Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Abouloifa H, Khodaei N, Rokni Y, Karboune S, Brasca M, D’Hallewin G, Salah RB, Saalaoui E, Asehraou A. 2020. The prebiotics (Fructo-oligosaccharides and Xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. World J Microbiol Biotechnol. 36(12):185. doi: 10.1007/s11274-020-02961-9.
Ademakinwa AN, Ayinla ZA, Omitogun OG, Agboola FK. 2018. Preparation, characterization and optimization of cross-linked fructosyltransferase aggregates for the production of prebiotic fructooligosaccharides. Biotechnol Acta. 99(4):417–434. doi: 10.5114/bta.2018.79972.
Ahmadi A, Milani E, Madadlou A, Mortazavi SA, Mokarram RR, Salarbashi D. 2014. Synbiotic yogurt-ice cream produced via incorporation of microencapsulated Lactobacillus acidophilus (la-5) and fructooligosaccharide. J Food Sci Technol. 51(8):1568–1574. doi: 10.1007/s13197-012-0679-y.
Ale EC, Binetti AG. 2021. Role of probiotics, prebiotics, and synbiotics in the elderly: insights into their applications. Front Microbiol. 28(12):631254. doi: 10.3389/fmicb.2021.631254.
Almeida APS, Avi CM, Barbisan LF, Moura NA, Caetano BFR, Romualdo GR, Sivieri K. 2015. Yacon (Smallanthus sonchifolius) and Lactobacillus acidophilus CRL 1014 reduce the early phases of colon carcinogenesis in male wistar rats. Food Res Inter. 74:48–54. doi: 10.1016/j.foodres.2015.04.034.
Alvarado-Huallanco MB, Maugeri-Filho F. 2011. Kinetic studies and modelling of the production of fructooligosaccharides by fructosyltransferase from Rhodotorula sp. Catal Sci Technol. 1(6):1043–1050. doi: 10.1039/C0CY00059K.
Alvarado-Obando M, Contreras N, León D, Botero L, Beltran L, Díaz D, Reyes LH RL, Alméciga-Díaz CJ, Sánchez OF, Sánchez OF. 2022. Engineering a heterologously expressed fructosyltransferase from Aspergillus oryzae N74 in Komagataella phaffii (Pichia pastoris) for kestose production. N Biotechnol. 69:18–27. doi: 10.1016/j.nbt.2022.02.005.
Amorim C, Rodrigues JL, Braga A, Gomes D, Rainha J, Silvério SC, Cardoso BB, Lobato MF, Rodrigues LR. 2022. Engineering Saccharomyces cerevisiae for the one-step production of a functional sweetening mixture towards food applications. Food Bioprod Process. 135:123–134. doi: 10.1016/j.fbp.2022.07.006.
Araújo IM, Becalette PC, Silva ESD, Dias GDS, Xavier MDCA, Almeida AFD, Maiorano AE, Morales SAV, Perna RF. 2022. Enhancement of fructosyltransferase stability by immobilization on polyhydroxybutyrate and glutaraldehyde-activated polyhydroxybutyrate for fructooligosaccharides production. Chem Technol Biotechnol. 98(2):419–430. doi: 10.1002/jctb.7255.
Ashaolu OJ. 2020. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed Pharmacother. 130:110625. doi: 10.1016/j.biopha.2020.110625.
Aung M, Jiang TH, Liu GL, Chi Z, Hu Z, Chi ZM. 2019. Overproduction of a β-fructofuranosidase1 with a high FOS synthesis activity for efficient biosynthesis of fructooligosaccharides. Int J Biol Macromol. 130:988–996. doi: 10.1016/j.ijbiomac.2019.03.039.
Azharia SH, Muhamad HA, Shahrul MHA, Muhial RS, Olusegun BJ, Saaria LN. 2021. Enzymatically synthesized fructooligosaccharides from sugarcane syrup modulate the composition and short-chain fatty acid production of the human intestinal microbiota. Food Res Int. 149:110677. doi: 10.1016/j.foodres.2021.110677.
Bali V, Panesar PS, Bera MB, Panesar R. 2015. Fructo-oligosaccharides: Production, purification and potential applications. Crit Rev Food Sci Nutr. 55(11):1475–1490. doi: 10.1080/10408398.2012.694084.
Barbosa PMG, de Morais TP, de Andrade Silva CA, da Silva Santos FR, Garcia NFL, Fonseca GG, Leite RSR, da Paz MF. 2018. Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Prep Biochem Biotechnol. 48(6):506–513. doi: 10.1080/10826068.2018.1466155.
Barros RGC, Pereira UC, Andrade JKS, Barbosa PF, Vasconcelos SV, Nogueira JP, Rajan M, Narain N. 2020. Intracellular and extracellular enzyme patterns during biosynthesis of short-chain fructooligosaccharides from Aspergillus spp. strains: Profile, biological structure correlation and chemometric characterizations. Biores Technol. 11:100546. doi: 10.1016/j.biteb.2020.100546.
Batista JMS, Brandão-Costa RMP, Cardoso KBB, Nascimento TP, Albuquerque WWC, da Cunha MNC, Porto CS, Bezerra RP, Porto ALF. 2021. Biotechnological purification of a β-fructofuranosidase (β-FFase) from Aspergillus tamarii kita: Aqueous two-phase system (Peg/citrate) and biochemical characterization. Biocatal Agric Biotechnol. 35:102070. doi: 10.1016/j.bcab.2021.102070.
Batista JMS, Brandão-Costa RMP, Carneiro da Cunha MN, Rodrigues HOS, Porto ALF. 2020. Purification and biochemical characterization of an extracellular fructosyltransferase-rich extract produced by Aspergillus tamarii Kita UCP1279. Biocata Agric Biotechnol. 26:101647. doi: 10.1016/j.bcab.2020.101647.
Bedzo OKK, Trollope KLD, Gottumukkala G, Coetzee Görgens JF. 2019. Amberlite IRA 900 versus calcium alginate in immobilization of a novel, engineered β-fructofuranosidase for short-chain fructooligosaccharide synthesis from sucrose. Biotechnol Prog. 35(3):e2797. doi: 10.1002/btpr.2797.
Braga A, Gomes D, Rainha J, Cardoso BB, Amorim C, Silvério SC, Fernández-Lobato M, Rodrigues JL, Rodrigues LR. 2022. Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Appl Microbiol Biotechnol. 106(12):4617–4626. doi: 10.1007/s00253-022-12037-3.
Burghardt JP, Fan R, Baas M, Eckhardt D, Gerlach D, Czermak P. 2020. Enhancing the heterologous fructosyltransferase activity of Kluyveromyces lactis: Developing a scaled-up process and abolishing invertase by CRISPR/Cas9 genome editing. Front Bioeng Biotechnol. 25(8):607507. doi: 10.3389/fbioe.2020.607507.
Capitán-Cañadas F, Ortega-González M, Guadix E, Zarzuelo A, Suárez MD, de Medina FS, Martínez-Augustin O. 2014. Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR4. Mol Nutr Food Res. 58(5):1098–1110. doi: 10.1002/mnfr.201300497.
Chen J, Chen X, Xu X, Ning Y, Jin Z, Tian Y. 2011. Biochemical characterization of an intracellular 6G-fructofuranosidase from Xanthophyllomyces dendrorhous and its use in production of neo-fructo-oligosaccharides (neo-FOSs). Biores Technol. 102(2):1715–1721. doi: 10.1016/j.biortech.2010.08.033.
Chen J, Vitetta L. 2018. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Cli Colora Cancer. 17(3):e541–e544. doi: 10.1016/j.clcc.2018.05.001.
Chen C, Zhao G, Chen W, Guo B, Schloss PD. 2015. Metabolism of fructooligosaccharides in Lactobacillus plantarum ST-III via differential gene transcription and alteration of cell membrane fluidity. Appl Environ Microbiol. 81(22):7697–7707. doi: 10.1128/AEM.02426-15.
Chikkerur J, Samanta AK, Kolte AP, Dhali A, Roy S. 2020. Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinase. Appl Biochem Biotechnol. 191(2):695–715. doi: 10.1007/s12010-019-03215-7.
Choukade R, Kango N. 2019. Characterization of a mycelial fructosyltransferase from Aspergillus tamarii NKRC 1229 for efficient synthesis of fructooligosaccharides. Food Chem. 286:434–440. doi: 10.1016/j.foodchem.2019.02.025.
Choukade R, Kango N. 2021. Production, properties, and applications of fructosyltransferase: A current appraisal. Crit Rev Biotech. 41(8):1178–1193. doi: 10.1080/07388551.2021.1922352.
Choukade R, Kango N. 2022. Purification of Aspergillus tamarii mycelial fructosyltransferase (m-FTase), optimized FOS production, and evaluation of its anticancer potential. J Food Sci. 87(7):3294–3306. doi: 10.1111/1750-3841.16173.
Chu J, Tian Y, Li Q, Liu G, Yu Q, Jiang J, He B. 2022. Engineering the β-fructofuranosidase fru 6 with promoted transfructosylating capacity for fructooligosaccharide production. J Agricul Food Chem. 70(31):9694–9702. doi: 10.1021/acs.jafc.2c03981.
Coetzee G, Rensburg EV, Görgens JF. 2020. Evaluation of the performance of an engineered β-fructofuranosidase from Aspergillus fijiensis to produce short-chain fructooligosaccharides from industrial sugar streams. Biocata Agric Biotechnol. 23:101484. doi: 10.1016/j.bcab.2019.101484.
Costa GT, Abreu GC, Guimarães AB, Vasconcelos PR, Guimarães SB. 2015. Fructo-oligosaccharide effects on serum cholesterol levels. An overview. Acta Cir Bras. 30(5):366–370. doi: 10.1590/s0102-865020150050000009.
Cunningham MMA, Azcarate-Peril Barnard A, Benoit V, Grimaldi R, Guyonnet D, Holscher HD, Hunter K, Manurung S, Obis D, Petrova MI, et al. 2021. Shaping the future of probiotics and prebiotics. Trends Microbiol. 29(8):667–685. doi:10.1016/j.tim.2021.01.003.
Daguet D, Pinheiro I, Verhelst A, Possemiers S, Marzoratti M. 2016. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the simulator of the human intestinal microbial ecosystem. J Funct Foods. 20:369–379. doi: 10.1016/j.jff.2015.11.005.
de Almeida MN, Guimarães VM, Falkoski DL, de Camargo BR, Fontes-Sant’ana GC, Maitan-Alfenas GP, de Rezende ST. 2018. Purification and characterization of an invertase and a transfructosylase from Aspergillus terreus. J Food Biochem. 42(5):12551. doi: 10.1111/jfbc.12551.
de Araujo Ribeiro GC, Fernandes P, Silva DAA, Brandão HN, de Assis SA. 2022. Inulinase from Rhodotorula mucilaginosa: immobilization and application in the production of fructooligosaccharides. Food Sci Biotechnol. 30(7):959–969. doi: 10.1007/s10068-021-00931-x.
de Carvalho Correa A, Lopes MS, Perna RF, Silva EK. 2024. Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydr Polym. 323:121396. doi: 10.1016/j.carbpol.2023.121396.
De La Rosa O, Flores-Gallegos AC, Muñíz-Márquez D, Contreras-Esquivel JC, Teixeira JA, Nobre C, Aguilar CN. 2022. Successive fermentation of aguamiel and molasses by Aspergillus oryzae and Saccharomyces cerevisiae to obtain high purity fructooligosaccharides. Foods. 11(12):1786. doi: 10.3390/foods11121786.
De la Rosa O, Múñiz-Marquez DB, Contreras-Esquivel JC, Wong-Paz JE, Rodríguez-Herrera R, Aguilar CN. 2020. Improving the fructooligosaccharides production by solid-state fermentation. Biocat Agri Biotechnol. 27:101704. doi: 10.1016/j.bcab.2020.101704.
de Oliveira RL, da Silva MF, da Silva SP, de Araújo ACV, Cavalcanti JVFL, Converti A, Porto TS. 2020. Fructo-oligosaccharides production by an Aspergillus aculeatus commercial enzyme preparation with fructosyltransferase activity covalently immobilized on Fe3O4-chitosan-magnetic nanoparticles. Inter Biol Macromol. 150:922–929. doi: 10.1016/j.ijbiomac.2020.02.152.
Dou Y, Yu X, Luo Y, Chen B, Ma D, Zhu J. 2022. Effect of fructooligosaccharides supplementation on the gut microbiota in human: A systematic review and meta-analysis. Nutrients. 14(16):3298. doi: 10.3390/nu14163298.
Faghfoori Z, Faghfoori MH, Saber A, Izadi A, Khosroushahi AY. 2021. Anticancer effects of bifidobacteria on colon cancer cell lines. Cancer Cell Int. 21(1):258. doi: 10.1186/s12935-021-01971-3.
Fang Z, Li L, Zhang H, Zhao J, Lu W, Chen W. 2021. Gut microbiota, probiotics, and their interactions in prevention and treatment of atopic dermatitis: A review. Front Immunol. 12:720393. doi: 10.3389/fimmu.2021.720393.
Faria LL, Morales SAV, Prado JPZ, de Souza Dias G, de Almeida AF, da Cunha Abreu Xavier M, da Silva ES, Maiorano AE, Perna RF. 2021. Biochemical characterization of extracellular fructosyltransferase from Aspergillus oryzae IPT-301 immobilized on silica gel for the production of fructooligosaccharides. Biotechnol Lett. 43(1):43–59. doi: 10.1007/s10529-020-03016-7.
Galvao DF, Pessoni RAB, Elsztein KA, Moreira MA, Morais R, de Cássia Leone Figueiredo-Ribeiro M, Gaspar MMC, Morais MB, Fialho S, Braga MR. 2021. A comparative study between Fusarium solani and Neocosmospora vasinfecta revealed differential profile of fructooligosaccharide production. Folia Microbiol (Praha). 67(6):873–889. doi: 10.1007/s12223-022-00983-4.
Ganaie MA, Rawat HK, Wani OA, Gupta US, Kango N. 2014. Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructooligosaccharides. Proc Biochem. 49(5):840–844. doi: 10.1016/j.procbio.2014.01.026.
Gibson G, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. 2017. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 14(8):491–502. doi:10.1038/nrgastro.2017.75.
Gonçalves MCP, Morales SAV, Silva ES, Maiorano AE, Perna RF, Kieckbusch TG. 2020. Entrapment of glutaraldehyde‐crosslinked cells from Aspergillus oryzae IPT‐301 in calcium alginate for high transfructosylation activity. J Chemical Tech & Biotech. 95(9):2473–2482. doi: 10.1002/jctb.6429.
Guerra L, Romanini D, López S, Castelli V, Clementz A. 2023. Upcycling of carrot discards into prebiotics (fructooligosaccharides) as high value food ingredients. Food Bioprod Process. 138:172–180. doi: 10.1016/j.fbp.2023.01.011.
Guo W, Yang H, Qiang S, Fan Y, Shen W, Chen X. 2016. Overproduction, purification, and property analysis of an extracellular recombinant fructosyltransferase. Eur Food Res Technol. 242(7):1159–1168. doi: 10.1007/s00217-015-2620-x.
Gutierrez-Alonso P, Fernandez-Arrojo L, Plou FJ, Fernandez-Lobato M. 2009. Biochemical characterization of β -fructofuranosidase from Rhodotorula dairenensis with transfructosylating activity. FEMS Yeast Res. 9(5):1–6. doi: 10.1111/j.1567-1364.2009.00526.x.
Hachimura S, Totsuka M, Hosono A. 2018. Immunomodulation by food: Impact on gut immunity and immune cell function. Biosci Biotechnol Biochem. 82:584–599. doi: 10.1080/09168451.2018.1433017.
Han S, Pan L, Zeng W, Yang L, Yang D, Chen G, Liang Z. 2021. Improved production of fructooligosaccharides (FOS) using a mutant strain of Aspergillus oryzae S719 overexpressing β-fructofuranosidase (FTase) genes. LWT. 146:111346. doi: 10.1016/j.lwt.2021.111346.
Han S, Ye T, Leng S, Pan L, Zeng W, Chen G, Liang Z. 2020. Purification and biochemical characteristics of a novel fructosyltransferase with a high FOS transfructosylation activity from Aspergillus oryzae S719. Prot Expr Purif. 167:105549. doi: 10.1016/j.pep.2019.105549.
Hernández L, Menéndez C, Pérez ER, Martínez D, Alfonso D, Trujillo LE, Ramírez R, Sobrino A, Mazola Y, Musacchio A, et al. 2018. Fructooligosaccharides production by Schedonorus arundinaceus sucrose: Sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris. J Biotechnol. 266:59–71. doi: 10.1016/j.jbiotec.2017.12.008.
Hua M, Fan M, Li M, Sha J, Li S, Sun Y. 2021. Ginseng soluble dietary fiber can regulate the intestinal flora structure, promote colon health, affect appetite and glucolipid metabolism in rats. J Funct Food. 83:104534. doi: 10.1016/j.jff.2021.104534.
Huang MP, Wu M, Xu QS, Mo DJ, Feng JX. 2016. Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide-producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. J Agric Food Chem. 64(33):6425–6432. doi: 10.1021/acs.jafc.6b02115.
Jung KH, Bang SH, Oh TK, Park HJ. 2011. Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor. Biotechnol Lett. 33(8):1621–1624. doi: 10.1007/s10529-011-0606-8.
Karkeszova K, Polakovic M. 2023. Production of fructooligosaccharides using a commercial heterologously expressed Aspergillus sp. fructosyltransferase. Catalysts. 13(5):843. doi: 10.3390/catal13050843.
Khatun MS, Harrison MD, Speight RE, IM O, Zhang Z. 2020. Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochem Eng J. 163:107747. doi: 10.1016/j.bej.2020.107747.
Lee SM, Chang JY, Wu JS, Sheu DC. 2015. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 12(1):1114–1118. doi: 10.3892/mmr.2015.3507.
Li Q, Ding C, Meng T, Lu W, Liu W, Hao H, Cao L. 2017. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J Pharmacol Sci. 135:148–155. doi: 10.1016/j.jphs.2017.11.004.
Linde D, Colina-Rodriguez B, Estevez M, Poveda A, Plou FJ, Lobato MF. 2012. Analysis of neo-fructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Biores Technol. 109:123–130. doi: 10.1016/j.biortech.2012.01.023.
Liu L, Chen D, Yu B, Yin H, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, et al. 2020. Fructooligosaccharides improves growth performance and intestinal epithelium function in weaned pigs exposure to enterotoxigenic Escherichia coli. Food Funct. 11:9599–9612. doi: 10.1039/D0FO01998D.
Li X, Wang D, Lu L, Jin L, Liu J, Song D, Guo Z, Xiao M. 2014. Purification, cloning, characterization, and n-glycosylation analysis of a novel β-fructosidase from Aspergillus oryzae FS4 synthesizing levan- and neolevan-type fructooligosaccharides. PloS One. 9(12):e114793. doi: 10.1371/journal.pone.0114793.
Lorenzoni ASG, Aydos LF, Klein MP, Rodrigues RC, Hertz PF. 2014. Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydr Polym. 103:193–197. doi: 10.1016/j.carbpol.2013.12.038.
Mahalak KK, Firrman J, Narrowe AB, Hu W, Jones SM, Bittinger K, Moustafa AM, Liu L. 2023. Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Front Nutr. 12(9):1058910. doi: 10.3389/fnut.2022.1058910.
Maioli TU, Trindade LM, Souza A, Torres L, Andrade ME, Cardoso VN, Generoso SV. 2022. Non-pharmacologic strategies for the management of intestinal inflammation. Biomed Pharmacother. 145:112414. doi: 10.1016/j.biopha.2021.112414.
Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. 2018. Oligosaccharide biotechnology: An approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol. 102(1):17–37. doi: 10.1007/s00253-017-8564-2.
Mao S, Liu Y, Yang J, Ma X, Zeng F, Zhang Z, Wang S, Han H, Qin HM, Lu F. 2019. Cloning, expression and characterization of a novel fructosyltransferase from Aspergillus niger and its application in the synthesis of fructooligosaccharides. RSC Adv. 9(41):23856–23863. doi: 10.1039/c9ra02520k.
Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. 2019. Technological aspects of the production of fructo and galacto-oligosaccharides. enzymatic synthesis and hydrolysis. Front Nutr. 6:78. doi: 10.3389/fnut.2019.00078.
Miguez N, Gimeno-Pérez M, Fernández-Polo D, Cervantes FV, Ballesteros AO, Fernández-Lobato M, Ribeiro MH, Plou FJ. 2018. Immobilization of the β-fructofuranosidase from Xanthophyllomyces dendrorhous by entrapment in polyvinyl alcohol and its application to neo-fructooligosaccharides production catalysts. Catalysts. 8(5):201. doi: 10.3390/catal8050201.
Miqdady M, Al Mistarihi J, Azaz A, Rawat D. 2020. Prebiotics in the infant microbiome: The past, present, and future. Pediatr Gastroenterol Hepatol Nutr. 23(1):1–14. doi: 10.5223/pghn.2020.23.1.1.
Mouelhi R, Abidi F, Marzouki MN. 2016. An improved method for the production of fructooligosaccharides by immobilized β-fructofuranosidase from Sclerotinia sclerotiorum. Biotechnol Appl Biochem. 63(2):281–291. doi: 10.1002/bab.1360.
Muniz-Marquez DB, Contreras JC, Rodríguez R, Mussatto SI, Teixeira JA, Aguilar CN. 2016. Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA-MF in solid-state fermentation using aguamiel as culture medium. Bioresour Technol. 213:276–282. doi: 10.1016/j.biortech.2016.03.022.
Muñiz-Márquez DB, Teixeira JA, Mussatto SI, Contreras-Esquivel JC, Herrera RR, Aguilar CN. 2019. Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. LWT. 102:75–79. doi: 10.1016/j.lwt.2018.12.020.
Mussatto SI, Aguilar CN, Rodrigues LR, Teixeira JA. 2009. Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J Mole Catal B: Enzy. 59(1–3):76–81. doi: 10.1016/j.molcatb.2009.01.005.
Nath S, Kango N. 2022. Recent developments in industrial mycozymes: A current appraisal. Mycology. 13(2):81–105. doi: 10.1080/21501203.2021.1974111.
Nemukula A, Mutanda T, Wilhelmi BS, Whiteley CG. 2009. Response surface methodology: Synthesis of short chain fructooligosaccharides with a fructosyltransferase from Aspergillus aculeatus. Biores Technol. 100(6):2040–2045. doi: 10.1016/j.biortech.2008.10.022.
Ni D, Xu W, Zhu Y, Pang X, Lv J, Mu W. 2020. Insight into the effects and biotechnological production of kestoses, the smallest fructooligosaccharides. Crit Rev Biotechnol. 41(1):34–46. doi: 10.1080/07388551.2020.1844622.
Nobre C, Do Nascimento AKC, Silva SP, Coelho E, Coimbra MA, Cavalcanti MTM, Teixeira JA, Porto ALF. 2019. Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum. Bioresour Technol. 282:464–474. doi: 10.1016/j.biortech.2019.03.053.
Ojwach J, Kumar A, Mukaratirwa S, Mutanda T. 2020. Purification and biochemical characterization of an extracellular fructosyltransferase enzyme from Aspergillus niger sp. XOBP48: implication in fructooligosaccharide production. 3 Biotech. 10(10):459. doi: 10.1007/s13205-020-02440-w.
O’Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. 2022. Short chain fatty acids: Microbial metabolites for gut-brain axis signaling. Mol Cellular Endocri. 546:111572. doi: 10.1016/j.mce.2022.111572.
Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, Baccaglini L, Mohapatra A, Mohapatra SS, Misra PR, et al. 2017. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature. 548(7668):407–412. doi:10.1038/nature23480.
Pérez ER, Martínez D, Menéndez C, Alfonso D, Rodríguez I, Luis E, Alina Sobrino T, Ramírez R, Pimentel E, Hernández L. 2021. Fructooligosaccharides production by immobilized Pichia pastoris cells expressing Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase. J Ind Microbiol Biotechnol. 48(5–6):kuab036. doi: 10.1093/jimb/kuab036.
Picazo B, Flores-Gallegos AC, Ilina A, Rodríguez-Jasso RM, Aguilar CN. 2019. Production of an enzymatic extract from Aspergillus oryzae DIA-MF to improve the fructooligosaccharides profile of aguamiel. Front Nutr. 6:15. doi: 10.3389/fnut.2019.00015.
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. 2019. Mechanisms of action of probiotics. Adv Nutr. 10(suppl_1):S49–S66. doi: 10.1093/advances/nmy063.
Porwal K, Pal S, Kulkarni C, Singh P, Sharma S, Singh P, Prajapati G, Gayen JR, Ampapathi RS, Mullick A, et al. 2020. Prebiotic, short-chain fructo-oligosaccharides promotes peak bone mass and maintains bone mass in ovariectomized rats by an osteogenic mechanism. Biomed Pharmaco. 129:110448. doi: 10.1016/j.biopha.2020.110448.
Rahim MA, Saeed F, Khalid W, Hussain M, Anjum FM. 2021. Functional and nutraceutical properties of fructooligosaccharides derivatives: A review. Int J Food Prop. 24(1):1588–1602. doi: 10.1080/10942912.2021.1986520.
Rajkumar H, Kumar M, Das N, Kumar SN, Challa HR, Nagpal R. 2015. Effect of probiotic Lactobacillus salivarius UBL S22 and prebiotic fructo-oligosaccharide on serum lipids, inflammatory markers, insulin sensitivity, and gut bacteria in healthy young volunteers: A randomized controlled single-blind pilot study. J Cardiovasc Pharmacol Ther. 20(3):289–298. doi: 10.1177/1074248414555004.
Ramírez-Barrantes R, Córdova C, Gatica S, Rodriguez B, Lozano C, Marchant I, Echeverria C, Simon F, Olivero P. 2018. Transient receptor potential vanilloid 1 expression mediates capsaicin-induced cell death. Front Physiol. 9:682. doi: 10.3389/fphys.2018.00682.
Rawat HK, Ganaie MA, Kango N. 2015. Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructooligosaccharides. Anto van Leeuwen. 107(3):799–811. doi: 10.1007/s10482-014-0373-3.
Rawat HK, Soni H, Treichel H, Kango N. 2017. Biotechnological potential of microbial inulinases: Recent perspective. Crit Rev Food Sci Nutr. 57:3818–3829. doi: 10.1080/10408398.2016.1147419.
Rigo-Adrover MDM, Limpt KV, Knipping K, Garssen J, Knol J, Costabile A, Franch A, Castell M, Pérez-Cano FJ. 2018. Preventive effect of a synbiotic combination of galacto- and fructooligosaccharides mixture with Bifidobacterium breve M-16V in a model of multiple Rotavirus infections. Front Immunol. 11:1318. doi: 10.3389/fimmu.2018.01318.
Rodriguez MA, Sanchez OF, Almeciga-Diaz CJ. 2011. Gene cloning and enzyme structure modeling of the Aspergillus oryzae N74 fructosyltransferase. Mol Biol Rep. 38(2):1151–1161. doi: 10.1007/s11033-010-0213-0.
Rosa MC, Carmo MRS, Balthazar CF, Guimarães JT, Esmerino EA, Freitas MQ, Silva MC, Pimentel TC, Cruz AG. 2021. Dairy products with prebiotics: An overview of the health benefits, technological and sensory properties. Inter Dairy J. 117:105009. doi: 10.1016/j.idairyj.2021.105009.
Sánchez-Martínez MJ, Soto-Jover S, Antolinos V, Martínez-Hernández GB, López-Gómez A. 2020. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Eng Rev. 12(2):149–172. doi: 10.1007/s12393-020-09209-0.
Singh RS, Singh T. 2022a. Fructooligosaccharides production from inulin by immobilized endoinulinase on 3-aminopropyltriethoxysilane functionalized halloysite nanoclay. Catal Lett. 152(7):1927–1949. doi: 10.1007/s10562-021-03803-5.
Singh RS, Singh T. 2022b. Glutaraldehyde functionalization of halloysite nanoclay enhances immobilization efficacy of endoinulinase for fructooligosaccharides production from inulin. Food Chem. 381(3):132253. doi: 10.1016/j.foodchem.2022.132253.
Singh RS, Singh T. 2022c. Hetero-modification of halloysite nanoclay to immobilize endoinulinase for the preparation of fructooligosaccharides. Int Food Res J. 159:111591. doi: 10.1016/j.foodres.2022.111591.
Singh RS, Singh T, Kennedy JF. 2020. Purification, thermodynamics and kinetic characterization of fungal endoinulinase for the production of fructooligosaccharides from inulin. Inter J Biol Macromol. 164:3535–3545. doi: 10.1016/j.ijbiomac.2020.09.001.
Singh RS, Singh T, Kennedy JF. 2021. Purification, thermodynamics and kinetic characterization of fungal endoinulinase for the production of fructooligosaccharides from inulin. Int J Biol Macromol. 164:3535–3545. doi: 10.1016/j.ijbiomac.2020.09.001.
Sivieri K, Morales MLV, Saad SMI, Adorno MAT, Sakamoto IK, Rossi EA. 2014. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® Model). J Med Food. 17(8):894–901. doi: 10.1089/jmf.2013.0092.
Skrypnik K, Suliburska J. 2017. Association between the gut microbiota and mineral metabolism. J Sci Food Agric. 98(7):2449–2460. doi: 10.1002/jsfa.8724.
Stojanovic S, Ristović M, Stepanović J, Margetić A, Duduk B, Z V, Dojnov B. 2022. Aspergillus welwitschiae inulinase enzyme cocktails obtained on agro-material inducers for the purpose of fructooligosaccharides production. Food Res Int. 160:111755. doi: 10.1016/j.foodres.2022.111755.
Sun X, Zong Y, Yang S, Wang L, Gao J, Wang Y, Liu B, Zhang HA. 2020. A fructan: The fructan 1-fructosyl-transferase gene from Helianthus tuberosus increased the PEG-simulated drought stress tolerance of tobacco. Hereditas. 157(1):14. doi: 10.1186/s41065-020-00131-3.
Taştan O, Sözgen G, Baysal T, Türközb BK. 2019. Production of prebiotic 6-kestose using Zymomonas mobilis levansucrase in carob molasses and its effect on 5-HMF levels during storage. Food Chem. 297:124897. doi: 10.1016/j.foodchem.2019.05.171.
Tian K, Wang J, Zhang Z, Cheng L, Jin P, Singh S, Prior BA, Wang ZX. 2019. Enzymatic preparation of fructooligosaccharides-rich burdock syrup with enhanced antioxidative properties. Elect J Biotechnol. 40:71–77. doi: 10.1016/j.ejbt.2019.04.009.
Tódero LM, Rechia CGV, Guimarães LHS. 2019. Production of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatus. J Food Biochem. 43(8):e12937. doi: 10.1111/jfbc.12937.
Tsujikawa Y, Ishikawa S, Sakane I, Yoshida KI, Osawa R. 2021. Identification of genes encoding a novel ABC transporter in Lactobacillus delbrueckii for inulin polymers uptake. Sci Rep. 11(1):6007. doi: 10.1038/s41598-021-95356-1.
Ueno K, Sonoda T, Yoshida M, Kawakami A, Shiomi N, Onodera S. 2020. Decreased expression of fructosyltransferase genes in asparagus roots may contribute to efficient fructan degradation during asparagus spear harvesting. Plant Physiol Biochem. 156:192–200. doi: 10.1016/j.plaphy.2020.09.007.
Valdeon DH, Araujo PZ, Mirta D, Perotti NI. 2019. Immobilization of fructofuranosidase from Aureobasidium sp. Onto TiO2 and its encapsulation on gellan gum for FOS production. Int J Chem React. 17(3):20180135. doi: 10.1515/ijcre-2018-0135.
Wang J, Zhang J, Wang L, Liu H, Li N, Zhou H, Ning Z, Zhang W, Wang L, Huang F, et al. 2021. Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger. Biotechnol Lett. 43(6):1175–1182. doi:10.1007/s10529-021-03099-w.
Wei T, Huang S, Zang J, Jia C, Mao D. 2016. Cloning, expression and characterization of a novel fructosyltransferase from Aspergillus oryzae ZZ-01 for the synthesis of sucrose 6-acetate. Catalysts. 6(5):1–12. doi: 10.3390/catal6050067.
Wei T, Yu X, Wang Y, Zhu Y, Du C, Jia C, Mao D. 2014. Purification and evaluation of the enzymatic properties of a novel fructosyltransferase from Aspergillus oryzae: a potential biocatalyst for the synthesis of sucrose 6-acetate. Biotechnol Lett. 36(5):1015–1020. doi: 10.1007/s10529-014-1457-x.
Whisner CM, Castillo LF. 2018. Prebiotics, bone and mineral metabolism. Calcif Tissue Inter. 102(4):443–479. doi: 10.1007/s00223-017-0339-3.
Wong CB, Iwabuchi N, Xiao JZ. 2019. Exploring the science behind Bifidobacterium breve M-16V in infant health. Nutrients. 11(8):1724. doi: 10.3390/nu11081724.
Wu JS, Chang JY, Chen CW, Lin MT, Sheu DC, Lee SM. 2017. Neokestose suppresses the growth of human melanoma A2058 cells via inhibition of the nuclear factorκB signaling pathway. Mol Med Rep. 16(1):295–300. doi: 10.3892/mmr.2017.6594.
Wu Y, Zhang X, Han D, Ye H, Tao S, Pi Y, Zhao J, Chen L, Wang J. 2020. Short administration of combined prebiotics improved microbial colonization, gut barrier, and growth performance of neonatal piglets. ACS Omega. 5(32):20506–20516. doi: 10.1021/acsomega.0c02667.
Wyk NV, Trollope KM, Steenkamp ET, Wingfield BD, Volschenk H. 2013. Identification of the gene for β-fructofuranosidase from Ceratocystis moniliformis CMW 10134 and characterization of the enzyme expressed in Saccharomyces cerevisiae. BMC Biotechnol. 13(1):100. doi: 10.1186/1472-6750-13-100.
Xia Y, Guo W, Han L, Shen W, Chen X, Yang H. 2022. Significant improvement of both catalytic efficiency and stability of fructosyltransferase from Aspergillus niger by structure-guided engineering of key residues in the conserved sequence of the catalytic domain. J Agric Food Chem. 70(23):7202–7210. doi: 10.1021/acs.jafc.2c01699.
Yang H, Wang Y, Zhang L, Shen W. 2016. Heterologous expression and enzymatic characterization of fructosyltransferase from Aspergillus niger in Pichia pastoris. N Biotechnol. 33(1):206–215. doi: 10.1016/j.nbt.2015.04.005.
Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. 2021. The role of microbiota in infant health: from early life to adulthood. Front Immunol. 12:708472. doi: 10.3389/fimmu.2021.708472.
Yao D, Wu M, Dong Y, Ma L, Wang X, Xu L, Yu Q, Zheng X. 2022. In vitro fermentation of fructooligosaccharide and galactooligosaccharide and their effects on gut microbiota and SCFAs in infants. J Funct Foods. 99:105329. doi: 10.1016/j.jff.2022.105329.
Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. 2020. Gut microbiota and immune system interactions. Microorganisms. 8(12):2046. doi: 10.3390/microorganisms8122046.
Yoshikawa J, Honda Y, Saito Y, Sato D, Iwata K, Amachi S, Kashiwagi Y, Maehashi K. 2021. Isolation and identification of Zalaria sp. Him3 as a novel fructooligosaccharides-producing yeast. J Appl Microbiol. 132(2):1104–1111. doi: 10.1111/jam.15259.
Young ID, Latousakis D, Juge N. 2021. The immunomodulatory properties of β-2,6 fructans: A comprehensive review. Nutrients. 13(4):1309. doi: 10.3390/nu13041309.
Yu R, Yin Y, Cao M, Ye D, Zhang Y, Zhou Q, Mei Y. 2020. Fructo-oligosaccharides lower serum lipid levels and suppress high-fat/high-sugar diet-induced inflammation by elevating serum and gut levels of short-chain fatty acids. Int J Med Res. 48(4):300060519896714. doi: 10.1177/0300060519896714.
Zeng W, Leng S, Zhang Y, Chen G, Liang Z. 2022. Development of new strategies for the production of high-purity fructooligosaccharides using β-fructofuranosidase and a novel isolated Wickerhamomyces anomalus. Sep Purif Technol. 284:120236. doi: 10.1016/j.seppur.2021.120236.
Zhang L, An J, Li L, Wang H, Liu D, Li N, Cheng H, Deng Z. 2016. Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. J Agric Food Chem. 64(19):3828–3837. doi: 10.1021/acs.jafc.6b00115.
Zhang J, Liu C, Xie Y, Li N, Ning Z, Du N, Huang X, Zhong Y. 2017. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol. 10(249):25–33. doi: 10.1016/j.jbiotec.2017.03.021.
Zhang J, Wang L, Luan L, Liu G, Liu J, Zhong Y. 2019. Establishment of a rapid and effective plate chromogenic assay for screening of Aspergillus species with high β-fructofuranosidase activity for fructooligosaccharides production. J Microbiol Methods. 166:105740. doi: 10.1016/j.mimet.2019.105740.
Zhang C, Wang J, Qi Q, Yang L, Sun P, Yuan X. 2021. Modulatory effect of fructooligosaccharide against triphenyltin-induced oxidative stress and immune suppression in goldfish (Carassius auratus). Ecotoxicol Environ Saf. 212:111966. doi: 10.1016/j.ecoenv.2021.111966.
Zhao W, Yuan M, Li P, Yan H, Zhang H, Liu J. 2019. Short-chain fructo-oligosaccharides enhances intestinal barrier function by attenuating mucosa inflammation and altering colonic microbiota composition of weaning piglets. Ital J Anim Sci. 18(1):976–986. doi: 10.1080/1828051X.2019.1612286.
Zheng C, Liu R, Xue B, Luo J, Gao L, Wang Y, Ou S, Li S, Peng X. 2017. Impact and consequences of polyphenols and fructooligosaccharide interplay on gut microbiota in rats. Food Funct. 8(5):1925–1932. doi: 10.1039/c6fo01783e.