Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Inonotus obliquus, also known as Chaga, is a medicinal mushroom that has been used for therapeutic purposes since the sixteenth century. Collections of folk medicine record the application of Chaga for the treatment of diseases such as gastrointestinal cancer, diabetes, bacterial infection, and liver diseases. Modern research provides scientific evidence of the therapeutic properties of I. obliquus extracts, including anti-inflammatory, antioxidant, anticancer, anti-diabetic, anti-obesity, hepatoprotective, renoprotective, anti-fatigue, antibacterial, and antiviral activities. Various bioactive compounds, including polysaccharides, triterpenoids, polyphenols, and lignin metabolites have been found to be responsible for the health-benefiting properties of I. obliquus. Furthermore, some studies have elucidated the underlying mechanisms of the mushroom’s medicinal effects, revealing the compounds’ interactions with enzymes or proteins of important pathways. Thus, this review aims to explore available information on the therapeutic potentials of Inonotus obliquus for the development of an effective naturally sourced treatment option.
Abu-Reidah IM, Critch AL, Manful CF, Rajakaruna A, Vidal NP, Pham TH, Cheema M, Thomas R. 2021. Effects of ph and temperature on water under pressurized conditions in the extraction of nutraceuticals from chaga (Inonotus obliquus) mushroom. Antioxidants. 10(8):1322. doi: 10.3390/antiox10081322.
Alhallaf W, Perkins LB. 2022. The anti-inflammatory properties of chaga extracts obtained by different extraction methods against LPS-induced RAW 264.7. Molecules. 27(13):4207. doi: 10.3390/molecules27134207.
Arata S, Watanabe J, Maeda M, Yamamoto M, Matsuhashi H, Mochizuki M, Kagami N, Honda K, Inagaki M. 2016. Continuous intake of the Chaga mushroom (Inonotus obliquus) aqueous extract suppresses cancer progression and maintains body temperature in mice. Heliyon. 2(5):e00111. doi: 10.1016/j.heliyon.2016.e00111.
Baek J, Roh HS, Baek KH, Lee S, Lee S, Song SS, Kim KH. 2018. Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J Ethnopharmacol. 224:63–75. doi: 10.1016/j.jep.2018.05.025.
Baird L, Yamamoto M. 2020. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol. 40(13):e00099-20. doi: 10.1128/MCB.00099-20.
Bal TL, Raj JR, Richter DL. 2019. Influence of Chaga (Inonotus obliquus) treatment of wood in decay tests. Curr Res Environ Appl Mycol. 9(1):85–91. doi: 10.5943/cream/9/1/9.
Basal WT, Elfiky A, Eid J. 2021. Chaga medicinal mushroom Inonotus obliquus (agaricomycetes) terpenoids may interfere with SARS-CoV-2 spike protein recognition of the host cell: a molecular docking study. Int J Med Mushrooms. 23(3):1–14. doi: 10.1615/IntJMedMushrooms.2021037942.
Chang Y, Bai M, Xue XB, Zou CX, Huang XX, Song SJ. 2022. Isolation of chemical compositions as dietary antioxidant supplements and neuroprotectants from Chaga mushroom (Inonotus obliquus). Food Biosci. 47:101623. doi: 10.1016/j.fbio.2022.101623.
Chen S, Ma Y, Li H, Lang H, Li Y, Wu J, Zhou M, He Y, Liu Y, Guo E. 2022. Anti-diabetic effects of Inonotus obliquus extract in high fat diet combined streptozotocin-induced type 2 diabetic mice. Nutr Hosp. 39(6):1256–1263. doi: 10.20960/nh.03838.
Chen SD, Yong TQ, Xiao C, Gao X, Xie YZ, Hu HP, Li XM, Chen DL, Pan HH, Wu QP. 2021. Inhibitory effect of triterpenoids from the mushroom Inonotus obliquus against α-glucosidase and their interaction: inhibition kinetics and molecular stimulations. Bioorg Chem. 115:105276. doi: 10.1016/j.bioorg.2021.105276.
Chen YF, Zheng JJ, Qu C, Xiao Y, Li FF, Jin QX, Li HH, Meng FP, Jin GH, Jin D. 2019. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance. Artif Cells, Nanomed Biotechnol. 47(1):757–766. doi: 10.1080/21691401.2019.1577877.
Chiang KH, Chiu YC, Yar N, Chen YC, Cheng CH, Liu YC, Chang CY, Chuu JJ. 2023. Renoprotective impacts of Inonotus obliquus ethanol-ethyl acetate extract on combined streptozotocin and unilateral nephrectomy-induced diabetic nephropathy in mice. Int J Mol Sci. 24(5):4443. doi: 10.3390/ijms24054443.
Chou YJ, Kan WC, Chang CM, Peng YJ, Wang HY, Yu WC, Cheng YH, Jhang YR, Liu HW, Chuu JJ. 2016. Renal protective effects of low molecular weight of Inonotus obliquus polysaccharide (LIOP) on HFD/STZ-induced nephropathy in mice. Int J Mol Sci. 17(9):1535. doi: 10.3390/ijms17091535.
Dai LJ, Yan JX, Xia Q, Wang SQ, Zhou Q, Zhang JL, Wen C. 2022. Inhibition on α‐amylase and α‐glucosidase of polysaccharides from Inonotus obliquus and effects on delaying the digestion of polysaccharides‐dough system. Starch‐Stärke. 74(9–10):2100300. doi: 10.1002/star.202100300.
Dai YC. 2012. Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience. 53(1):49–80. doi: 10.1007/s10267-011-0134-3.
Du X, Mu H, Zhou S, Zhang Y, Zhu X. 2013. Chemical analysis and antioxidant activity of polysaccharides extracted from Inonotus obliquus sclerotia. Int J Biol Macromol. 62:691–696. doi: 10.1016/j.ijbiomac.2013.10.016.
Duan Q, Tian L, Feng J, Ping X, Li L, Yaigoub H, Li R, Li Y, Wang K. 2022. Trametenolic acid ameliorates the progression of diabetic nephropathy in db/db mice via Nrf2/HO-1 and NF-κB-mediated pathways. J Immunol Res. 2022:1–9. doi: 10.1155/2022/6151847.
Duru KC, Kovaleva EG, Danilova IG, van der Bijl P. 2019. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother Res. 33(8):1966–1980. doi: 10.1002/ptr.6384.
Ghosh S. 2020. Triterpenoids: structural diversity, biosynthetic pathway, and bioactivity. Stud Nat Prod Chem. 67:411–461. doi: 10.1016/B978-0-12-819483-6.00012-6.
Glamočlija J, Ćirić A, Nikolić M, Fernandes Â, Barros L, Calhelha RC, Ferreira IC, Soković M, Van Griensven LJ. 2015. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J Ethnopharmacol. 162:323–332. doi: 10.1016/j.jep.2014.12.069.
Han Y, Nan S, Fan J, Chen Q, Zhang Y. 2019. Inonotus obliquus polysaccharides protect against Alzheimer’s disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. Int J Biol Macromol. 131:769–778. doi: 10.1016/j.ijbiomac.2019.03.033.
Hao R, Li Y, Shan S, Xu H, Li J, Li Z, Li R. 2023. Antioxidant potential of styrene pyrone polyphenols from Inonotus obliquus: a combined experimental, density functional theory (DFT) approach and molecular dynamic (MD) simulation. 2023. J Saudi Chem Soc. 27(4):101652. doi: 10.1016/j.jscs.2023.101652.
Hong KB, Noh DO, Park Y, Suh HJ. 2015. Hepatoprotective activity of water extracts from Chaga medicinal mushroom, Inonotus obliquus (higher basidiomycetes) against tert-butyl hydroperoxide-induced oxidative liver injury in primary cultured rat hepatocytes. Int J Med Mushrooms. 17(11):1069–1076. doi: 10.1615/intjmedmushrooms.v17.i11.70.
Hu Y, Sheng Y, Yu M, Li K, Ren G, Xu X, Qu J. 2016. Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice. Int J Biol Macromol. 87:348–356. doi: 10.1016/j.ijbiomac.2016.03.006.
Huang SQ, Ding S, Fan L. 2012. Antioxidant activities of five polysaccharides from Inonotus obliquus. Int J Biol Macromol. 50(5):1183–1187. doi: 10.1016/j.ijbiomac.2012.03.019.
Hwang BS, Lee IK, Yun BS. 2016. Phenolic compounds from the fungus Inonotus obliquus and their antioxidant properties. J Antibiot (Tokyo). 69(2):108–110. doi: 10.1038/ja.2015.83.
Ishfaq PM, Mishra S, Mishra A, Ahmad Z, Gayen S, Jain SK, Tripathi S, Mishra SK. 2022. Inonotus obliquus aqueous extract prevents histopathological alterations in liver induced by environmental toxicant microcystin. Curr Res Pharmacol Drug Discov. 3:100118. doi: 10.1016/j.crphar.2022.100118.
Javed S, Mitchell K, Sidsworth D, Sellers SL, Reutens-Hernandez J, Massicotte HB, Egger KN, Lee CH, Payne GW, Gallyas F. 2019. Inonotus obliquus attenuates histamine-induced microvascular inflammation. PloS One. 14(8):e0220776. doi: 10.1371/journal.pone.0220776.
Jiang S, Shi F, Lin H, Ying Y, Luo L, Huang D, Luo Z. 2020. Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. Int J Biol Macromol. 151:1277–1286. doi: 10.1016/j.ijbiomac.2019.10.174.
Jin J, Yang H, Hu L, Wang Y, Wu W, Hu C, Wu K, Wu Z, Cheng W, Huang Y. 2022. Inonotsuoxide B suppresses hepatic stellate cell activation and proliferation via the PI3K/AKT and ERK1/2 pathway. Exp Ther Med. 23(6):1–8. doi: 10.3892/etm.2022.11344.
Kang JH, Jang JE, Mishra SK, Lee HJ, Nho CW, Shin D, Jin M, Kim MK, Choi C, Oh SH. 2015. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J Ethnopharmacol. 173:303–312. doi: 10.1016/j.jep.2015.07.030.
Kim KD, Jung HY, Ryu HG, Kim B, Jeon J, Yoo HY, Park CH, Choi BH, Hyun CK, Kim KT, et al. 2019. Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK. Nutr Metab Cardiovasc Dis. 29(4):409–420. doi: 10.1016/j.numecd.2018.12.001.
Kim J, Yang SC, Hwang AY, Cho H, Hwang KT. 2020. Composition of triterpenoids in Inonotus obliquus and their anti-proliferative activity on cancer cell lines. Molecules. 25(18):4066. doi: 10.3390/molecules25184066.
Kou RW, Han R, Gao YQ, Li D, Yin X, Gao JM. 2021. Anti-neuroinflammatory polyoxygenated lanostanoids from Chaga mushroom Inonotus obliquus. Phytochemistry. 184:112647. doi: 10.1016/j.phytochem.2020.112647.
Lee JS, Lee KR, Lee S, Lee HJ, Yang HS, Yeo J, Park JM, Choi BH, Hong EK. 2017. Polysaccharides isolated from liquid culture broth of Inonotus obliquus inhibit the invasion of human non-small cell lung carcinoma cells. Biotechnol Bioproc E. 22(1):45–51. doi: 10.1007/s12257-016-0458-0.
Lee MW, Hyeon-Hur CK, Lee TS, Ka KH, Jankovsky L. 2008. Introduction to distribution and ecology of sterile conks of Inonotus obliquus. Mycobiology. 36(4):199–202. doi: 10.4489/MYCO.2008.36.4.199.
Li Y, Zhou Y, Wu J, Li J, Yao H. 2021. Phelligridin D from Inonotus obliquus attenuates oxidative stress and accumulation of ECM in mesangial cells under high glucose via activating Nrf2. J Nat Med. 75(4):1021–1029. doi: 10.1007/s11418-021-01534-w.
Lin F, Li X, Guo X, Lu X, Han X, Xu G, Du P, An L. 2023. Study on the hypolipidemic effect of Inonotus obliquus polysaccharide in hyperlipidemia rats based on the regulation of intestinal flora. Food Sci Nutr. 11(1):191–203. doi: 10.1002/fsn3.3052.
Liu C, Zhao C, Pan HH, Kang J, Yu XT, Wang HQ, Li BM, Xie YZ, Chen RY. 2014. Chemical constituents from Inonotus obliquus and their biological activities. J Nat Prod. 77(1):35–41. doi: 10.1021/np400552w.
Liu P, Xue J, Tong S, Dong W, Wu P. 2018. Structure characterization and hypoglycaemic activities of two polysaccharides from Inonotus obliquus. Molecules. 23(8):1948. doi: 10.3390/molecules23081948.
Lu Y, Jia Y, Xue Z, Li N, Liu J, Chen H. 2021. Recent developments in Inonotus obliquus (Chaga mushroom) polysaccharides: isolation, structural characteristics, biological activities and application. Polymers. 13(9):1441. doi: 10.3390/polym13091441.
Luo LS, Wang Y, Dai LJ, He FX, Zhang JL, Zhou Q. 2021. Triterpenoid acids from medicinal mushroom Inonotus obliquus (Chaga) alleviate hyperuricemia and inflammation in hyperuricemic mice: possible inhibitory effects on xanthine oxidase activity. J Food Biochem. 46(3):e13932. doi: 10.1111/jfbc.13932.
Ma L, Chen H, Dong P, Lu X. 2013. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 139(1–4):503–508. doi: 10.1016/j.foodchem.2013.01.030.
Ma L, Chen H, Zhang Y, Zhang N, Fu L. 2012. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohyd Polym. 89(2):371–378. doi: 10.1016/j.carbpol.2012.03.016.
Miina J, Peltola R, Veteli P, Linnakoski R, Escribano MC, Haveri-Heikkilä J, Mattila P, Marnila P, Pihlava JM, Hellström J, et al. 2021. Inoculation success of Inonotus obliquus in living birch (Betula spp.). For Ecol Manage. 492:119244. doi: 10.1016/j.foreco.2021.119244.
Milyuhina AK, Zabodalova LA, Kyzdarbek U, Romazyaeva IR, Kurbonova MK. 2021. Assessment of antimicrobial and antioxidant components of Inonotus obliquus extract as a food ingredient. IOP Conf Ser: Earth Environ Sci. 689(1):012025. doi: 10.1088/1755-1315/689/1/012025.
Mishra SK, Kang JH, Kim DK, Oh SH, Kim MK. 2012. Orally administered aqueous extract of Inonotus obliquus ameliorates acute inflammation in dextran sulfate sodium (DSS)-induced colitis in mice. J Ethnopharmacol. 143(2):524–532. doi: 10.1016/j.jep.2012.07.008.
Mukherjee PK. 2019. Bioactive phytocomponents and their analysis. Quality control and evaluation of herbal drugspp. 237–328. doi: 10.1016/B978-0-12-813374-3.00007-7.
Niu H, Song D, Mu H, Zhang W, Sun F, Duan J. 2016. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int J Biol Macromol. 86:587–593. doi: 10.1016/j.ijbiomac.2016.01.111.
Nosik DN, Nosik NN, Teplyakova TV, Lobach OA, Kiseleva IA, Kondrashina NG, Bochkova MS, Ananko GG. 2020. Antiviral activity of extracts of basidiomycetes and humic compounds substances against human immunodeficiency virus (Retroviridae: orthoretrovirinae: lentivirus: human immunodeficiency virus 1) and herpes simplex virus (herpesviridae: Simplexvirus: human alphaherpesvirus 1). Probl Virol. 65(5):276–283. doi: 10.36233/0507-4088-2020-65-5-4.
Pan HH, Yu XT, Li T, Wu HL, Jiao CW, Cai MH, Li XM, Xie YZ, Wang Y, Peng T. 2013. Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher basidiomyetes), prevents herpes simplex virus entry through inhibition of viral-induced membrane fusion. Int J Med Mushrooms. 15(1):29–38. doi: 10.1615/intjmedmushr.v15.i1.40.
Papoutsis K, Vuong QV, Pristijono P, Golding JB, Bowyer MC, Scarlett CJ, Stathopoulos CE. 2016. Enhancing the total phenolic content and antioxidants of lemon pomace aqueous extracts by applying UV-C irradiation to the dried powder. Foods. 5(3):55. doi: 10.3390/foods5030055.
Parfenov AA, Vyshtakalyuk AB, Sysoeva MA, Sysoeva EV, Latipova AD, Gumarova LF, Zobov VV. 2019. Hepatoprotective effect of Inonotus obliquus melanins: in vitro and in vivo studies. BioNanoSci. 9(2):528–538. doi: 10.1007/s12668-019-0595-y.
Peng A, Liu S, Fang L, Zhu Z, Zhou Y, Yue S, Ma Z, Liu X, Xue S, Qiu Y, et al. 2022. Inonotus obliquus and its bioactive compounds alleviate non-alcoholic fatty liver disease via regulating FXR/SHP/SREBP-1c axis. Eur J Pharmacol. 921:174841. doi: 10.1016/j.ejphar.2022.174841.
Rhee SJ, Cho SY, Kim KM, Cha DS, Park HJ. 2008. A comparative study of analytical methods for alkali-soluble β-glucan in medicinal mushroom, Chaga (Inonotus obliquus). Lwt-Food Sci Technol. 41(3):545–549. doi: 10.1016/j.lwt.2007.03.028.
Ryu K, Nakamura S, Nakashima S, Aihara M, Fukaya M, Iwami J, Asao Y, Yoshikawa M, Matsuda H. 2017. Triterpenes with anti-invasive activity from sclerotia of Inonotus obliquus. Nat Prod Commun. 12(2):1934578X1701200221. doi: 10.1177/1934578X1701200221.
Saar M. 1991. Fungi in Khanty folk medicine. J Ethnopharmacol. 31(2):175–179. doi: 10.1016/0378-8741(91)90003-v.
Sang R, Sun F, Zhou H, Wang M, Li H, Li C, Sun X, Zhao X, Zhang X. 2022. Immunomodulatory effects of Inonotus obliquus polysaccharide on splenic lymphocytes infected with Toxoplasma gondii via NF-κB and MAPKs pathways. Immunopharmacol Immunotoxicol. 44(1):129–138. doi: 10.1080/08923973.2021.2017453.
Sharma A, Thakur R, Lingaraju MC, Kumar D, Mathesh K, Telang AG, Singh TU, Kumar D. 2017. Betulinic acid attenuates renal fibrosis in rat chronic kidney disease model. Biomed Pharmacother. 89:796–804. doi: 10.1016/j.biopha.2017.01.181.
Shashkina MY, Shashkin PN, Sergeev AV. 2006. Chemical and medicobiological properties of Chaga. Pharm Chem J. 40(10):560–568. doi: 10.1007/s11094-006-0194-4.
Shibnev VA, Mishin DV, Garaev TM, Finogenova NP, Botikov AG, Deryabin PG. 2011. Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. Bull Exp Biol Med. 151(5):612. doi: 10.1007/s10517-011-1395-8.
Song FQ, Liu Y, Kong XS, Chang W, Song G. 2013. Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pac J Cancer Prev. 14(3):1571–1578. doi: 10.7314/APJCP.2013.14.3.1571.
Su B, Yan X, Li Y, Zhang J, Xia X. 2020. Effects of Inonotus obliquus polysaccharides on proliferation, invasion, migration, and apoptosis of osteosarcoma cells. Anal Cell Pathol. 2020:1–7. doi: 10.1155/2020/4282036.
Su L, Xin C, Yang J, Dong L, Mei H, Dai X, Wang Q. 2022. A polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus. Int J Biol Macromol. 214:312–323. doi: 10.1016/j.ijbiomac.2022.06.071.
Sun Y, Yin T, Chen XH, Zhang G, Curtis RB, Lu ZH, Jiang JH. 2011. In vitro antitumor activity and structure characterization of ethanol extracts from wild and cultivated Chaga medicinal mushroom, Inonotus obliquus (pers.: fr.) pilát (aphyllophoromycetideae). Int J Med Mushrooms. 13(2):121–130. doi: 10.1615/IntJMedMushr.v13.i2.40.
Szychowski KA, Skóra B, Pomianek T, Gmiński J. 2021. Inonotus obliquus–from folk medicine to clinical use. J Tradit Complement Med. 11(4):293–302. doi: 10.1016/j.jtcme.2020.08.003.
Teplyakova TV, Pyankov OV, Safatov AS, Ovchinnikova AS, Kosogova TA, Skarnovich MO, Filippova EI, Poteshkina AL. 2022. Water extract of the Chaga medicinal mushroom, Inonotus obliquus (agaricomycetes), inhibits SARS-CoV-2 replication in vero E6 and vero cell culture experiments. Int J Med Mushrooms. 24(2):23–30. doi: 10.1615/IntJMedMushrooms.2021042012.
Thomas PW, Elkhateeb WA, Daba GM. 2020. Chaga (Inonotus obliquus): a medical marvel but a conservation dilemma. Sydowia. 72:123–130. doi: 10.12905/0380.sydowia72-2020-0123.
Tsai CC, Li YS, Lin PP. 2017. Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma’s HCT-116 cell line. Biomed Pharmacother. 96:1119–1126. doi: 10.1016/j.biopha.2017.11.111.
Wang C, Li W, Chen Z, Gao X, Yuan G, Pan Y, Chen H. 2018. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Res Int. 103:280–288. doi: 10.1016/j.foodres.2017.10.058.
Wang D, Hartmann K, Seweryn M, Sadee W. 2018. Interactions between regulatory variants in CYP7A1 (cholesterol 7α-hydroxylase) promoter and enhancer regions regulate CYP7A1 expression. Circ Genom Precis Med. 11(10):e002082. doi: 10.1161/CIRCGEN.118.002082.
Wang J, Wang C, Li S, Li W, Yuan G, Pan Y, Chen H. 2017. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother. 95:1669–1677. doi: 10.1016/j.biopha.2017.09.104.
Wang Q, Mu H, Zhang L, Dong D, Zhang W, Duan J. 2015. Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus. Int J Biol Macromol. 74:507–514. doi: 10.1016/j.ijbiomac.2014.12.044.
Wang Y, Ouyang F, Teng C, Qu J. 2021. Optimization for the extraction of polyphenols from Inonotus obliquus and its antioxidation activity. Prep Biochem Biotechnol. 51(9):852–859. doi: 10.1080/10826068.2020.1864642.
Wold CW, Gerwick WH, Wangensteen H, Inngjerdingen KT. 2020. Bioactive triterpenoids and water-soluble melanin from Inonotus obliquus (Chaga) with immunomodulatory activity. J Funct Foods. 71:104025. doi: 10.1016/j.jff.2020.104025.
Wu D, Zhang Y, Wang D, Liu T, Zhang S, Yang C. 2021. Research of Inonotus obliquus oligosaccharide in prevention of hyperlipidemia. J Food Qual. 2021:1–11. doi: 10.1155/2021/1174452.
Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, et al. 2018. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther. Volume 11:2063–2073. doi: 10.2147/OTT.S161109.
Xiuhong Z, Yue Z, Shuyan Y, Zhonghua Z. 2015. Effect of Inonotus obliquus polysaccharides on physical fatigue in mice. J Tradit Chin Med. 35(4):468–472. doi: 10.1016/S0254-6272(15)30126-6.
Xu T, Li G, Wang X, Lv C, Tian Y. 2021. Inonotus obliquus polysaccharide ameliorates serum profiling in STZ-induced diabetic mice model. BMC Chem. 15(1):1–12. doi: 10.1186/s13065-021-00789-4.
Xu X, Zhao W, Shen M. 2016. Antioxidant activity of liquid cultured Inonotus obliquus polyphenols using tween-20 as a stimulatory agent: correlation of the activity and the phenolic profiles. J Taiwan Inst Chem Eng. 69:41–47. doi: 10.1016/j.jtice.2016.10.011.
Xue J, Tong S, Wang Z, Liu P. 2018. Chemical characterization and hypoglycaemic activities in vitro of two polysaccharides from Inonotus obliquus by submerged culture. Molecules. 23(12):3261. doi: 10.3390/molecules23123261.
Yan K, Zhou H, Wang M, Li H, Sang R, Ge B, Zhao X, Li C, Wang W, Zhang X, et al. 2021. Inhibitory effects of Inonotus obliquus polysaccharide on inflammatory response in toxoplasma gondii-infected RAW264. 7 macrophages. Evid Based Complementary Altern Med. 2021:1–11. doi: 10.1155/2021/2245496.
Yang M, Hu D, Cui Z, Li H, Man C, Jiang Y. 2021. Lipid-lowering effects of Inonotus obliquus polysaccharide in vivo and in vitro. Foods. 10(12):3085. doi: 10.3390/foods10123085.
Ye X, Wu K, Xu L, Cen Y, Ni J, Chen J, Zheng W, Liu W. 2022. Methanol extract of Inonotus obliquus improves type 2 diabetes mellitus through modifying intestinal flora. Front Endocrinol. 13. doi: 10.3389/fendo.2022.1103972.
Yong T, Chen S, Liang D, Zuo D, Diao X, Deng C, Wu Y, Hu H, Xie Y, Chen D. 2018. Actions of Inonotus obliquus against hyperuricemia through XOD and bioactives screened by molecular modeling. Int J Mol Sci. 19(10):3222. doi: 10.3390/ijms19103222.
Yu J, Xiang JY, Xiang H, Xie Q. 2020. Cecal butyrate (not propionate) was connected with metabolism-related chemicals of mice, based on the different effects of the two Inonotus obliquus extracts on obesity and their mechanisms. ACS Omega. 5(27):16690–16700. doi: 10.1021/acsomega.0c01566.
Yuan X, Li L, Sun H, Sun S, Zhang Z. 2017. Optimization of subcritical water extraction of polysaccharides from Inonotus obliquus and their antioxidant activities. Int J Biol. 3(3):38–50. doi: 10.5539/ijb.v9n3p38.
Zhang CJ, Guo JY, Cheng H, Li L, Liu Y, Shi Y, Xu J, Yu HT. 2020. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus. Int J Biol Macromol. 151:855–860. doi: 10.1016/j.ijbiomac.2020.02.147.
Zhang N, Chen H, Ma L, Zhang Y. 2013. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. Int J Biol Macromol. 54:209–215. doi: 10.1016/j.ijbiomac.2012.12.030.
Zhang SD, Yu L, Wang P, Kou P, Li J, Wang LT, Wang W, Yao LP, Zhao XH, Fu YJ. 2019. Inotodiol inhibits cells migration and invasion and induces apoptosis via p53-dependent pathway in HeLa cells. Phytomedicine. 60:152957. doi: 10.1016/j.phymed.2019.152957.
Zhang Y, Liao H, Shen D, Zhang X, Wang J, Zhang X, Wang X, Li R. 2022. Renal protective effects of Inonotus obliquus on high-fat diet/streptozotocin-induced diabetic kidney disease rats: biochemical, color Doppler ultrasound and histopathological evidence. Front Pharmacol. 12:3780. doi: 10.3389/fphar.2021.743931.
Zhang Z, Liang X, Tong L, Lv Y, Yi H, Gong P, Tian X, Cui Q, Liu T, Zhang L. 2021. Effect of Inonotus obliquus (fr.) Pilat extract on the regulation of glycolipid metabolism via PI3K/Akt and AMPK/ACC pathways in mice. J Ethnopharmacol. 273:113963. doi: 10.1016/j.jep.2021.113963.
Zhao W, Huang P, Zhu Z, Chen C, Xu X. 2021. Production of phenolic compounds and antioxidant activity via bioconversion of wheat straw by Inonotus obliquus under submerged fermentation with the aid of a surfactant. J Sci Food Agric. 101(3):1021–1029. doi: 10.1002/jsfa.10710.
Zheng W, Miao K, Liu Y, Zhao Y, Zhang M, Pan S, Dai Y. 2010. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl Microbiol Biotechnol. 87(4):1237–1254. doi: 10.1007/s00253-010-2682-4.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.