Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Metabolomics analysis of mycelial exudates provides insights into fungal antagonists of Armillaria

Jian Zhan#Jing Yuan#Jianwei LiuFengming ZhangFuqiang Yu()Yanliang Wang ()
The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China

#co-first authors

Show Author Information

Abstract

The genus Armillaria has high edible and medical values, with zones of antagonism often occurring when different species are paired in culture on agar media, while the antagonism-induced metabolic alteration remains unclear. Here, the metabolome of mycelial exudates of two Chinese Armillaria biological species, C and G, co-cultured or cultured separately was analysed to discover the candidate biomarkers and the key metabolic pathways involved in Armillaria antagonists. A total of 2,377 metabolites were identified, mainly organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. There were 248 and 142 differentially expressed metabolites between group C-G and C, C-G, and G, respectively, and fourteen common differentially expressed metabolites including malate, uracil, Leu-Gln-Arg, etc. Metabolic pathways like TCA cycle and pyrimidine metabolism were significantly affected by C-G co-culture. Additionally, 156 new metabolites (largely organic acids and derivatives) including 32 potential antifungal compounds, primarily enriched into biosynthesis of secondary metabolites pathways were identified in C-G co-culture mode. We concluded that malate and uracil could be used as the candidate biomarkers, and TCA cycle and pyrimidine metabolism were the key metabolic pathways involved in Armillaria antagonists. The metabolic changes revealed in this study provide insights into the mechanisms underlying fungal antagonists.

References

 

Anith KN, Nysanth NS, Natarajan C. 2021. Novel and rapid agar plate methods for in vitro assessment of bacterial biocontrol isolates’ antagonism against multiple fungal phytopathogens. Lett Appl Microbiol. 73(2):229–236. doi: 10.1111/lam.13495.

 

Arredondo-Santoyo M, Vazquez-Garciduenas MS, Vazquez-Marrufo G. 2018. Identification and characterization of the biotechnological potential of a wild strain of Paraconiothyrium sp. Biotechnol Progr. 34(4):846–857. doi: 10.1002/btpr.2653.

 

Barbosa MAG, Rhen KG, Menezes M, Mariano RDLR. 2001. Antagonism of Trichoderma species on Cladosporium herbarum and their enzimatic characterization. Braz J Microbiol. 32(2):98–104. doi: 10.1590/S1517-83822001000200005.

 

Beckonert O, Keun HC, Ebbels TMD, Bundy JG, Holmes E, Lindon JC, Nicholson JK. 2007. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2(11):2692–2703. doi: 10.1038/nprot.2007.376.

 

Bohnert M, Mutzmann HW, Schroeckh V, Horn F, Dahse HM, Brakhage AA, Hoffmeister D. 2014. Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure-activity relationships. Phytochemistry. 105:101–108. doi:10.1016/j.phytochem.2014.05.009.

 

Chen YJ, Wu SY, Chen CC, Tsao YL, Hsu NC, Chou YC, Huang HL. 2014. Armillaria mellea component Armillarikin induces apoptosis in human leukemia cells. J Funct Foods. 6:196–204. doi:10.1016/j.jff.2013.10.007.

 

Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S. 2013. Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res. 12(6):2552–2570. doi: 10.1021/pr301131t.

 

Cremin P, Guiry PJ, Wolfender JL, Hostettmann K, Donnelly DMX. 2000. A liquid chromatography–thermospray ionisation–mass spectrometry guided isolation of a new sesquiterpene aryl ester from Armillaria novae-zelandiae. J Chem Soc Perkin Trans 1. 15(15):2325–2329. doi: 10.1039/b001980l.

 

Das A, Khosla C. 2009. In vivo and in vitro analysis of the hedamycin polyketide synthase. Chem Biol. 16(11):1197–1207. doi: 10.1016/j.chembiol.2009.11.005.

 

Donnelly DMX, Konishi T, Dunne O, Cremin P. 1997. Sesquiterpene aryl esters from Armillaria tabescens. Phytochemistry. 44(8):1473–1478. doi: 10.1016/S0031-9422(96)00599-7.

 

Dullah S, Hazarika DJ, Parveen A, Kakoti M, Borgohain T, Gautom T, Bhattacharyya A, Barooah M, Boro RC. 2021. Fungal interactions induce changes in hyphal morphology and enzyme production. Mycology. 12(4):279–295. doi: 10.1080/21501203.2021.1932627.

 

Erbiai E, da Silva LP, Saidi R, Lamrani Z, da Silva JCGE, Maouni A. 2021. Chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms Armillaria mellea and Macrolepiota procera from two countries (Morocco and Portugal). Biomolecules. 11(4):575. doi: 10.3390/biom11040575.

 

Gloer JB. 1995. The chemistry of fungal antagonism and defense. Can J Bot. 73(Suppl.):S1265–S1274. doi: 10.1139/b95-387.

 

Goldberg I, Rokem JS, Pines O. 2006. Organic acids: old metabolites, new themes. J Chem Technol Biot. 81(10):1601–1611. doi: 10.1002/jctb.1590.

 

Grevesse C, Lepoivre P, Jijakli MH. 2003. Characterization of the exoglucanase-encoding gene PaEXG2 and study of its role in the biocontrol activity of Pichia anomala Strain K. Phytopathology. 93(9):1145–1152. doi: 10.1094/PHYTO.2003.93.9.1145.

 

He P, Aga DS. 2019. Comparison of GC-MS/MS and LC-MS/MS for the analysis of hormones and pesticides in surface waters: advantages and pitfalls. Anal Methods. 11(11):1436–1448. doi: 10.1039/C8AY02774A.

 

He W, He P, Aga DS. 2019. Biological species of Armillariella mellea in the Greater Xingan mountain and the Changbai mountains in China. Mycosystema. 15(1):9–16. doi:10.13346/j.mycosystema.1996.01.003. Chinese.

 

Hedge VR, Silver J, Patel M, Gullo VP, Yarborough R, Huang E, Das PR, Puar MS, Didomenico BJ, Loebenberg D. 2001. Novel fungal metabolites as cell wall active antifungals: Fermentation, isolation, physico-chemical properties, structure and biological activity. J Antibiot (Tokyo). 54(1):74–83. doi: 10.7164/antibiotics.54.74.

 

Heilmann-Clausen J, Boddy L. 2005. Inhibition and stimulation effects in communities of wood decay fungi: Exudates from colonized wood influence growth by other species. Microb Ecol. 49(3):399–406. doi: 10.1007/s00248-004-0240-2.

 

Hirozawa MT, Ono MA, Suguiura IMD, Bordini JG, Ono EYS. 2023. Lactic acid bacteria and Bacillus spp. as fungal biological control agents. J Appl Microbiol. 134(2):1–12. doi: 10.1093/jambio/lxac083.

 

Hopkin AA, Mallett KI, Blenis PV. 1989. The use of L-DOPA to enhance visualization of the “black line” between species of the Armillaria mellea complex. Can J Bot. 67(1):15–17. doi: 10.1139/b89-002.

 

Hyder S, Gondal AS, Rizvi ZF, Iqbal R, Hannan A, Sahi ST. 2022. Antagonism of selected fungal species against Macrophomina phaseolina (tassi) gold, causing charcoal rot of mungbean. Pak J Bot. 54(3):1129–1138. doi: 10.30848/PJB2022-3(8).

 

Ionkova I. 2011. Anticancer Lignans-from discovery to biotechnology. Mini Rev Med Chem. 11(10):843–856. doi: 10.2174/138955711796575425.

 

Jog R, Pandya M, Nareshkumar G, Rajkumar S. 2014. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiol Sgm. 160:778–788. doi:10.1099/mic.0.074146-0.

 

Kalantari S, Chashmniam S, Nafar M, Zakeri Z, Parvin M. 2019. Metabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis. Iran J Basic Med Sci. 22(11):1288–1295. doi: 10.22038/ijbms.2019.38713.9178.

 

Korhonen K. 1978. Interfertility and clonal size in the Armillaria mellea complex. Karstenia. 18(2):31–42. doi: 10.29203/ka.1978.135.

 

Li HT, Tang LH, Liu T, Yang RN, Yang YB, Zhou H, Ding ZT. 2020a. Protoilludane-type sesquiterpenoids from Armillaria sp. by co-culture with the endophytic fungus Epicoccum sp. associated with Gastrodia elata. Bioorg Chem. 95:103503. doi:10.1016/j.bioorg.2019.103503.

 

Li HT, Liu T, Yang RN, Xie F, Yang Z, Yang YB, Zhou H, Ding ZT. 2020b. Phomretones A-F, C12 polyketides from the co-cultivation of Phoma sp. YUD17001 and Armillaria sp. RSC Adv. 10(31):18384–18389. doi: 10.1039/D0RA02524K.

 

Li ZJ, Wang YC, Jiang B, Li WL, Zheng LH, Yang XG, Bao YL, Sun LG, Huang YX, Li YX. 2016. Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea. J Ethnopharmacol. 184:119–127. doi:10.1016/j.jep.2016.02.044.

 

Lorito M, Woo SL, Harman GE, Monte E. 2010. Translational Research on Trichoderma from ’Omics to the Field. Annu Rev Phytopathol. 48(1):395–417. doi: 10.1146/annurev-phyto-073009-114314.

 

Mallett KI, Hiratsuka Y. 1986. Nature of the “black line” produced between different biological species of the Armillaria mellea complex. Can J Bot. 64(11):2588–2590. doi: 10.1139/b86-342.

 

Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Yang ZL, Slot JC, Ammirati JF, Baroni TJ, et al. 2006. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia. 98(6):982–995. doi:10.1080/15572536.2006.11832627.

 

Misiek M, Williams J, Schmich K, Huttel W, Merfort I, Salomon CE, Aldrich CC, Hoffmeister D. 2009. Structure and cytotoxicity of arnamial and related fungal sesquiterpene aryl esters. J Nat Prod. 72(10):1888–1891. doi: 10.1021/np900314p.

 

Momose I, Sekizawa R, Hosokawa N, Iinuma H, Maisui S, Nakamura H, Naganawa H, Hamada M, Takeuchi T. 2000. Melleolides K, L and M, new melleolides from Armillariella mellea. J Antibiot (Tokyo). 53(2):137–143. doi: 10.7164/antibiotics.53.137.

 

Muszynska B, Sulkowska-Ziajia K, Wolkowska M, Ekiert H. 2011. Chemical, pharmacological, and biological characterization of the culinary-medicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm. (Agaricomycetideae): A review. Int J Med Mushrooms. 13(2):167–175. doi: 10.1615/IntJMedMushr.v13.i2.90.

 

Newaz AW, Yong K, Yi WW, Wu B, Zhang ZZ. 2022. Antimicrobial metabolites from the Indonesian mangrove sediment-derived fungus Penicillium chrysogenum sp. ZZ1151. Nat Prod Res. 37(10):1702–1708. doi: 10.1080/14786419.2022.2103813.

 

Nguyen XH, Naing KW, Lee YS, Kim YH, Moon JH, Kim KY. 2015. Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici. J Basic Microbiol. 55(1):45–53. doi: 10.1002/jobm.201300820.

 

Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F. 2004. Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycopathologia. 158(4):465–474. doi: 10.1007/s11046-004-3712-5.

 

Obuchi T, Kondoh H, Watanabe N, Tamai M, Imura S, Yang JS, Liang XT. 1990. Armillaric acid, a new antibiotic produced by Armillaria mellea. Planta Med. 56(2):198–201. doi: 10.1055/s-2006-960925.

 

Peay KG, Kennedy PG, Bruns TD. 2008. Fungal community ecology: A hybrid beast with a molecular master. Bioscience. 58(9):799–810. doi: 10.1641/B580907.

 

Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A. 2004. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 18(19):2331–2337. doi: 10.1002/rcm.1627.

 

Puzyr AP, Medvedeva SE, Bondar VS. 2017. Biochemical changes causes lack of bioluminescence in fruiting bodies of Armillaria. Mycosphere. 8(1):9–17. doi: 10.5943/mycosphere/8/1/2.

 

Qin GF, Zhao J, Korhonen K. 2007. A study on intersterility groups of Armillaria in China. Mycologia. 99(3):430–441. doi: 10.1080/15572536.2007.11832568.

 

Qualhato TF, Lopes FAC, Steindorff AS, Brandao RS, Jesuino RSA, Ulhoa CJ. 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: Evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett. 35(9):1461–1468. doi: 10.1007/s10529-013-1225-3.

 

Raimundo N, Baysal BE, Shadel GS. 2011. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med. 17(11):641–649. doi: 10.1016/j.molmed.2011.06.001.

 

Rajani P, Rajasekaran C, Vasanthakumari MM, Olsson SB, Ravikanth G, Shaanker RU. 2021. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol Res. 242:126595. doi:10.1016/j.micres.2020.126595.

 

Rashad YM, Abdalla SA, Shehata AS. 2022. Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize. BMC Microbiol. 22(1):229. doi: 10.1186/s12866-022-02651-6.

 

Raziq F, Fox RTV. 2003. Comparisons between the in vitro and in vivo efficacies of potential fungal antagonists of Armillaria mellea. Biol Agric Hortic. 21(3):263–276. doi: 10.1080/01448765.2003.9755269.

 

Ren SZ, Gao YP, Li H, Ma HH, Han XL, Yang ZT, Chen WJ. 2022. Research status and application prospects of the medicinal mushroom Armillaria mellea. Appl Biochem Biotechnol. 195(5):3491–3507. doi: 10.1007/s12010-022-04240-9.

 

Sanchez-Fernandez RE, Diaz D, Duarte G, Lappe-Oliveras P, Sanchez S, Macias-Rubalcava ML. 2016. Antifungal volatile organic compounds from the endophyte Nodulisporium sp strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with pythium aphanidermatum. Microb Ecol. 71(2):347–364. doi: 10.1007/s00248-015-0679-3.

 

Saude EJ, Slupsky CM, Sykes BD. 2006. Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics. 2(3):113–123. doi: 10.1007/s11306-006-0023-5.

 

Seo SC, Shin HK. 2022. Simultaneous analysis for quality control of traditional herbal medicine, Gungha-Tang, using liquid chromatography-tandem mass spectrometry. Molecules. 27(4):1223. doi: 10.3390/molecules27041223.

 

Shen XT, Guan XY, Cai YP, Guo Y, Tu J, Li H, Zhang T, Wang JL, Xue FZ, Zhu ZJ. 2016. Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics. 12(5):89. doi: 10.1007/s11306-016-1026-5.

 

Shi W, Yuan X, Cui KQ, Li H, Fu PH, Rehman SU, Shi DS, Liu QY, Li ZP. 2021. LC-MS/MS based metabolomics reveal candidate biomarkers and metabolic changes in different buffalo species. Animals. 11(2):560. doi: 10.3390/ani11020560.

 

Sun YX, Liang HT, Zhang XT, Tong HB, Liu JC. 2009. Structural elucidation and immunological activity of a polysaccharide from the fruiting body of Armillaria mellea. Bioresour Technol. 100(5):1860–1863. doi: 10.1016/j.biortech.2008.09.036.

 

t’Kindt R, Morreel K, Deforce D, Boerjan W, Van Bocxlaer J. 2009. Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: Repeatability and sample pre-treatment. J Chromatogr B. 877(29):3572–3580. doi: 10.1016/j.jchromb.2009.08.041.

 

Wang Y, Jiang HY, Ma ZW, Wang XM, Li CF, Liu SX. 2021. Screening and identification of antagonistic lactic acid bacteria from fermented coconut water and its antibacterial properties. Food Res Dev. 42(23):156–162. doi:10.12161/j.issn.1005-6521.2021.23.025. Chinese.

 

Watanabe N, Obuchi T, Tamai M, Araki H, Omura S, Yang JS, Yu DQ, Liang XT, Huan JH. 1990. A novel N6-substituted adenosine isolated from Armillaria mellea as a cerebral-protecting compound. Planta Med. 56(1):48–52. doi: 10.1055/s-2006-960882.

 

Wu J, Zhou J, Lang Y, Yao L, Xu H, Shi H, Xu S. 2012. A polysaccharide from Armillaria mellea exhibits strong in vitro anticancer activity via apoptosis-involved mechanisms. Int J Biol Macromol. 51(4):663–667. doi: 10.1016/j.ijbiomac.2012.06.040.

 

Xie HL, Jallow A, Yue XF, Wang XP, Fu JY, Mwakinyali SE, Zhang Q, Li PW. 2021. Aspergillus flavus’s response to antagonism bacterial stress sheds light on a regulation and metabolic trade-off mechanism for adversity survival. J Agric Food Chem. 69(16):4840–4848. doi: 10.1021/acs.jafc.0c07665.

 

Yang JS, Chen YW, Feng XZ, Yu DQ, He CH, Zheng QT, Yang J, Liang XT. 1989. Isolation and structure elucidation of armillaricin 1. Planta Med. 55(6):564–565. doi: 10.1055/s-2006-962096.

 

Yang SH, Liu Y, Wang Q, Sun YP, Guan W, Liu Y, Yang BY, Kuang HX. 2020. UPLC-MS/MS identification and quantification of withanolides from six parts of the medicinal plant Datura metel L. Molecules. 25(6):1260. doi: 10.3390/molecules25061260.

 

Yuan Y, Jin XH, Liu J, Zhao X, Zhou JH, Wang X, Wang DY, Lai CJS, Xu W, Huang JW, et al. 2018. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat Commun. 9(1):1615. doi:10.1038/s41467-018-03423-5.

 

Zhang SS, Liu XQ, Yan LH, Zhang QW, Zhu JJ, Huang N, Wang ZM. 2015. Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea. Molecules. 20(4):5680–5697. doi: 10.3390/molecules20045680.

 

Zhao J, Dai YC, Qin GF. 2008. New biological species of Armillariella from China. Mycosystema. 27(2):156–170. doi:10.13346/j.mycosystema.2008.02.007. Chinese.

Mycology
Pages 264-274
Cite this article:
Zhan J, Yuan J, Liu J, et al. Metabolomics analysis of mycelial exudates provides insights into fungal antagonists of Armillaria. Mycology, 2023, 14(3): 264-274. https://doi.org/10.1080/21501203.2023.2238753
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return