf blight Maciel, GA, Lopes, GMB, Hayward, C, Mariano, RRL, Maranhão, EA de A eds. In: International symposium on tropical tomato disease. Recife (ASHS): IPA; p. 164–166.
 
(2020). Multilocus sequence analysis of endophytic fungi from Justicia brandegeana with the culture-dependent method and their bioprospection for health field. South African Journal of Botany, 134: 359–368. doi: 10.1016/j.sajb.2020.05.007.
 

Suryanarayanan TS, Rajulu GMB, Vidal S. 2018. Biological control through fungal endophytes: gaps in knowledge hindering success. Current Biotechnol. 7:185–198. doi:10.2174/2211550105666160504130322.

 

Syamsia S, Idhan A, Firmansyah AP, Noerfitryani N, Rahim I, Kesaulya H, Armus R. 2021. Combination on endophytic fungal as the plant growth-promoting fungi (PGPF) on cucumber (Cucumis sativus). Biodiversitas. 22(3):1194–1202. doi:10.13057/biodiv/d220315.

 

Vandenkoornhuyse P, Quaiser A, Duhamel M, Van AL, Dufresne A. 2015. The importance of the microbiome of the plant holobiont. New Phytol. 206:1196–1206. doi:10.1111/nph.13312.

 

Yadav J, Verma JP, Tiwari KN. 2011. Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Biol Life Sci. 4:291–299. doi:10.3923/ajbs.2011.291.299.

Mycology
Pages 257-270
Cite this article:
da Silva Santos S, da Silva AA, Polonio JC, et al. Influence of plant growth-promoting endophytes Colletotrichum siamense and Diaporthe masirevici on tomato plants (Lycopersicon esculentum Mill.). Mycology, 2022, 13(4): 257-270. https://doi.org/10.1080/21501203.2022.2050825

351

Views

14

Crossref

15

Web of Science

17

Scopus

Altmetrics

Received: 03 March 2022
Accepted: 03 March 2022
Published: 17 March 2022
© 2022 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Return