AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Primer pairs, PCR conditions, and peptide nucleic acid clamps affect fungal diversity assessment from plant root tissues

Chloé ViottiaMichel Chalota,bPeter G. KennedycFrançois MaillardcSylvain SantonidDamien BlaudezeCoralie Bertheaua( )
CNRS, Chrono-environnement, Université de Franche-Comté, Montbéliard, France
Faculté des Sciences et Technologies, Université de Lorraine, Nancy, France
Department of Plant & Microbiology, University of Minnesota, St. Paul, MN, USA
AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
Université de Lorraine, CNRS, LIEC, Nancy, France
Show Author Information

Abstract

High-throughput sequencing has become a prominent tool to assess plant-associated microbial diversity. Still, some technical challenges remain in characterising these communities, notably due to plant and fungal DNA co-amplification. Fungal-specific primers, Peptide Nucleic Acid (PNA) clamps, or adjusting PCR conditions are approaches to limit plant DNA contamination. However, a systematic comparison of these factors and their interactions, which could limit plant DNA contamination in the study of plant mycobiota, is still lacking. Here, three primers targeting the ITS2 region were evaluated alone or in combination with PNA clamps both on nettle (Urtica dioica) root DNA and a mock community. PNA clamps did not improve the richness or diversity of the fungal communities but increased the number of fungal reads. Among the tested factors, the most significant was the primer pair. Specifically, the 5.8S-Fun/ITS4-Fun pair exhibited a higher OTU richness but fewer fungal reads. Our study demonstrates that the choice of primers is critical for limiting plant and fungal DNA co-amplification. PNA clamps increase the number of fungal reads when ITS2 is targeted but do not result in higher fungal diversity recovery at high sequencing depth. At lower read depths, PNA clamps might enhance microbial diversity quantification for primer pairs lacking fungal specificity.

References

 

Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. 2017. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci USA. 114(44):E9403–E9412. doi:10.1073/pnas.1710455114.

 

Baldrian P, Větrovský T, Lepinay C, Kohout P. 2021. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114(1):539–547. doi:10.1007/s13225-021-00472-y.

 

Banos S, Lentendu G, Kopf A, Wubet T, Glöckner FO, Reich M. 2018. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol. 18(1):190. doi:10.1186/s12866-018-1331-4.

 

Belda E, Coulibaly B, Fofana A, Beavogui AH, Traore SF, Gohl DM, Vernick KD, Riehle MM. 2017. Preferential suppression of Anopheles gambiae host sequences allows detection of the mosquito eukaryotic microbiome. Sci Rep. 7(1):3241. doi:10.1038/s41598-017-03487-1.

 

Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 10(1):189. doi:10.1186/1471-2180-10-189.

 

Bodenhausen N, Somerville V, Desiró A, Walser JC, Borghi L, van der Heijden MGA, Schlaeppi K. 2019. Petunia- and Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes J. 3(2):112–124. doi:10.1094/PBIOMES-12-18-0057-R.

 

Bollmann-Giolai A, Malone JG, Arora S. 2022. Diversity, detection and exploitation: Linking soil fungi and plant disease. Curr Opin Microbiol. 70:102199. doi: 10.1016/j.mib.2022.102199.

 

Borodušķe A, Ķibilds J, Fridmanis D, Gudrā D, Ustinova M, Seņkovs M, Nikolajeva V. 2023. Does peptide-nucleic acid (PNA) clamping of host plant DNA benefit ITS1 amplicon-based characterization of the fungal endophyte community? Fungal Ecol. 61: 101181. doi: 10.1016/j.funeco.2022.101181.

 

Botnen SS, Thoen E, Eidesen PB, Krabberød AK, Kauserud H. 2020. Community composition of arctic root-associated fungi mirrors host plant phylogeny. FEMS Microbiol Ecol. 96(11):fiaa185. doi: 10.1093/femsec/fiaa185.

 
Brown SP, Leopold DR, Busby PE. 2018. Protocols for investigating the leaf mycobiome using high-throughput DNA sequencing. In: Ma W, Wolpert T, editors. Plant pathogenic fungi and oomycetes, New York (NY): Springer; p. 39-51.
 

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 108(1):4516–4522. doi:10.1073/pnas.1000080107.

 

Castaño C, Berlin A, Brandström Durling M, Ihrmark K, Lindahl BD, Stenlid J, Clemmensen KE, Olson Å. 2020. Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities. New Phytol. 228(3):1149–1158. doi:10.1111/nph.16731.

 

Chen W, Radford D, Hambleton S. 2022. Towards improved detection and identification of rust fungal pathogens in environmental samples using a metabarcoding approach. Phytopathology. 112(3):535–548. doi:10.1094/PHYTO-01-21-0020-R.

 

Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW. 2018. The populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome. 6(1):31. doi:10.1186/s40168-018-0413-8.

 
de Mendiburu F 2019. Agricolae: Statistical procedures for agricultural research. R package version 1.3-1. [accessed 2023 Sep 22]. https://CRAN.R-project.org/package=agricolae.
 

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity. 12(10):370. doi:10.3390/d12100370.

 

Dighton J. 2018. Fungi in ecosystem processes. Boca Raton (FL): CRC Press, Taylor & Francis Group.

 

Do H, Kim SH, Cho G, Kim DR, Kwak YS. 2021. Investigation of fungal strains composition in fruit pollens for artificial pollination. Mycobiology. 49(3):249–257. doi:10.1080/12298093.2021.1893137.

 

Edgar RC. 2016. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv. doi: 10.1101/081257.

 

Fabiańska I, Gerlach N, Almario J, Bucher M. 2019. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis Thaliana. New Phytol. 221(4):2123–2137. doi:10.1111/nph.15538.

 

Fitzpatrick CR, Lu-Irving P, Copeland J, Guttman DS, Wang PW, Baltrus DA, Dlugosch KM, Johnson MTJ. 2018. Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host amplification in plant microbiome studies. Microbiome. 6(1):144. doi:10.1186/s40168-018-0534-0.

 

Giangacomo C, Mohseni M, Kovar LL, Wallace J. 2021. Comparing DNA extraction and 16S rRNA gene amplification methods for plant-associated bacterial communities. Phytobiomes J. 5(2):190–201. doi:10.1094/PBIOMES-07-20-0055-R.

 

Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ, Clayton JB, Johnson TJ, Hunter R, et al. 2016. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 34(9):942–949. doi:10.1038/nbt.3601.

 

Green SJ, Freeman S, Hadar Y, Minz D. 2004. Molecular tools for isolate and community studies of pyrenomycete fungi. Mycologia. 96(3):439–451. doi:10.1080/15572536.2005.11832943.

 

Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Botha FC, Anderson IC, Singh BK. 2018. Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol. 20(1):124–140. doi:10.1111/1462-2920.14031.

 

Harrison JG, Randolph GD, Buerkle CA, Turnbaugh PJ. 2021. Characterizing microbiomes via sequencing of marker loci: Techniques to improve throughput, account for cross-contamination, and reduce cost. mSystems. 6(4):e0029421. doi:10.1128/mSystems.00294-21.

 

Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, et al. 2012. New primers to amplify the fungal ITS2 region – Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 82(3):666–677. doi:10.1111/j.1574-6941.2012.01437.x.

 

Ishii N, Ishida S, Kagami M. 2015. PCR primers for assessing community structure of aquatic fungi including Chytridiomycota and Cryptomycota. Fungal Ecol. 13:33–43. doi: 10.1016/j.funeco.2014.08.004.

 
Kawasaki A, Ryan P. 2021. Peptide nucleic acid (PNA) clamps to reduce co-amplification of plant DNA during PCR amplification of 16S rRNA genes from endophytic bacteria. In: Carvalhais L, and Dennis P, editors. The plant microbiome: Methods in molecular biology, New York (NY): Humana Press; p. 123–134. doi: 10.1007/978-1-0716-1040-4_11.
 

Koyama A, Maherali H, Antunes PM, Pineda A. 2019. Plant geographic origin and phylogeny as potential drivers of community structure in root-inhabiting fungi. J Ecol. 107(4):1720–1736. doi:10.1111/1365-2745.13143.

 

Larena I, Salazar O, González V, Julián MC, Rubio V. 1999. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol. 75(2):187–194. doi:10.1016/S0168-1656(99)00154-6.

 

Lee MR, Hawkes CV. 2021. Plant and soil drivers of whole-plant microbiomes: variation in switchgrass fungi from coastal to mountain sites. Phytobiomes J. 5(1):69–79. doi:10.1094/PBIOMES-07-20-0056-FI.

 

Li S, Deng Y, Wang Z, Zhang Z, Kong X, Zhou W, Yi Y, Qu Y. 2020. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Mol Ecol Resour. 20(1):170–184. doi:10.1111/1755-0998.13097.

 

Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, et al. 2013. Fungal community analysis by high-throughput sequencing of amplified markers – A user’s guide. New Phytol. 199(1):288–299. doi:10.1111/nph.12243.

 

Lundberg DS, Pramoj Na Ayutthaya P, Strauß A, Shirsekar G, Lo WS, Lahaye T, Weigel D. 2021. Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition. ELife. 10:e66186. doi: 10.7554/eLife.66186.

 

Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. 2013. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 10(10):999–1002. doi:10.1038/nmeth.2634.

 

Mayer T, Mari A, Almario J, Murillo-Roos M, Abdullah HSM, Dombrowski N, Hacquard S, Kemen EM, Agler MT. 2021. Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing. Mol Ecol Resour. 21(6):1952–1965. doi:10.1111/1755-0998.13408.

 

McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR, Jarman S. 2019. Methods for normalizing microbiome data: An ecological perspective. Methods Ecol Evol. 10(3):389–400. doi:10.1111/2041-210X.13115.

 

Moccia K, Papoulis S, Willems A, Marion Z, Fordyce JA, Lebeis SL. 2020. Using the microbiome amplification preference tool (MAPT) to reveal medicago sativa-associated Eukaryotic microbes. Phytobiomes J. 4(4):340–350. doi:10.1094/PBIOMES-02-20-0022-R.

 

Muñoz-Colmenero M, Baroja-Careaga I, Kovačić M, Filipi J, Puškadija Z, Kezić N, Estonba A, Büchler R, Zarraonaindia I. 2020. Differences in honey bee bacterial diversity and composition in agricultural and pristine environments – A field study. Apidologie. 51(6):1018–1037. doi:10.1007/s13592-020-00779-w.

 

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. Funguild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20:241–248. doi: 10.1016/j.funeco.2015.06.006.

 

Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. 2019. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat Rev Microbiol. 17(2):95–109. doi:10.1038/s41579-018-0116-y.

 

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, et al. 2018. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47(D1):259–264. doi:10.1093/nar/gky1022.

 
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, Simpson G, Solymos P, Stevens H, Wagner H 2019. Vegan: Community ecology package. R package version 2.5-6. [accessed 2023 Sep 22]. https://CRAN.R-project.org/package=vegan.
 

Op De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV, Neilan B. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One. 9(6):e97629. doi:10.1371/journal.pone.0097629.

 

Palmer JM, Jusino MA, Banik MT, Lindner DL. 2018. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ. 6:e4925. doi: 10.7717/peerj.4925.

 

Pauvert C, Buée M, Laval V, Edel-Hermann V, Fauchery L, Gautier A, Lesur I, Vallance J, Vacher C. 2019. Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41:23–33. doi: 10.1016/j.funeco.2019.03.005.

 

Peay KG, Kennedy PG, Talbot JM. 2016. Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol. 14(7):434–447. doi:10.1038/nrmicro.2016.59.

 
Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R. 2019. Nlme: Linear and nonlinear mixed effects models. R package version 3.1-140. [accessed 2023 Sep 22]. https://CRAN.R-project.org/package=nlme.
 

Piñol J, Mir G, Gomez-Polo P, Agustí N. 2015. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol Ecol Resour. 15(4):819–830. doi:10.1111/1755-0998.12355.

 
R Core Team. 2020. R: A language and environment for statistical computing. R foundation for statistical computing. [accessed 2023 Sep 22]. https://www.R-project.org/.
 

Reigel AM, Owens SM, Hellberg ME. 2020. Reducing host DNA contamination in 16S rRNA gene surveys of anthozoan microbiomes using PNA clamps. Coral Reefs. 39(6):1817–1827. doi:10.1007/s00338-020-02006-5.

 

Ricks KD, Koide RT, Gao C. 2019. The role of inoculum dispersal and plant species identity in the assembly of leaf endophytic fungal communities. PLoS Oen. 14(7):e0219832. doi:10.1371/journal.pone.0219832.

 

Rychlik W, Spencer WJ, Rhoads RE. 1990. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 18(21):6409–6412. doi:10.1093/nar/18.21.6409.

 

Sakai M, Ikenaga M. 2013. Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots. J Microbiol Methods. 92(3):281–288. doi:10.1016/j.mimet.2012.09.036.

 

Schmidt PA, Bálint M, Greshake B, Bandow C, Römbke J, Schmitt I. 2013. Illumina metabarcoding of a soil fungal community. Soil Biol Biochem. 65:128–132. doi: 10.1016/j.soilbio.2013.05.014.

 

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA. 109(16):6241–6246. doi:10.1073/pnas.1117018109.

 

Smith SE, Read DJ. 2010. Mycorrhizal symbiosis. Cambridge (MA): Academic Press.

 

Steven B, Huntley RB, Zeng Q. 2018. The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiomes J. 2(3):171–179. doi:10.1094/PBIOMES-03-18-0015-R.

 

Sun X, Kosman E, Sharon O, Ezrati S, Sharon A. 2020. Significant host‐ and environment‐dependent differentiation among highly sporadic fungal endophyte communities in cereal crops‐related wild grasses. Environ Microbiol. 22(8):3357–3374. doi:10.1111/1462-2920.15107.

 

Taerum SJ, Steven B, Gage DJ, Triplett LR. 2020. Validation of a PNA clamping method for reducing host DNA amplification and increasing Eukaryotic diversity in rhizosphere microbiome studies. Phytobiomes J. 4(4):291–302. doi:10.1094/PBIOMES-05-20-0040-TA.

 

Taylor K. 2009. Biological flora of the British isles: Urtica dioica L. J Ecol. 97(6):1436–1458. doi:10.1111/j.1365-2745.2009.01575.x.

 

Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T, Cullen D. 2016. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl Environ Microbiol. 82(24):7217–7226. doi:10.1128/AEM.02576-16.

 

Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, et al. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 10:1–43. doi: 10.3897/mycokeys.10.4852.

 

Tedersoo L, Bahram M, Zinger L, Nilsson RH, Kennedy PG, Yang T, Anslan S, Mikryukov V. 2022. Best practices in metabarcoding of fungi: From experimental design to results. Mol Ecol. 31(10):2769–2795. doi:10.1111/mec.16460.

 

Terashima Y, Ogiwara K, Seki A, Kojima M, Kubo C, Fujiie A. 2002. Primers based on specific ITS sequences of rDNAs for PCR detection of two fairy ring fungi of turfgrass, Vascellum pratense and Lycoperdon pusillum. Mycoscience. 43(3):261–265. doi:10.1007/S102670200038.

 

Toju H, Tanabe AS, Yamamoto S, Sato H, Lespinet O. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One. 7(7):e40863. doi:10.1371/journal.pone.0040863.

 

Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant–microbiome interactions: From community assembly to plant health. Nat Rev Microbiol. 18(11):607–621. doi:10.1038/s41579-020-0412-1.

 

Viotti C, Albrecht K, Amaducci S, Bardos P, Bertheau C, Blaudez D, Bothe L, Cazaux D, Ferrarini A, Govilas J, et al. 2022. Nettle, a long-known fiber plant with new perspectives. Materials. 15(12):4288. doi: 10.3390/ma15124288.

 

Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ. 2015. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: An example of penicillium citrinum and aspergillus terreus. J Plant Interact. 10(1):280–287. doi:10.1080/17429145.2015.1079743.

 
White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A Guide to Methods and Applications. New York (NY): Academic Press Inc; pp. 315–322.
 

Yang RH, Su JH, Shang JJ, Wu YY, Li Y, Bao DP, Yao YJ, Cullen D. 2018. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS One. 13(10):e0206428. doi:10.1371/journal.pone.0206428.

 

Yung L, Bertheau C, Tafforeau F, Zappelini C, Valot B, Maillard F, Selosse MA, Viotti C, Binet P, Chiapusio G, et al. 2021. Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site. Sci Total Environ. 782:146692. doi: 10.1016/j.scitotenv.2021.146692.

 

Yu G, Wu F. 2011. Optimization of ITS rDNA amplification for fungi from black soil in north China. J Northeast Agric Univ. 18(1):25–32. doi:10.1016/S1006-8104(13)60079-3.

 

Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak SC, van der Meer JR. 2016. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev. 40(2):182–207. doi:10.1093/femsre/fuv045.

Mycology
Pages 255-271
Cite this article:
Viotti C, Chalot M, Kennedy PG, et al. Primer pairs, PCR conditions, and peptide nucleic acid clamps affect fungal diversity assessment from plant root tissues. Mycology, 2024, 15(2): 255-271. https://doi.org/10.1080/21501203.2023.2301003

69

Views

2

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 06 October 2023
Accepted: 27 December 2023
Published: 04 February 2024
© 2024 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

Return