The rising global demand for sustainable and eco-friendly practices has led to a burgeoning interest in circular bioeconomy, wherein waste materials are repurposed into valuable resources. Lignocellulosic waste, abundant in agricultural residues and forestry by-products, represents a significant untapped resource. This article explores the potential of fungal-mediated processes for the valorisation of lignocellulosic waste, highlighting their role in transforming these recalcitrant materials into bio-based products. The articles delve into the diverse enzymatic and metabolic capabilities of fungi, which enable them to efficiently degrade and metabolise lignocellulosic materials. The paper further highlights key fungal species and their mechanisms involved in the breakdown of complex biomass, emphasising the importance of understanding their intricate biochemical pathways for optimising waste conversion processes. The key insights of the article will significantly contribute to advancing the understanding of fungal biotechnology for circular bioeconomy applications, fostering a paradigm shift towards a more resource-efficient and environmentally friendly approach to waste management and bio-based product manufacturing.
Adewuyi A. 2022. Underutilized lignocellulosic waste as sources of feedstock for biofuel production in developing countries. Front Energy Res. 10:741570. doi: 10.3389/fenrg.2022.741570.
Ajila CM, Brar SK, Verma M, Tyagi RD, Valéro JR. 2011. Solid-state fermentation of apple pomace using Phanerocheate chrysosporium – liberation and extraction of phenolic antioxidants. Food Chemistry. 126(3):1071–1080. doi: 10.1016/j.foodchem.2010.11.129.
Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. 2018. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci. 18(11):768–778. doi: 10.1002/elsc.201800039.
Asci F, Aydin B, Akkus GU, Unal A, Erdogmus SF, Korcan SE, Jahan I. 2020. Fatty acid methyl ester analysis of Aspergillus fumigatus isolated from fruit pulps for biodiesel production using GC-MS spectrometry. Bioengineered. 1(1):408–415. doi: 10.1080/21655979.2020.1739379.
Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G, Chen WH, Ngamcharussrivichai C. 2022. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresour Technol. 344:26195. doi: 10.1016/j.biortech.2021.126195.
Atiwesh G, Parrish CC, Banoub J, Le TT. 2022. Lignin degradation by microorganisms: A review. Biotechnol Prog. 38(2):e3226. doi: 10.1002/btpr.3226.
Banu JR, Kavitha S, Tyagi VK, Gunasekaran M, Karthikeyan OP, Kumar G. 2021a. Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy. Fuel. 302:121086. doi: 10.1016/j.fuel.2021.121086.
Banu JR, Kavitha S, Tyagi VK, Gunasekaran M, Karthikeyan OP, Kumar G. 2021b. Lignocellulosic biomass pretreatment for enhanced bioenergy recovery: Effect of lignocelluloses recalcitrance and enhancement strategies. Front Energy Res. 9:646057. doi: 10.3389/fenrg.2021.646057.
Belt T, Awais M, Mäkelä M. 2022. Chemical characterization and visualization of progressive brown rot decay of wood by near infrared imaging and multivariate analysis. Front Plant Sci. 13:13. doi: 10.3389/fpls.2022.940745.
Bilal M, Wang Z, Cui J, Ferreira LFR, Bharagava RN, Iqbal HM. 2020. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers–A drive towards greener and eco-friendlier biocatalytic systems. Sci Total Environ. 722. doi: 10.1016/j.scitotenv.2020.137903.
Blasi A, Verardi A, Lopresto CG, Siciliano S, Sangiorgio P. 2023. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling. 8(4):61. doi: 10.3390/recycling8040061.
Branduardi P. 2021. Closing the loop: The power of microbial biotransformations from traditional bioprocesses to biorefineries, and beyond. Micro Biotech. 14(1):68–73. doi: 10.1111/1751-7915.13713.
Chai Y, Bai M, Chen A, Peng L, Shao J, Luo S, Deng Y, Yan B, Peng C. 2022. Valorization of waste biomass through fungal technology: Advances, challenges, and prospects. Ind Crops Prod. 188:115608. doi: 10.1016/j.indcrop.2022.115608.
Chen C, Shrestha R, Jia K, Gao PF, Geisbrecht BV, Bossmann SH, Shi J, Li P. 2015. Characterization of dye-decolorizing peroxidase (DyP) from Thermomonospora curvata reveals unique catalytic properties of A-type DyPs. J Biol Chem. 290(38):23447–23463. doi: 10.1074/jbc.M115.658807.
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. 2020. Lignocellulolytic enzymes in biotechnological and industrial processes: A review. Sustainability. 12(18):7282. doi: 10.3390/su12187282.
Civzele A, Stipniece-Jekimova AA, Mezule L. 2023. Fungal ligninolytic enzymes and their application in biomass lignin pretreatment. J Fungi. 9(7):780. doi: 10.3390/jof9070780.
Corbu VM, Gheorghe-Barbu I, AȘ D, Vrâncianu CO, Șesan TE. 2023. Current insights in fungal importance - A comprehensive review. Microorganisms. 11(6):1384. doi: 10.3390/microorganisms11061384.
Costa-Silva V, Anunciação M, Andrade E, Fernandes L, Costa A, Fraga I, Barros A, Marques G, Ferreira L, Rodrigues M. 2022. Biovalorization of grape stalks as animal feed by solid state fermentation using white-rot fungi. App Sci. 12(13):6800. doi: 10.3390/app12136800.
Dao CN, Tabil LG, Mupondwa E, Dumonceaux T. 2023. Modeling the microbial pretreatment of camelina straw and switchgrass by Trametes versicolor and Phanerochaete chrysosporium via solid-state fermentation process: A growth kinetic sub-model in the context of biomass-based biorefineries. Front Microbiol. 14:1130196. doi: 10.3389/fmicb.2023.1130196.
Del Cerro C, Erickson E, Dong T, Wong AR, Eder EK, Purvine SO, Mitchell HD, Weitz KK, Markillie LM, Burnet MC, et al. 2021. Intracellular pathways for lignin catabolism in white-rot fungi. Proc Natl Acad Sci USA. 118(9): doi:10.1073/pnas.2017381118.
Devi A, Bajar S, Kour H. 2022. Lignocellulosic biomass valorization for bioethanol production: A circular bioeconomy approach. Bioenerg Res. 15(4):1820–1841. doi: 10.1007/s12155-022-10401-9.
Dulf FV, Vodnar DC, Dulf EH. 2017. Phenolic compounds, flavonoids, lipids and antioxidant potential of apricot (Prunus armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem Cent J. 11(1):92. doi: 10.1186/s13065-017-0323-z.
Dulf FV, Vodnar DC, Dulf EH, Diaconeasa Z, Socaciu C. 2018. Liberation and recovery of phenolic antioxidants and lipids in chokeberry (Aronia melanocarpa) pomace by solid-state bioprocessing using Aspergillus Niger and Rhizopus oligosporus strains. LWT. 87:241–249. doi: 10.1016/j.lwt.2017.08.084.
Dulf FV, Vodnar DC, Socaciu C. 2016. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 209:27–36. doi: 10.1016/j.foodchem.2016.04.016.
Dulf FV, Vodnar DC, Toşa MI, Dulf EH. 2020. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food Chem. 310:125927. doi: 10.1016/j.foodchem.2019.125927.
Elisashvili V, Kachlishvili E, Tsiklauri N. 2009. Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol. 25(2):331–339. doi: 10.1007/s11274-008-9897-x.
Eugenio ME, Domínguez G, Molina-Guijarro JM, Hernández M, Arias ME, Ibarra D. 2023. Boosting enzymatic hydrolysis of steam-pretreated softwood by laccase and endo-β-mannanase enzymes from Streptomyces ipomoeae CECT 3341. Wood Sci Technol. 57(4):965–987. doi: 10.1007/s00226-023-01481-7.
Ferdeș M, Dincă MN, Moiceanu G, Zăbavă BȘ, Paraschiv G. 2020. Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: A review. Sustainability. 12(17):7205. doi: 10.3390/su12177205.
Ferreira Gregorio V, Pié L, Terceño A. 2018. A systematic literature review of bio, green and circular economy trends in publications in the field of economics and business management. Sustainability. 10(11):4232. doi: 10.3390/su10114232.
Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ. 2016. Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Biores Tech. 215:334–345. doi: 10.1016/j.biortech.2016.03.018.
Füchtner S, Alfredsen G, Thygesen LG. 2023. Oxalate found in wood cell wall during incipient brown rot degradation. Int Biodeterior Biodegrade. 177:105531. doi: 10.1016/j.ibiod.2022.105531.
Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T. 2016. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci. 41(7):633–645. doi: 10.1016/j.tibs.2016.04.006.
Han S, Kim GY, Han JI. 2019. Biodiesel production from oleaginous yeast, Cryptococcus sp. by using banana peel as carbon source. Ener Rep. 5:1077–1081. doi: 10.1016/j.egyr.2019.07.012.
Haq IU, Qaisar K, Nawaz A, Akram F, Mukhtar H, Zohu X, Xu Y, Mumtaz MW, Rashid U, Ghani WA, et al. 2021. Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts. 11(3):309. doi:10.3390/catal11030309.
Hernández-Bueno NS, Suárez-Rodríguez R, Balcázar-López E, Folch-Mallol JL, Ramírez-Trujillo JA, Iturriaga G. 2021. A versatile peroxidase from the fungus Bjerkandera adusta confers abiotic stress tolerance in transgenic tobacco plants. Plants. 10(5):859. doi: 10.3390/plants10050859.
Hou L, Ji D, Dong W, Yuan L, Zhang F, Li Y, Zang L. 2020. The synergistic action of electro-Fenton and white-rot fungi in the degradation of lignin. Front Biotechnol Bioeng. 8:99. doi: 10.3389/fbioe.2020.00099.
Huang J, Wang J, Liu S. 2024. Advances in the production of fungi-derived lignocellulolytic enzymes using agricultural wastes. Mycology. 15(4):523–537. doi: 10.1080/21501203.2023.2253827.
Huang DL, Zeng GM, Jiang XY, Feng CL, Yu HY, Huang GH, Liu HL. 2006. Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. J Hazard Mater. 134(1–3):268–276. doi: 10.1016/j.jhazmat.2005.11.021.
Ibarra-Cantún D, Ramos-Cassellis ME, Marín-Castro MA, Castelán-Vega RDC. 2020. Secondary metabolites and antioxidant activity of the solid-state fermentation in apple (Pirus malus L.) and agave mezcalero (Agave angustifolia H.) bagasse. J Fungi. 6(3):137. doi: 10.3390/jof6030137.
Ilica RA, Kloetzer L, Galaction AI, Caşcaval D. 2019. Fumaric acid: Production and separation. Biotechnol Lett. 41(1):47–57. doi: 10.1007/s10529-018-2628-y.
Ilić N, Milić M, Beluhan S, Dimitrijević-Branković S. 2023. Cellulases: From lignocellulosic biomass to improved production. Energies. 16(8):3598. doi: 10.3390/en16083598.
Infanzón-Rodríguez MI, Ragazzo-Sánchez JA, Del Moral S, Calderón-Santoyo M, Aguilar-Uscanga MG. 2022. Enzymatic hydrolysis of lignocellulosic biomass using native cellulase produced by Aspergillus niger ITV02 under liquid state fermentation. Biotechnol Appl Biochem. 69(1):198–208. doi: 10.1002/bab.2097.
Jin X, Wei S. 2023. Efficient short time pretreatment on lignocellulosic waste using an isolated fungus Trametes sp. W-4 for the enhancement of biogas production. Heliyon. 9(3):e14573. doi: 10.1016/j.heliyon.2023.e14573.
Jović J, Hao J, Kocić-Tanackov S, Mojović L. 2022. Improvement of lignocellulosic biomass conversion by optimization of fungal ligninolytic enzyme activity and molasses stillage supplementation. Biomass Conv Bioref. 12(7):2749–2765. doi: 10.1007/s13399-020-00929-1.
Kaur P, Kocher GS, Taggar MS. 2019. Development of fungal consortium for the pretreatment of rice straw under optimized solid state and shake flask conditions. Environ Prog Sustain Energy. 38(2):635–646. doi: 10.1002/ep.12954.
Kijpornyongpan T, Schwartz A, Yaguchi A, Salvachúa D. 2022. Systems biology-guided understanding of white-rot fungi for biotechnological applications: a review. IScience. 25(7):104640. doi: 10.1016/j.isci.2022.104640.
Kocher GS, Kaur P, Taggar MS. 2018. An overview of pretreatment processes with special reference to biological pretreatment for rice straw delignification. Curr Biochem Eng. 4(3):151–163. doi: 10.2174/2212711903666161102141859.
Koul B, Yakoob M, Shah MP. 2022. Agricultural waste management strategies for environmental sustainability. Environ Res. 206:2285. doi: 10.1016/j.envres.2021.112285.
Kovács E, Szűcs C, Farkas A, Szuhaj M, Maróti G, Bagi Z, Rákhely G, Kovács KL. 2022. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J Biotechnol. 360:160–170. doi: 10.1016/j.jbiotec.2022.10.013.
Kracher D, Ludwig R. 2016. Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. J Land Manag Food Enviro. 67(3):145–163. doi: 10.1515/boku-2016-001.
Kržišnik D, Gonçalves J. 2023. Environmentally conscious technologies using fungi in a climate-changing world. Earth. 4(1):69–77. doi: 10.3390/earth4010005.
Kumar A, Chandra R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 6(2):e03170. doi: 10.1016/j.heliyon.2020.e03170.
Latif W, Ciniglia C, Iovinella M, Shafiq M, Papa S. 2023. Role of white rot fungi in industrial wastewater treatment: A review. Appl Sci. 13(14):8318. doi: 10.3390/app13148318.
Lee SY, Kim HU, Chae TU, Cho JS, Kim JW, Shin JH. 2019. A comprehensive metabolic map for production of bio-based chemicals. Nat Catal. 2(1):18–33. doi: 10.1038/s41929-018-0212-4.
Li F, Liu Y, Zhao H, Liu X, Yu H. 2023. Lytic polysaccharide monooxygenases from Serpula lacrymans as enzyme cocktail additive for efficient lignocellulose degradation. Fermentation. 9(6):506. doi: 10.3390/fermentation9060506.
Lopes AM, Ferreira Filho EX, Moreira LRS. 2018. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol. 125(3):632–645. doi: 10.1111/jam.13923.
Luo H, Zhou T, Cao J, Gao L, Wang S, Gui Z, Shi Y, Xie F, Yang R. 2023. Utilization of lignocellulosic biomass by glycerol organosolv pretreatment for biobutanol production integrated with bioconversion of residual glycerol into value-added products. Bioresour Technol. 387:129661. doi: 10.1016/j.biortech.2023.129661.
Lyagin I, Aslanli A, Domnin M, Stepanov N, Senko O, Maslova O, Efremenko E. 2023. Metal nanomaterials and hydrolytic enzyme-based formulations for improved antifungal activity. IJMS. 24(14):11359. doi: 10.3390/ijms241411359.
Ma Y, Gao Z, Wang Q, Liu Y. 2018. Biodiesels from microbial oils: Opportunity and challenges. Biores Technol. 263:631–641. doi: 10.1016/j.biortech.2018.05.028.
Malgas S, Pletschke BI. 2020. Combination of CTec2 and GH5 or GH26 endo-mannanases for effective lignocellulosic biomass degradation. Catalysts. 10(10):1193. doi: 10.3390/catal10101193.
Mali T, Laine K, Hamberg L, Lundell T. 2023. Metabolic activities and ultrastructure imaging at late-stage of wood decomposition in interactive brown rot - white rot fungal combinations. Fungal Ecol. 61:101199. doi: 10.1016/j.funeco.2022.101199.
Maran JP, Prakash KA. 2015. Process variables influence on microwave assisted extraction of pectin from waste Carcia papaya L. peel. Int J Biol Macromol. 73:202–206. doi: 10.1016/j.ijbiomac.2014.11.008.
Martinez D, Larrondo LF, Putnam N, Sollewijn Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 22(6):695–700. doi: 10.1038/nbt967.
Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, de Vries RP, Endy D, Frisvad JC, Gunde-Cimerman N, et al. 2020. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol Biotechnol. 7(1):5. doi:10.1186/s40694-020-00095-z.
Mohnen D. 2008. Pectin structure and biosynthesis. Curr Opin Plant Biol. 11:266–277. doi: 10.1016/j.pbi.2008.03.006.
Molelekoa TBJ, Regnier T, da Silva LS, Augustyn W. 2021. Production of pigments by filamentous fungi cultured on agro-industrial by-products using submerged and solid-state fermentation methods. Fermentation. 7(4):295. doi: 10.3390/fermentation7040295.
Mujtaba M, Fernandes Fraceto L, Fazeli M, Mukherjee S, Savassa SM, Araujo de Medeiros G, Do Espírito Santo Pereira A, Mancini SD, Lipponen J, Vilaplana F. 2023. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod. 402:136815. doi: 10.1016/j.jclepro.2023.136815.
Mustabi J, Zhalilal SZ, Natsir A. 2023. The use of rot fungi isolated from wood to degradate fiber cocoa POD. AIP Conf Proc. 2628(1):030017. doi: 10.1063/5.0144098.
Nargotra P, Sharma V, Lee YC, Tsai YH, Liu YC, Shieh CJ, Tsai ML, Dong CD, Kuo CH. 2023. Microbial lignocellulolytic enzymes for the effective valorization of lignocellulosic biomass: A review. Catalysts. 13(1):83. doi: 10.3390/catal13010083.
Niladevi KN. 2009. Ligninolytic enzymes. In: Nigam P, Pandey A, editors. Biotechnology for agro-industrial residues utilisation. Dordrecht, Netherlands: Springer; p. 397–414.
Nongthombam GD, Sarangi PK, Singh TA, Sharma CK, Talukdar NC. 2022. Bioethanol production from ficus fruits (Ficus cunia) by Fusarium oxysporum through consolidated bioprocessing system. 3 Biotech. 12(9):178. doi: 10.1007/s13205-022-03234-y.
Pereira Scarpa JDC, Paganini Marques N, Alves Monteiro D, Martins GM, Paula AVD, Boscolo M, da Silva R, Gomes E, Alonso Bocchini D. 2019. Saccharification of pretreated sugarcane bagasse using enzymes solution from Pycnoporus sanguineus MCA 16 and cellulosic ethanol production. Ind Crops Prod. 141:111795. doi: 10.1016/j.indcrop.2019.111795.
Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R. 2010. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegradation. 64:397–402. doi: 10.1016/j.ibiod.2010.04.007.
Qi J, Jia L, Liang Y, Luo B, Zhao R, Zhang C, Wen J, Zhou Y, Fan M, Xia Y. 2022. Fungi’s selectivity in the biodegradation of Dendrocalamus sinicus decayed by white and brown rot fungi. Ind Crops Prod. 188:115726. doi: 10.1016/j.indcrop.2022.115726.
Qiu W, Liu J. 2022. Fermenting and lignin degradability of a white-rot fungus Coriolopsis trogii using industrial lignin as substrate. Appl Biochem Biotech. 194(11):5220–5235. doi: 10.1007/s12010-022-04004-5.
Rajtar NN, Kielsmeier-Cook JC, Held BW, Toapanta-Alban CE, Ordonez ME, Barnes CW, Blanchette RA. 2023. Diverse Xylaria in the Ecuadorian Amazon and their mode of wood degradation. Bot Stud. 64(1):30. doi: 10.1186/s40529-023-00403-x.
Rathner R, Petz S, Tasnádi G, Koller M. 2017. Monitoring the kinetics of biocatalytic removal of the endocrine disrupting compound 17α-ethinylestradiol from differently polluted wastewater bodies. J Environ Chem Engin. 5(2):1920–1926. doi: 10.1016/j.jece.2017.03.034.
Ravichandran A, Sridhar M. 2016. Versatile peroxidases: Super peroxidases with potential biotechnological applications - A mini review. J Dairy Vet Anim Res. 4(2):277‒280. doi: 10.15406/jdvar.2016.04.00116.
Roth MG, Westrick NM, Baldwin TT. 2023. Fungal biotechnology: From yesterday to tomorrow. Front Fungal Biol. 4:1135263. doi: 10.3389/ffunb.2023.1135263.
Sanches C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv. 27(2):185–194. doi: 10.1016/j.biotechadv.2008.11.001.
Sari E, Syamsiah S, Sulistyo H, Hidayat M. 2015. Effect of Mn2+ addition on delignification of water hyacinth using Phanerochaete chrysosporium. Mod Appl Sci. 9(2):228–235. doi: 10.5539/mas.v9n2p228.
Satti SM, Shah AA. 2020. Polyester‐based biodegradable plastics: An approach towards sustainable development. Lett Appl Microbiol. 70(6):413–430. doi: 10.1111/lam.13287.
Schimpf U, Hanreich A, Mähnert P, Unmack T, Junne S, Renpenning J, Lopez-Ulibarri R. 2013. Improving the efficiency of large-scale biogas processes: Pectinolytic enzymes accelerate the lignocellulose degradation. J Sustain Energy Environ. 4(53):53–60.
Schneider WDH, Fontana RC, Baudel HM, de Siqueira FG, Rencoret J, Gutiérrez A, de Eugenio LI, Prieto A, Martínez MJ, Martínez ÁT. 2020. Lignin degradation and detoxification of Eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Appl Energy. 262:114493. doi: 10.1016/j.apenergy.2020.114493.
Scott CJR, Leadbeater DR, Oates NC, James SR, Newling K, Li Y, McGregor NGS, Bird S, Bruce NC. 2023. Whole genome structural predictions reveal hidden diversity in putative oxidative enzymes of the lignocellulose-degrading ascomycete Parascedosporium putredinis NO1. Microbiol Spectr. 11(6):e0103523. doi: 10.1128/spectrum.01035-23.
Shanmugam S, Hari A, Ulaganathan P, Yang F, Krishnaswamy S, Wu YR. 2018. Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int J Hydrog Energy. 43(7):3618–3628. doi: 10.1016/j.ijhydene.2018.01.016.
Šibalic D, Šalić A, Tušek AJ, Sokač T, Brekalo K, Zelić B, Tran NN, Hessel V, Tišma M. 2020. Sustainable production of lipase from Thermomyces lanuginosus: Process optimization and enzyme characterization. Ind Eng Chem Res. 59(48):21144–21154. doi: 10.1021/acs.iecr.0c04329.
Silva A, Ticona A, Lopes F, Gouveia F, Silveira M, Oliveira J, Garcia L, Noronha E, Vale H. 2023. Characterization of white- and brown-rot fungi applied to the decay of caatinga biome wood (Swartzia psilonema harms) from Brazil. Curr Res Environ Appl Mycol. 13(1):104–122. doi: 10.5943/cream/13/1/8.
Singh N, Singhania RR, Nigam PS, Dong CD, Patel AK, Puri M. 2022. Global status of lignocellulosic biorefinery: Challenges and perspectives. Bioresour Technol. 344:126415. doi: 10.1016/j.biortech.2021.126415.
Sista Kameshwar AK, Qin W. 2018. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology. 9(2):93–105. doi: 10.1080/21501203.2017.1419296.
Tišma M, Šalić A, Planinić M, Zelić B, Potočnik M, Šelo G, Bucić-Kojić A. 2020. Production, characterisation and immobilization of laccase for an efficient aniline-based dye decolourization. J Water Process Eng. 36:101327. doi: 10.1016/j.jwpe.2020.101327.
Tri CL, Kamei I. 2020. Butanol production from cellulosic material by anaerobic co-culture of white-rot fungus phlebia and bacterium clostridium in consolidated bioprocessing. Bioresour Technol. 305:123065. doi: 10.1016/j.biortech.2020.123065.
Troiano D, Orsat V, Dumont MJ. 2020. Status of filamentous fungi in integrated biorefineries. Renew Sust Energ Rev. 117:109472. doi: 10.1016/j.rser.2019.109472.
Verardi A, Lopresto CG, Blasi A, Chakraborty A, Calabrò V. 2020. Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. In: Yousuf A, Pirozzi D, and Sannino F, editors. Lignocellulosic biomass to liquid biofuels. Cambridge, MA, USA: Academic Press; p. 67–125.
Voběrková S, Vaverková MD, Burešová A, Adamcová D, Vršanská M, Kynický J, Brtnický M, Adam V. 2017. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 61:157–164. doi: 10.1016/j.wasman.2016.12.039.
Weng C, Peng X, Han Y. 2021. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnol Biofuels. 14(1):84. doi: 10.1186/s13068-021-01934-w.
Wikandari R, Hasniah N, Taherzadeh MJ. 2022. The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. Bioresour Technol. 345:126531. doi: 10.1016/j.biortech.2021.126531.
Wittner N, Broos W, Bauwelinck J, Slezsák J, Vlaeminck SE, Cornet I. 2021. Enhanced fungal delignification and enzymatic digestibility of poplar wood by combined CuSO4 and MnSO4 supplementation. Process Biochem. 108:129–137. doi: 10.1016/j.procbio.2021.06.002.
Wong LY, Saad WZ, Mohamad R, Tahir PM. 2017. Optimization of cultural conditions for polygalacturonase production by a newly isolated Aspergillus fumigatus R6 capable of retting kenaf. Ind Crops Prod. 97:175–183. doi: 10.1016/j.indcrop.2016.12.019.
Xie P, Fan L, Huang L, Zhang C. 2020. An innovative co-fungal treatment to poplar bark sawdust for delignification and polyphenol enrichment. Ind Crops Prod. 157:112896. doi: 10.1016/j.indcrop.2020.112896.
Xu L, Sun J, Qaria MA, Gao L, Zhu D. 2021. Dye decoloring peroxidase structure, catalytic properties and applications: Current advancement and futurity. Catalysts. 11(8):955. doi: 10.3390/catal11080955.
Yang L, Yuan H, Yang Y, Wang R, Wang C, Wei X, Chen S, Yu J, Ma X. 2020. Enhanced lignin degradation in tobacco stalk composting with inoculation of white-rot fungi Trametes hirsuta and Pleurotus ostreatus. Waste Biomass Valorization. 11(7):3525–3535. doi: 10.1007/s12649-019-00692-z.
Yang J, Yue HR, Pan LY, Feng JX, Zhao S, Suwannarangsee S, Champreda V, Liu CG, Zhao XQ. 2023. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. Bioresour Technol. 385:129449. doi: 10.1016/j.biortech.2023.129449.
Zeuner B, Thomsen TB, Stringer MA, KBRM K, Meyer AS, Holck J. 2020. Comparative characterization of Aspergillus pectin lyases by discriminative substrate degradation profiling. Front Bioeng Biotechnol. 8:873. doi: 10.3389/fbioe.2020.00873.
Zhang Y, Sun T, Wu T, Li J, Hu D, Liu D, Li J, Tian C. 2023. Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila. Metabolic Eng. 78:192–199. doi: 10.1016/j.ymben.2023.06.009.
Zhu Y, Li W, Meng D, Li X, Goodell B. 2022. Non-enzymatic modification of the crystalline structure and chemistry of Masson pine in brown-rot decay. Carbohydr Polym. 286:119242. doi: 10.1016/j.carbpol.2022.119242.
Zoghlami A, Paës G. 2019. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front Chem. 7:874. doi: 10.3389/fchem.2019.00874.