The family Diatrypaceae is a less well-known group within the order Xylariales (Ascomycota). Initially, the focus on its metabolites was related to the pathogenicity of one of its members, Eutypa lata. To date, a total of 254 natural products have been identified from Diatrypaceae strains. These compounds include terpenoids, sterols, polyketones, phenols, and acetylene aromatic compounds, which have shown anticancer, cytotoxic, anti-inflammatory, antimicrobial, and antiviral activities. The complex and diverse structural types, along with the diverse bioactivities, highlight the potential of Diatrypaceae as a valuable source of bioactive natural products. In this review, a deep analysis of the biosynthesis of pimarane diterpenes and scoparasin-type cytochalasins is provided, coupled with a compilation of the biosynthetic pathways of aromatic acetylene compounds in filamentous fungi. This comprehensive review not only enhances our understanding of the natural product chemistry, biological activities, and biosynthesis of secondary metabolites from the Diatrypaceae family but also promotes the exploitation and development of important bioactive compounds and potential strains.
Acero FJ, González V, Sánchez-Ballesteros J, Rubio V, Checa J, Bills GF, Salazar O, Platas G, Peláez F. 2004. Molecular phylogenetic studies on the Diatrypaceae based on rDNA-ITS sequences. Mycologia. 96(2):249–259. doi: 10.1080/15572536.2005.11832975.
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, et al. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51(W1):W46–W50. doi: 10.1093/nar/gkad344.
Chen R, Jia Q, Mu X, Hu B, Sun X, Deng Z, Chen F, Bian G, Liu T. 2021. Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis. Proc Natl Acad Sci USA. 118(29):e2023247118. doi: 10.1073/pnas.2023247118.
Chen YR, Naresh A, Liang SY, Lin CH, Chein RJ, Lin HC. 2020. Discovery of a dual function cytochrome P450 that catalyzes enyne formation in cyclohexanoid terpenoid biosynthesis. Angew Chem Int Ed Engl. 59(32):13537–13541. doi: 10.1002/anie.202004435.
Chiang YM, Lin TS, Chang SL, Ahn G, Wang CCC. 2021. An Aspergillus nidulans platform for the complete cluster refactoring and total biosynthesis of fungal natural products. ACS Synth Biol. 10(1):173–182. doi: 10.1021/acssynbio.0c00536.
Ciavatta ML, Lopez-Gresa MP, Gavagnin M, Nicoletti R, Manzo E, Mollo E, Guo YW, Cimino G. 2008. Cytosporin-related compounds from the marine-derived fungus Eutypella scoparia. Tetrahedron. 64(22):5365–5369. doi: 10.1016/j.tet.2008.03.016.
Defrancq E, Gordon J, Brodard A, Tabacchi R. 1992. The synthesis of a novel epoxycyclohexane from the fungus Eutypa lata (Pers: F.) TUL. Helv Chim Acta. 75(1):276–281. doi: 10.1002/hlca.19920750123.
Ding Q, Ye C. 2023. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Microb Cell Fact. 22(1):20. doi: 10.1186/s12934-023-02025-1.
Gilchrist CLM, Chooi YH. 2021a. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics. 37(16):2473–2475. doi: 10.1093/bioinformatics/btab007.
Gilchrist CLM, Chooi YH. 2021b. Synthaser: a CD-Search enabled Python toolkit for analysing domain architecture of fungal secondary metabolite megasynth(et)ases. Fungal Biol Biotechnol. 8(1):13. doi: 10.1186/s40694-021-00120-9.
Isaka M, Palasarn S, Lapanun S, Chanthaket R, Boonyuen N, Lumyong S. 2009. γ-lactones and ent-eudesmane sesquiterpenes from the endophytic fungus Eutypella sp. BCC 13199. J Nat Prod. 72(9):1720–1722. doi: 10.1021/np900316x.
Isaka M, Palasarn S, Prathumpai W, Laksanacharoen P. 2011. Pimarane diterpenes from the endophytic fungus Eutypella sp. BCC 13199. Chem Pharm Bull (Tokyo). 59(9):1157–1159. doi: 10.1248/cpb.59.1157.
Ishiuchi K, Nakazawa T, Yagishita F, Mino T, Noguchi H, Hotta K, Watanabe K. 2013. Combinatorial generation of complexity by redox enzymes in the chaetoglobosin a biosynthesis. J Am Chem Soc. 135(19):7371–7377. doi: 10.1021/ja402828w.
Jiménez-Teja D, Hernández-Galán R, Collado IG. 2006. Metabolites from Eutypa species that are pathogens on grapes. Nat Prod Rep. 23(1):108–116. doi: 10.1039/B514891J.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873): 583–589. doi: 10.1038/s41586-021-03819-2.
Kirk PM, Cannon PF, David JC, Stalpers JA. 2001. Ainsworth and Bisby’s dictionary of the fungi. 9th ed. Wallingford (UK): CABI Publishing; pp. 1–655.
Kongprapan T, Rukachaisirikul V, Saithong S, Phongpaichit S, Poonsuwan W, Sakayaroj J. 2015. Cytotoxic cytochalasins from the endophytic fungus Eutypella scoparia PSU-H267. Phytochem Lett. 13:171–176. doi: 10.1016/j.phytol.2015.06.010.
Kuriakose GC, Palem PPC, Jayabaskaran C. 2016. Fungal vincristine from Eutypella spp – CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line -A431. BMC Complement Altern Med. 16(1):302. doi: 10.1186/s12906-016-1299-2.
Liao HX, Sun DW, Zheng CJ, Wang CY. 2017. A new hexahydrobenzopyran derivative from the gorgonian-derived Fungus Eutypella sp. Nat Prod Res. 31(14):1640–1646. doi: 10.1080/14786419.2017.1285301.
Lin C, Feng X, Liu Y, Li ZC, Li XZ, Qi J. 2023. Bioinformatic analysis of secondary metabolite biosynthetic potential in pathogenic Fusarium. J Fungi. 9(8):850. doi: 10.3390/jof9080850.
Lin K, Huang L, Zhang Y, Chen M, Li Z, Yung KKL, Lv S, Pan Q, Zhang W, Fu J, et al. 2023. The antiangiogenic and antitumor effects of scoparasin B in non-small-cell lung cancer. J Nat Prod. 86(2): 368–379. doi: 10.1021/acs.jnatprod.2c00979.
Lin Y, Li HJ, Jiang G, Zhou S, Vrijmoed LLP, Jones EBG. 2002. A novel γ-lactone, eutypoid-A and other metabolites from marine fungus Eutypa sp. (#424) from the South China Sea. Indian J Chem, Sect B: Org Chem Incl Med Chem. 41B(45):200–200. doi: 10.1002/chin.200245200.
Liu JT, Hu B, Gao Y, Zhang JP, Jiao BH, Lu XL, Liu XY. 2014. Bioactive tyrosine-derived cytochalasins from fungus Eutypella sp. D-1. Chem Biodiversity. 11(5):800–806. doi: 10.1002/cbdv.201300218.
Liu H, Zhang L, Chen Y, Li S, Tan G, Sun Z, Pan Q, Ye W, Li H, Zhang W. 2017. Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus Eutypella sp. FS46. Nat Prod Res. 31(4):404–410. doi: 10.1080/14786419.2016.1169418.
Liu HX, Zhang L, Chen YC, Sun ZH, Pan QL, Li HH, Zhang WM. 2017. Monoterpenes and sesquiterpenes from the marine sediment-derived fungus Eutypella scoparia FS46. J Asian Nat Prod Res. 19(2):145–151. doi: 10.1080/10286020.2016.1189906.
Long S, Liu L, Pi Y, Wu Y, Lin Y, Zhang X, Long Q, Kang Y, Kang J, Wijayawardene NN, et al. 2021. New contributions to Diatrypaceae from karst areas in China. MycoKeys. 83:1–37. doi: 10.3897/mycokeys.83.68926.
Lu XL, Liu JT, Liu XY, Gao Y, Zhang J, Jiao BH, Zheng H. 2014. Pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. J Antibiot (Tokyo). 67(2):171–174. doi: 10.1038/ja.2013.104.
Lv JM, Gao YH, Zhao H, Awakawa T, Liu L, Chen GD, Yao XS, Hu D, Abe I, Gao H. 2020. Biosynthesis of biscognienyne B involving a cytochrome P450-dependent alkynylation. Angew Chem Int Ed Engl. 59(32):13531–13536. doi: 10.1002/anie.202004364.
Minami A, Ozaki T, Liu C, Oikawa H. 2018. Cyclopentane-forming di/sesterterpene synthases: widely distributed enzymes in bacteria, fungi, and plants. Nat Prod Rep. 35(12):1330–1346. doi: 10.1039/C8NP00026C.
Minto RE, Blacklock BJ. 2008. Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res. 47(4):233–306. doi: 10.1016/j.plipres.2008.02.002.
Molyneux RJ, Mahoney N, Bayman P, Wong RY, Meyer K, Irelan N. 2002. Eutypa dieback in grapevines: differential production of acetylenic phenol metabolites by strains of Eutypa lata. J Agric Food Chem. 50(6):1393–1399. doi: 10.1021/jf011215a.
Moraga J, Gomes W, Pinedo C, Cantoral JM, Hanson JR, Carbú M, Garrido C, Durán-Patrón R, Collado IG. 2019. The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochem Rev. 18(1):215–239. doi: 10.1007/s11101-018-9590-0.
Moyo P, Damm U, Mostert L, Halleen F. 2018. Eutypa, Eutypella, and Cryptovalsa species (Diatrypaceae) associated with Prunus species in South Africa. Plant Dis. 102(7):1402–1409. doi: 10.1094/pdis-11-17-1696-re.
Ning Y, Zhang S, Zheng T, Xu Y, Li S, Zhang J, Jiao B, Zhang Y, Ma Z, Lu X. 2023. Pimarane-type diterpenes with anti-inflammatory activity from Arctic-derived fungus Eutypella sp. D-1. Mar Drugs. 21(10):541. doi: 10.3390/md21100541.
Niu S, Liu D, Shao Z, Liu J, Fan A, Lin W. 2021. Chemical epigenetic manipulation triggers the production of sesquiterpenes from the deep-sea derived Eutypella fungus. Phytochemistry. 192:112978. doi: 10.1016/j.phytochem.2021.112978.
Niu S, Liu D, Shao Z, Proksch P, Lin W. 2017a. Eutypellazines A–M, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC Adv. 7(53):33580–33590. doi: 10.1039/C7RA05774A.
Niu S, Liu D, Shao Z, Proksch P, Lin W. 2017b. Eutypellazines N−S, new thiodiketopiperazines from a deep sea sediment derived fungus Eutypella sp. with anti-VRE activities. Tetrahedron Lett. 58(38):3695–3699. doi: 10.1016/j.tetlet.2017.08.015.
Niu S, Liu D, Shao Z, Proksch P, Lin W. 2018. Eremophilane-type sesquiterpenoids in a deep-sea fungus Eutypella sp. activated by chemical epigenetic manipulation. Tetrahedron. 74(51):7310–7325. doi: 10.1016/j.tet.2018.10.056.
Oh H, Jensen PR, Murphy BT, Fiorilla C, Sullivan JF, Ramsey T, Fenical W. 2010. Cryptosphaerolide, a cytotoxic Mcl-1 inhibitor from a marine-derived ascomycete related to the genus Cryptosphaeria. J Nat Prod. 73(5):998–1001. doi: 10.1021/np1000889.
Perez-Gonzalez G, Sebestyen D, Petit E, Jellison J, Mugnai L, Gelhaye E, Lee N, Farine S, Bertsch C, Goodell B. 2022. Oxygen radical-generating metabolites secreted by Eutypa and Esca fungal consortia: understanding the mechanisms behind grapevine wood deterioration and pathogenesis. Front Plant Sci. 13:921961. doi: 10.3389/fpls.2022.921961.
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. 2019. Fusarium-produced mycotoxins in plant-pathogen interactions. Toxins. 11(11):664. doi: 10.3390/toxins11110664.
Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Rungjindamai N, Sakayaroj J. 2006. Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44. J Nat Prod. 69(5):856–858. doi: 10.1021/np0600649.
Qiao K, Chooi YH, Tang Y. 2011. Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng. 13(6):723–732. doi: 10.1016/j.ymben.2011.09.008.
Qi JS, Duan Y, Li ZC, Gao JM, Qi J, Liu C. 2023. The alkynyl-containing compounds from mushrooms and their biological activities. Nat Prod Bioprospect. 13(1):50. doi: 10.1007/s13659-023-00416-w.
Qi J, Han H, Sui D, Tan S, Liu C, Wang P, Xie C, Xia X, Gao JM, Liu C. 2022. Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae. Microb Cell Fact. 21(1):146. doi: 10.1186/s12934-022-01872-8.
Qi S, Wang Y, Zheng Z, Xu Q, Deng X. 2015. Cytochalasans and sesquiterpenes from Eutypella scoparia 1-15. Nat Prod Commun. 10(12):2027–2030. doi: 10.1177/1934578X1501001203.
Renaud JM, Tsoupras G, Stoeckli-Evans H, Tabacchi R. 1989a. A novel allenic epoxycyclohexane and related compounds from Eutypa lata (Pers: F.) Tul. Helv Chim Acta. 72(6):1262–1267. doi: 10.1002/hlca.19890720612.
Renaud JM, Tsoupras G, Tabacchi R. 1989b. Biologically active natural acetylenic compounds from Eutypa lata (Pers: F.) TUL. Helv Chim Acta. 72(5):929–932. doi: 10.1002/hlca.19890720508.
Reveglia P, Cimmino A, Masi M, Nocera P, Berova N, Ellestad G, Evidente A. 2018. Pimarane diterpenes: natural source, stereochemical configuration, and biological activity. Chirality. 30(10):1115–1134. doi: 10.1002/chir.23009.
Rothweiler W, Tamm C. 1966. Isolation and structure of phomin. Experientia. 22(11):750–752. doi: 10.1007/BF01901360.
Schümann J, Hertweck C. 2007. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc. 129(31):9564–9565. doi: 10.1021/ja072884t.
Sun L, Li D, Chen Y, Tao M, Dan F, Zhang W. 2011a. Secondary metabolites of marine fungus Eutypella scoparia from the South China Sea and their antitumor activities. Chin Tradit Herb Drugs. 42(3):432–436.
Sun L, Li D, Chen Y, Tao M, Zhang W, Dan F. 2011b. Purification, identification and antitumor activities of secondary metabolites from marine fungus Eutypella scoparia FS26. Mycosystema. 30(2):268–274. doi: 10.13346/j.mycosystema.2011.02.021.
Sun L, Li D, Tao M, Chen Y, Dan F, Zhang W. 2012a. Scopararanes C–G: new oxygenated pimarane diterpenes from the marine sediment-derived fungus Eutypella scoparia FS26. Mar Drugs. 10(3):539–550. doi: 10.3390/md10030539.
Sun L, Li D, Tao M, Chen Y, Zhang Q, Dan F, Zhang W. 2013. Two new polyketides from a marine sediment-derived fungus Eutypella scoparia FS26. Nat Prod Res. 27(14):1298–1304. doi: 10.1080/14786419.2012.733393.
Sun L, Li DL, Tao MH, Dan FJ, Zhang WM. 2012b. Two new sesquiterpenes from the marine fungus Eutypella scoparia FS26 from the South China Sea. Helv Chim Acta. 95(1):157–162. doi: 10.1002/hlca.201100275.
Tanapichatsakul C, Pansanit A, Monggoot S, Brooks S, Prachya S, Kittakoop P, Panuwet P, Pripdeevech P. 2020. Antifungal activity of 8-methoxynaphthalen-1-ol isolated from the endophytic fungus Diatrype palmicola MFLUCC 17-0313 against the plant pathogenic fungus Athelia rolfsii on tomatoes. PeerJ. 8:e9103. doi: 10.7717/peerj.9103.
Tan JJ, Liu XY, Zhang J, Chen X, Li YM, Jiao BH. 2017. Crystal structure of (R)-1-(2,3-dihydro-1H-pyrrolizin-5-yl)-2,3-dihydroxypropan-1-one, C10H13NO3. Z Krist-New Cryst St. 232(1):7–8. doi: 10.1515/ncrs-2016-0099.
Tey-Rulh P, Philippe I, Renaud J-M, Tsoupras G, de Angelis P, Fallot J, Tabacchi R. 1991. Eutypine, a phytotoxin produced by Eutypa lata the causal agent of dying-arm disease of grapevine. Phytochemistry. 30(2):471–473. doi: 10.1016/0031-9422(91)83707-R.
Vicente F, Basilio A, Platas G, Collado J, Bills GF, González Del Val A, Martín J, Tormo JR, Harris GH, Zink DL, et al. 2009. Distribution of the antifungal agents sordarins across filamentous fungi. Mycol Res. 113(6–7):754–770. doi: 10.1016/j.mycres.2009.02.011.
Wang X, Sun K, Wang B. 2018. Bioactive pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. Chem Biodiversity. 15(2):e1700501. doi: 10.1002/cbdv.201700501.
Wang Y, Wang Y, Wu AA, Zhang L, Hu Z, Huang H, Xu Q, Deng X. 2017. New 12,8-Eudesmanolides from Eutypella sp. 1–15. J Antibiot (Tokyo). 70(10):1029–1032. doi: 10.1038/ja.2017.89.
Wang X, Yu H, Zhang Y, Lu X, Wang B, Liu X. 2018. Bioactive pimarane-type diterpenes from marine organisms. Chem Biodiversity. 15(1):e1700276. doi: 10.1002/cbdv.201700276.
Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH. 2008. Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem. 6(11):1895–1897. doi: 10.1039/B804701D.
Xing B, Yu J, Chi C, Ma X, Xu Q, Li A, Ge Y, Wang Z, Liu T, Jia H, et al. 2021. Functional characterization and structural bases of two class Ⅰ diterpene synthases in pimarane-type diterpene biosynthesis. Commun Chem. 4(1): 140. doi: 10.1038/s42004-021-00578-z.
Yoshida S, Kito K, Ooi T, Kanoh K, Shizuri Y, Kusumi T. 2007. Four pimarane diterpenes from marine fungus: chloroform incorporated in crystal lattice for absolute configuration analysis by X-ray. Chem Lett. 36(11):1386–1387. doi: 10.1246/cl.2007.1386.
Yuan Y, Cheng S, Bian G, Yan P, Ma Z, Dai W, Chen R, Fu S, Huang H, Chi H, et al. 2022. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nat Catal. 5(4): 277–287. doi: 10.1038/s41929-022-00762-x.
Yu HB, Ning Z, Hu B, Zhu YP, Lu XL, He Y, Jiao BH, Liu XY. 2023. Cytosporin derivatives from Arctic-derived fungus Eutypella sp. D-1 via the OSMAC approach. Mar Drugs. 21(7):382. doi: 10.3390/md21070382.
Yu HB, Wang XL, Hu B, Zhang JP, Lu XL, Liu XY, Jiao BH. 2020. Studies on bioactive components of the Arctic fungus Eutypella sp. D-1. Chin J Mar Drugs. 39(2):38–41. doi: 10.13400/j.cnki.cjmd.2020.02.005.
Yu HB, Wang XL, Xu WH, Zhang YX, Qian YS, Zhang JP, Lu XL, Liu XY. 2018a. Eutypellenoids A-C, new pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. Mar Drugs. 16(8):284. doi: 10.3390/md16080284.
Yu HB, Wang XL, Zhang YX, Xu WH, Zhang JP, Zhou XY, Lu XL, Liu XY, Jiao BH. 2018b. Libertellenones O-S and eutypellenones a and B, pimarane diterpene derivatives from the Arctic fungus Eutypella sp. D-1. J Nat Prod. 81(7):1553–1560. doi: 10.1021/acs.jnatprod.8b00039.
Zhang LQ, Chen XC, Chen ZQ, Wang GM, Zhu SG, Yang YF, Chen KX, Liu XY, Li YM. 2016. Eutypenoids A-C: novel pimarane diterpenoids from the Arctic fungus Eutypella sp. D-1. Mar Drugs. 14(3):44. doi: 10.3390/md14030044.
Zhang YH, Du HF, Gao WB, Li W, Cao F, Wang CY. 2022a. Anti-inflammatory polyketides from the marine-derived fungus Eutypella scoparia. Mar Drugs. 20(8):486. doi: 10.3390/md20080486.
Zhang JM, Liu X, Wei Q, Ma C, Li D, Zou Y. 2022b. Berberine bridge enzyme-like oxidase-catalysed double bond isomerization acts as the pathway switch in cytochalasin synthesis. Nat Commun. 13(1):225. doi: 10.1038/s41467-021-27931-z.
Zhang W, Lu X, Huo L, Zhang S, Chen Y, Zou Z, Tan H. 2021a. Sesquiterpenes and steroids from an endophytic Eutypella scoparia. J Nat Prod. 84(6):1715–1724. doi: 10.1021/acs.jnatprod.0c01167.
Zhang W, Lu X, Wang H, Chen Y, Zhang J, Zou Z, Tan H. 2021b. Antibacterial secondary metabolites from the endophytic fungus Eutypella scoparia SCBG-8. Tetrahedron Lett. 79:153314. doi: 10.1016/j.tetlet.2021.153314.
Zhang P, Qi J, Duan Y, Gao JM, Liu C. 2022c. Research progress on fungal sesterterpenoids biosynthesis. J Fungi. 8(10):1080. doi: 10.3390/jof8101080.
Zhang W, Wang M, Zhang S, Xu K, Tan G, Qiu S, Zou Z, Tan H. 2020. Eutyscoparols A-G, polyketide derivatives from endophytic fungus Eutypella scoparia SCBG-8. Fitoterapia. 146:104681. doi: 10.1016/j.fitote.2020.104681.
Zhang YX, Yu HB, Xu WH, Hu B, Guild A, Zhang JP, Lu XL, Liu XY, Jiao BH. 2019. Eutypellacytosporins A-D, meroterpenoids from the Arctic fungus Eutypella sp. D-1. J Nat Prod. 82(11):3089–3095. doi: 10.1021/acs.jnatprod.9b00700.
Zhao G, Wu Y, Chen X, Xie C, Guan B. 2006. Canker caused by Cryptosphaeria on poplars. J Shandong For Sci Technol. 1:52–53.
Zhou Y, He J, Cui H. 2022. Terpenoids and other secondary metabolites produced by the Eutypella fungi and their bioactivities. Front Mar Sci. 9. doi: 10.3389/fmars.2022.1074135.
Zhou Y, Zhang YX, Zhang JP, Yu HB, Liu XY, Lu XL, Jiao BH. 2017. A new sesquiterpene lactone from fungus Eutypella sp. D-1. Nat Prod Res. 31(14):1676–1681. doi: 10.1080/14786419.2017.1286486.
Zhu H, Pan M, Wijayawardene NN, Jiang N, Ma R, Dai D, Tian C, Fan X. 2021. The hidden diversity of Diatrypaceous fungi in China. Front Microbiol. 12:646262. doi: 10.3389/fmicb.2021.646262.