AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Niche and ecosystem preference of earliest diverging fungi in soils

Jiarui Yanga,b,c,Juanli Yunb,dXingzhong Liua,c,eWenbin Dub,dMeichun Xianga,c( )
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Show Author Information

Abstract

Within the supergroup Rotosphaeromycetes, or “Holomycota”/“Nucletmycea”, there are several well-recognised unicellular clades in the earliest diverging fungi (EDF). However, we know little about their occurrence. Here, we investigated EDF in the rhizosphere and bulk soils from cropland, forest, orchard, and wetland ecosystems around the Beijing-Hebei area, China, to illustrate their niche and ecosystem preference. More than 500 new operational taxonomic units (OTUs) of EDF were detected based on the 18S rRNA genes. Microsporida and Aphelida constitute dominant groups, whereas Rozellosporida was quite rare. Although the EDF community was site-specific, the soil chemical characteristics, vegetation, and other eukaryotic microorganisms were the key factors driving the occurrence of EDF. Moreover, the stochastic process consisted the most of the EDF community assembly.

References

 

Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. 2019. Revisions to the classification, nomenclature, and diversity of Eukaryotes. J Eukaryot Microbiol. 66(1):4–119. doi:10.1111/jeu.12691.

 

Asiloglu R, Shiroishi K, Suzuki K, Turgay OC, Harada N. 2021. Soil properties have more significant effects on the community composition of protists than the rhizosphere effect of rice plants in alkaline paddy field soils. Soil Biol Biochem. 161:108397. doi:10.1016/j.soilbio.2021.108397.

 

Aslani F, Geisen S, Ning D, Tedersoo L, Bahram M, de Vries F. 2022. Towards revealing the global diversity and community assembly of soil eukaryotes. Ecol Lett. 25(1):65–76. doi: 10.1111/ele.13904.

 

Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L. 2015. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. Isme J 2016. 10(4):885–896. doi: 10.1038/ismej.2015.164.

 

Bass D, Czech L, Williams BAP, Berney C, Dunthorn M, Mahé F, Torruella G, Stentiford GD, Williams TA. 2018. Clarifying the relationships between Microsporidia and Cryptomycota. J Eukaryot Microbiol. 65(6):773–782. doi: 10.1111/jeu.12519.

 

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 37(8):852–857. doi: 10.1038/s41587-019-0209-9.

 

Brad T, Itcus C, Pascu MD, Perşoiu A, Hillebrand-Voiculescu A, Iancu L, Purcarea C. 2018. Fungi in perennial ice from Scǎrişoara Ice Cave (Romania). Sci Rep. 8(1):1–9. doi: 10.1038/s41598-018-28401-1.

 

Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI, Hashimoto T, Simpson AGB, et al. 2018. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol Evol. 10(2):427–433. doi:10.1093/gbe/evy014.

 
Brust GE. 2019. Management strategies for organic vegetable fertility. In:Safety and Practice for Organic Food. pp. 193–212. 10.1016/B978-0-12-812060-6.00009-X.
 

Burki F, Roger AJ, Brown MW, Simpson AGB. 2020. The new tree of eukaryotes. Trends Ecol Evol. 35(1):43–55. doi: 10.1016/j.tree.2019.08.008.

 

Butters B, Chenery EM. 1959. A rapid method for the determination of total sulphur in soils and plants. Analyst (Lond). 84(997):239–245. doi: 10.1039/AN9598400239.

 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 13(7):581–583. doi: 10.1038/nmeth.3869.

 

Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T. 2012. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced Fungi. BMC Biol. 10(1):1–14. doi: 10.1186/1741-7007-10-47.

 

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25(15):1972–1973. doi: 10.1093/bioinformatics/btp348.

 

Carney KM, Matson PA. 2006. The influence of tropical plant diversity and composition on soil microbial communities. Microbial Ecol. 52(2):226–238. doi: 10.1007/s00248-006-9115-z.

 

Ceja-Navarro JA, Wang Y, Ning D, Arellano A, Ramanculova L, Yuan MM, Byer A, Craven KD, Saha MC, Brodie EL, et al. 2021. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome. 9(1):96. doi: 10.1186/s40168-021-01042-9.

 

Chambouvet A, Monier A, Maguire F, Itoïz S, Del Campo J, Elies P, Edvardsen B, Eikreim W, Richards TA. 2019. Intracellular infection of diverse diatoms by an evolutionary distinct relative of the Fungi. Curr Biol. 29(23):4093–4101.e4. doi: 10.1016/j.cub.2019.09.074.

 

Chen T, Feng Z, Zhao H, Wu K. 2020. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas. Sci Total Environ. 711:134687. doi:10.1016/j.scitotenv.2019.134687.

 
Cocquyt E 2009. Phylogeny and molecular evolution of green algae. PhD Dessertation. 1–168. http://hdl.handle.net/1854/LU-712285
 

Corsaro D, Walochnik J, Venditti D, Hauröder B, Michel R. 2020. Solving an old enigma: Morellospora saccamoebae gen. nov., sp. nov. (Rozellomycota), a Sphaerita-like parasite of free-living amoebae. Parasitol Res. 119(3):925–934. doi: 10.1007/s00436-020-06623-5.

 

Corsaro D, Walochnik J, Venditti D, Müller KD, Hauröder B, Michel R. 2014. Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota. Parasitol Res. 113(12):4491–4498. doi: 10.1007/s00436-014-4138-8.

 

Feng ZZ, Wang XK, Feng ZW. 2005. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agric Water Manage. 71(2):131–143. doi: 10.1016/J.AGWAT.2004.07.001.

 

Galindo LJ, Torruella G, López-García P, Ciobanu M, Gutiérrez-Preciado A, Karpov SA, Moreira D, Folk R. 2023. Phylogenomics supports the monophyly of Aphelids and Fungi and identifies new molecular synapomorphies. Syst Biol. 72(3):505–515. doi: 10.1093/sysbio/syac054.

 

Galindo LJ, Torruella G, Moreira D, Eglit Y, Simpson AGB, Völcker E, Clauß S, López-García P. 2019. Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philos Trans R Soc B Biol Sci. 374(1786):20190094. doi: 10.1098/rstb.2019.0094.

 

Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. 2019. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24(2):165–176. doi: 10.1016/j.tplants.2018.10.011.

 

Guo S, Xiong W, Xu H, Hang X, Liu H, Xun W, Li R, Shen Q. 2018. Continuous application of different fertilizers induces distinct bulk and rhizosphere soil protist communities. Eur J Soil Biol. 88:8–14. doi:10.1016/j.ejsobi.2018.05.007.

 

Harrell FE Jr, Harrell MFE Jr. 2019. Package ‘hmisc. CRAN2018. 2019:235–236.

 

Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. 2018. Ufboot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 35(2):518–522. doi: 10.1093/molbev/msx281.

 

Hussain M, Hamid MI, Tian J, Hu J, Zhang X, Chen J, Xiang M, Liu X. 2018. Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. FEMS Microbiol Ecol. 94(10): doi: 10.1093/femsec/fiy142.

 

Jamy M, Foster R, Barbera P, Czech L, Kozlov A, Stamatakis A, Bending G, Hilton S, Bass D, Burki F. 2020. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol Ecol Resour. 20(2):429–443. doi: 10.1111/1755-0998.13117.

 

Jones MDM, Richards TA, Hawksworth DL, Bass D. 2011. Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus. 2(2):173–175. doi: 10.5598/imafungus.2011.02.02.08.

 

Karpov SA, López-García P, Mamkaeva MA, Klimov Ⅵ, Vishnyakov AE, Tcvetkova VS, Moreira D. 2018. The Chytrid-like parasites of algae Amoeboradix gromovi gen. et sp. nov. and Sanchytrium tribonematis belong to a new fungal lineage. Protist. 169(1):122–140. doi: 10.1016/j.protis.2017.11.002.

 

Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH. 2014. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol. 5(MAR):1–11. doi: 10.3389/fmicb.2014.00112.

 

Katoh K, Rozewicki J, Yamada KD. 2018. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4):1160–1166. doi: 10.1093/bib/bbx108.

 

Keeling PJ, Doolittle WF. 1996. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol. 13(10):1297–1305. doi: 10.1093/oxfordjournals.molbev.a025576.

 

Lara E, Moreira D, López-García P. 2010. The environmental clade LKM11 and Rozella form the deepest branching clade of Fungi. Protist. 161(1):116–121. doi: 10.1016/j.protis.2009.06.005.

 

Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB. 2018. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature. 564(7736):410–414. doi: 10.1038/s41586-018-0708-8.

 

Letcher PM, Longcore JE, James TY, Leite DS, Simmons DR, Powell MJ. 2018. Morphology, ultrastructure, and molecular phylogeny of Rozella multimorpha, a new species in Cryptomycota. J Eukaryot Microbiol. 65(2):180–190. doi: 10.1111/jeu.12452.

 

Letcher PM, Lopez S, Schmieder R, Lee PA, Behnke C, Powell MJ, McBride RC 2013. Characterization of Amoeboaphelidium protococcarum, an Algal Parasite New to the Cryptomycota Isolated from an Outdoor Algal Pond Used for the Production of Biofuel. PLoS One. 8(2):e56232–e56232. doi: 10.1371/journal.pone.0056232.

 

Letcher PM, Powell MJ. 2018. A taxonomic summary and revision of Rozella (Cryptomycota). IMA Fungus. 9(2):383–399. doi: 10.5598/imafungus.2018.09.02.09.

 

Li Y, Gao Y, Zhang W, Wang C, Wang P, Niu L, Wu H. 2019. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci Total Environ. 690:50–60. doi:10.1016/j.scitotenv.2019.07.014.

 

Livermore JA, Mattes TE. 2013. Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environ Microbiol. 15(8):2333–2341. doi: 10.1111/1462-2920.12106.

 

Mangot JF, Domaizon I, Taib N, Marouni N, Duffaud E, Bronner G, Debroas D. 2013. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol. 15(6):1745–1758. doi: 10.1111/1462-2920.12065.

 

McMurdie PJ, Holmes S, Watson M. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 8(4):e61217. doi: 10.1371/journal.pone.0061217.

 
Merényi Z, Krizsán K, Sahu N, Liu X, Bálint B, Stajich J, Spatafora JW, Nagy LG. 2022. Taxonomic vs genomic fungi: contrasting evolutionary loss of protistan genomic heritage and emergence of fungal novelties. bioRxiv.:2022.11.15.516418. doi: 10.1101/2022.11.15.516418.
 

Mesentsev Y, Kamyshatskaya O, Smirnov A. 2020. The camoeba foliovenanda n. sp. (Amoebozoa, Discosea, Thecamoebida) – One more case of sibling species among amoebae of the genus Thecamoeba. Eur J Protistol. 76:125716–125716. doi:10.1016/j.ejop.2020.125716.

 

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 37(5):1530–1534. doi: 10.1093/molbev/msaa015.

 

Mohamed DJ, Martiny JBH. 2011. Patterns of fungal diversity and composition along a salinity gradient. Isme J. 5(3):379–388. doi: 10.1038/ismej.2010.137.

 

Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J. 2020. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun. 11(1):4717. doi: 10.1038/s41467-020-18560-z.

 

Ocaña-Pallarès E, Williams TA, López-Escardó D, Arroyo AS, Pathmanathan JS, Bapteste E, Tikhonenkov DV, Keeling PJ, Szöllősi GJ, Ruiz-Trillo I. 2022. Divergent genomic trajectories predate the origin of animals and fungi. Nature. 609(7928):747–753. doi: 10.1038/s41586-022-05110-4.

 

Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. 2020. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 6(4):eaax8787. doi: 10.1126/sciadv.aax8787.

 

Powell MJ. 1984. Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenae. Mycologia. 76(6):1039–1039. doi: 10.1080/00275514.1984.12023948.

 

Powell MJ, Letcher PM. 2019. Ultrastructure of early stages of Rozella allomycis (Cryptomycota) infection of its host. Fungal Biol. 123(2):109–116. doi: 10.1016/j.funbio.2018.11.009.

 

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1):D590–D596. doi: 10.1093/nar/gks1219.

 

Read DJ, Leake JR, Perez-Moreno J. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot. 82(8):1243–1263. doi: 10.1139/b04-123.

 

Richards TA, Leonard G, Mahé F, Del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana R, et al. 2015. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B Biol Sci. 282(1819):20152243. doi: 10.1098/rspb.2015.2243.

 

Richardson E, Bass D, Smirnova A, Paoli L, Dunfield P, Dacks JB. 2020. Phylogenetic estimation of community composition and novel eukaryotic lineages in base mine lake: An oil sands tailings reclamation site in Northern Alberta. J Eukaryot Microbiol. 67(1):86–99. doi: 10.1111/jeu.12757.

 

Ride WDL, Cogger HG, Dupuis C, Kraus O, Minelli A, Thompson FC, Tubbs PK. 1999. International code of zoological nomenclature. UK: International Trust for Zoological Nomenclature.

 

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4:e2584. doi:10.7717/peerj.2584.

 

Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. 2009. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. Isme J. 3(6):675–684. doi: 10.1038/ismej.2009.11.

 

Seto K, Matsuzawa T, Kuno H, Kagami M. 2020. Morphology, ultrastructure, and molecular phylogeny of Aphelidium collabens sp. nov. (Aphelida), a parasitoid of a green alga Coccomyxa sp. Protist. 171(3):125728–125728. doi: 10.1016/j.protis.2020.125728.

 

Shimano S. 2007. The role of protist in rhizosphere: protist interactions with the soil Microflora and plant root (The function of soil microorganism and soil arthropod in rhizosphere: interactions with the soil micro-mesoflora and plant root). Soil Microorg. 61(1):41–48. doi: 10.18946/jssm.61.1_41.

 

Siemensma F, Dumack K. 2020. SSU rDNA phylogeny indicates the scale-lacking Trivalvulariida ord. nov. as a sister group to the Euglyphida (Cercozoa, Rhizaria). Protist. 171(1):125701–125701. doi: 10.1016/j.protis.2019.125701.

 

Šmilauer P, Lepš J. 2014. Multivariate analysis of ecological data using CANOCO 5. UK: Cambridge University Press.

 

Stentiford GD, Bass D, Williams BAP, Hogan DA. 2019. Ultimate opportunists—the emergent enterocytozoon group microsporidia. PLoS Pathog. 15(5):1–6. doi: 10.1371/journal.ppat.1007668.

 

Strelow D, de Haan M, Bonkowski M, Fiore-Donno AM. 2020. New insights into the phylogeny of the dark-spored Myxomycetes (Amoebozoa: Conosa: Myxogastria: Fuscisporidia) and polyphyly of the genus Stemonitis. Syst Biodivers. 18(3):228–236. doi: 10.1080/14772000.2020.1733128.

 

Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K. 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 90(1):135–159. doi: 10.1007/s13225-018-0401-0.

 

Van Bemmelen JM. 1890. Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans usw im Ackerboden. Landwirthschaft Vers-Stat. 37(279): e290.

 

van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 396(6706):69–72. doi: 10.1038/23932.

 

Vilmi A, Gibert C, Escarguel G, Happonen K, Heino J, Jamoneau A, Passy SI, Picazo F, Soininen J, Tison-Rosebery J, et al. 2021. Dispersal-niche continuum index: a new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography. 44(3):370–379. doi: 10.1111/ECOG.05356.

 

Voigt K, James TY, Kirk PM, de A SA, Waldman B, Griffith GW, Fu M, Radek R, Strassert JFH, Wurzbacher C, et al. 2021. Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. Fungal Divers. 109(1):59–98. doi:10.1007/s13225-021-00480-y.

 

Wang Y, Liu W, Jiang Y, Huang L, Irfan M, Shi S, Yang R, Qin L. 2015. Morphological and molecular characterization of Nosema pernyi, a microsporidian parasite in Antheraea pernyi. Parasitol Res. 114(9):3327–3336. doi: 10.1007/s00436-015-4558-0.

 

Xiong W, Song Y, Yang K, Gu Y, Wei Z, Kowalchuk GA, Xu Y, Jousset A, Shen Q, Geisen S. 2020. Rhizosphere protists are key determinants of plant health. Microbiome. 8(1):27. doi: 10.1186/s40168-020-00799-9.

 

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate illumina paired-end reAd mergeR. Bioinformatics. 30(5):614–620. doi: 10.1093/bioinformatics/btt593.

 

Zhao H, Li X, Zhang Z, Zhao Y, Chen P, Zhu Y. 2018. Drivers and assemblies of soil eukaryotic microbes among different soil habitat types in a semi-arid mountain in China. PeerJ. 6:e6042. doi:10.7717/peerj.6042.

 

Zhou J, Ning D. 2017. Stochastic community assembly: Does it matter in microbial ecology? Microbiol Mol Biol Rev. 81(4):e00002–17. doi: 10.1128/MMBR.00002-17.

Mycology
Pages 239-255
Cite this article:
Yang J, Yun J, Liu X, et al. Niche and ecosystem preference of earliest diverging fungi in soils. Mycology, 2023, 14(3): 239-255. https://doi.org/10.1080/21501203.2023.2237047

161

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 08 May 2023
Accepted: 11 July 2023
Published: 02 August 2023
© 2023 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

Return