Home Mycology Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

Role of white rot fungi in sustainable remediation of heavy metals from the contaminated environment

Vipin Kumar Singha()Rishikesh Singhb
Department of Botany, K. S. Saket P. G. College, Ayodhya, Uttar Pradesh, India
Amity School of Earth & Environmental Sciences, Amity University Punjab, Mohali, Punjab, India

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Show Author Information

Abstract

Heavy metal contamination has severe impacts on the natural environment. The currently existing physico-chemical methods have certain limitations, restricting their wide-scale application. The use of biological agents like bacteria, algae, and fungi can help eliminate heavy metals without adversely affecting flora and fauna. Due to their inherent ability to withstand adverse environmental conditions, nowadays, mycoremediation approaches are receiving considerable attention for heavy metal removal from contaminated sites. In this review, we emphasised the role of white rot fungi in remediation of heavy metal along with different factors influencing biosorption, effects on exposed fungi, and the mechanisms involved. Bibliometric analysis tools have been applied to literature search and trend analysis of the research on white rot fungi-mediated heavy metal removal. Annual growth rates and average citations per document are 5.08% and 35.48, respectively. Phanerochaete chrysosporium, Pleurotus ostreatus, and Trametes versicolor have been widely explored for the remediation of heavy metals. In addition to providing some prospects, the review also highlighted a few limitations, including inconsistent removal and effects of environmental factors influencing the functioning of white rot fungi. Overall, white rot fungi have been found to have immense potential to be widely utilised for sustainable remediation of heavy metal-contaminated environments.

References

 

Ab Rhaman SMS, Naher L, Siddiquee S. 2021. Mushroom quality related with various substrates’ bioaccumulation and translocation of heavy metals. J Fungi. 8(1):42. doi: 10.3390/jof8010042.

 

Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, ElatyAE A, et al. 2023. Toxicity of heavy metals and recent advances in their removal: a review. Toxics. 11(7):580. doi: 10.3390/toxics11070580.

 

Ahmad I, Gul I, Irum S, Manzoor M, Arshad M. 2023. Accumulation of heavy metals in wild plants collected from the industrial sites-potential for phytoremediation. Int J Environ Sci Te. 20(5):5441–5452. doi: 10.1007/s13762-022-04340-3.

 

Ahmed T, Noman M, Ijaz M, Ali S, Rizwan M, Ijaz U, Hameed A, Ahmad U, Wang Y, Sun G, et al. 2021. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: a way forward towards sustainable agriculture. Ecotox Environ Safe. 227:112888. doi: 10.1016/j.ecoenv.2021.112888.

 

Aksu Z. 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40(3–4):997–1026. doi: 10.1016/j.procbio.2004.04.008.

 

Alshiekheid MA, Umar A, Ameen F, Alyahya SA, Dufossé L. 2023. Biodegradation of chromium by laccase action of Ganoderma multipileum. JKing Saud Uni-Sci. 35(10):102948. doi: 10.1016/j.jksus.2023.102948.

 

AL-Huqail AA, El-Bondkly AMA. 2022. Improvement of Zea mays L. growth parameters under chromium and arsenic stress by the heavy metal-resistant Streptomyces sp. NRC21696. Int J Environ Sci Te. 19(6):5301–5322. doi: 10.1007/s13762-021-03532-7.

 

Aria M, Cuccurullo C. 2017. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Inf. 11(4):959–975. doi: 10.1016/j.joi.2017.08.007.

 

Arıca MY, Kacar Y, Genç Ö. 2001. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technol. 80(2):121–129. doi: 10.1016/S0960-8524(01)00084-0.

 

Atila F, Kazankaya A. 2023. Evaluation of the yield and heavy metal bioaccumulation in the fruit body of Pleurotus ostreatus grown on sugar mill wastewaters. Biomass Conv Bioref. 1–10. doi: 10.1007/s13399-023-03913-7.

 

Ayele A, Haile S, Alemu D, Kamaraj M, Cameselle C. 2021. Comparative utilization of dead and live fungal biomass for the removal of heavy metal: a concise review. The Sci World J. 2021:1–10. doi: 10.1155/2021/5588111.

 

Baldrian P. 2003. Interactions of heavy metals with white-rot fungi. Enzym Microb Technol. 32(1):78–91. doi: 10.1016/S0141-0229(02)00245-4.

 

Bayramoğlu G, Bektaş S, Arıca MY. 2003. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater. 101(3):285–300. doi: 10.1016/S0304-3894(03)00178-X.

 

Bayramoglu G, Çelik G, Yalçin E, Yilmaz M, Arica M. 2005. Modification of surface properties of mycelia by physical and chemical methods: evaluation of their Cr removal efficiencies from aqueous medium. J Hazard Mater. 119(1–3):219–229. doi: 10.1016/j.jhazmat.2004.12.022.

 

Benalia MC, Youcef L, Bouaziz MG, Achour S, Menasra H. 2022. Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arab J Sci Eng. 47(5):5587–5599. doi: 10.1007/s13369-021-05525-7.

 

Brunsch M, Schubert D, Gube M, Ring C, Hanisch L, Linde J, Krause K, Kothe E, Pöggeler S. 2015. Dynein heavy chain, encoded by two genes in Agaricomycetes, is required for nuclear migration in Schizophyllum commune. PLoS One. 10(8):e0135616. doi: 10.1371/journal.pone.0135616.

 

Chen A, Zeng G, Chen G, Liu L, Shang C, Hu X, Lu L, Chen M, Zhou Y, Zhang Q. 2014. Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress. Process Biochem. 49(4):589–598. doi: 10.1016/j.procbio.2014.01.014.

 

Chen L, Zhang X, Zhang M, Zhu Y, Zhuo R. 2022. Removal of heavy-metal pollutants by white rot fungi: mechanisms, achievements, and perspectives. J Clean Prod. 354:131681. doi: 10.1016/j.jclepro.2022.131681.

 

Chen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z. 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J Water Process Eng. 26:289–300. doi: 10.1016/j.jwpe.2018.11.003.

 

Chen Z, Osman AI, Rooney DW, Oh WD, Yap PS. 2023. Remediation of heavy metals in polluted water by immobilized algae: current applications and future perspectives. Sustainability-Basel. 15(6):5128. doi: 10.3390/su15065128.

 

Dhiman S, Kaur P, Narang J, Mukherjee G, Thakur B, Kaur S, Tripathi M. 2024. Fungal bioprocessing for circular bioeconomy: exploring lignocellulosic waste valorization. Mycology. 1–26. doi: 10.1080/21501203.2024.2316824.

 

Dönmez G, Aksu Z. 2002. Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem. 38(5):751–762. doi: 10.1016/S0032-9592(02)00204-2.

 

Dou R, Xie Y, Liu FX, Wang B, Xu F, Xiao K. 2023. In situ mycoremediation of acid rain and heavy metals co-contaminated soil through microbial inoculation with Pleurotus ostreatus. Sci Total Environ. 912:169020. doi: 10.1016/j.scitotenv.2023.169020.

 

El-Bondkly AMA, El-Gendy MMAA. 2022. Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon. 8(7):e09854. doi: 10.1016/j.heliyon.2022.e09854.

 

Enayatizamir N, Liu J, Wang L, Lin X, Fu P. 2020. Coupling laccase production from Trametes pubescence with heavy metal removal for economic waste water treatment. J Water Proc Eng. 37:101357. doi: 10.1016/j.jwpe.2020.101357.

 

Farhadi A, Enayatizamir N, Moradi N, Taghavi M. 2023. Zinc’s impact on the growth and laccase activity of Trametes pubescens and an equilibrium study of zinc adsorption. Chem And Ecol. 39(9):991–1006. doi: 10.1080/02757540.2023.2269939.

 

Fei Y, Hu YH. 2023. Recent progress in removal of heavy metals from wastewater: a comprehensive review. Chemosphere. 335:139077. doi: 10.1016/j.chemosphere.2023.139077.

 

Feng M, Yin H, Cao Y, Peng H, Lu G, Liu Z, Dang Z. 2018. Cadmium-induced stress response of Phanerochaete chrysosporium during the biodegradation of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47). Ecotox Environ Safe. 154(154):45–51. doi: 10.1016/j.ecoenv.2018.02.018.

 

Fujii J, Homma T, Osaki T. 2022. Superoxide radicals in the execution of cell death. Antioxidants. 11(3):501. doi: 10.3390/antiox11030501.

 

Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, Gryzenhout M, Gafforov Y. 2023. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front Bioeng Biotechnol. 11:1106973. doi: 10.3389/fbioe.2023.1106973.

 

Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC. 2023. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. J Hazard Mater. 450:131039. doi: 10.1016/j.jhazmat.2023.131039.

 

Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ. 2016. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresource Technol. 218:388–396. doi: 10.1016/j.biortech.2016.06.096.

 

Guo X, Peng Z, Huang D, Xu P, Zeng G, Zhou S, Gong X, Cheng M, Deng R, Yi H, et al. 2018. Biotransformation of cadmium-sulfamethazine combined pollutant in aqueous environments: Phanerochaete chrysosporium bring cautious optimism. Chem Eng J. 347:74–83. doi: 10.1016/j.cej.2018.04.089.

 

Hanif MA, Bhatti HN. 2015. Remediation of heavy metals using easily cultivable, fast growing, and highly accumulating white rot fungi from hazardous aqueous streams. Desalin Water Treat. 53(1):238–248. doi: 10.1080/19443994.2013.848413.

 

He N, Hu L, Jiang C, Li M. 2022. Remediation of chromium, zinc, arsenic, lead and antimony contaminated acidic mine soil based on Phanerochaete chrysosporium induced phosphate precipitation. Sci Total Environ. 850:157995. doi: 10.1016/j.scitotenv.2022.157995.

 

Hein G, Mahandra H, Ghahreman A. 2023a. Application of Phanerochaete chrysosporium for enhancing gold recovery via bio-oxidation of refractory sulfidic ores in a circumneutral environment. Process Saf Environ. 178:135–146. doi: 10.1016/j.psep.2023.07.095.

 

Hein G, Mahandra H, Ghahreman A. 2023b. Assessment of modified culture conditions for fungal bio-oxidation of sulfidic gold ores performed at circumneutral pH. Sustainability-Basel. 15(21):15559. doi: 10.3390/su152115559.

 

Huang C, Lai C, Xu P, Zeng G, Huang D, Zhang J, Zhang C, Cheng M, Wan J, Wang R. 2017. Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. Chemosphere. 187:70–77. doi: 10.1016/j.chemosphere.2017.08.104.

 

Huang J, Wang J, Liu S. 2024. Advances in the production of fungi-derived lignocellulolytic enzymes using agricultural wastes. Mycology. 15(4):523–537. doi: 10.1080/21501203.2023.2253827.

 

Jadoun S, Fuentes JP, Urbano BF, Yáñez J. 2023. A review on adsorption of heavy metals from wastewater using conducting polymer-based materials. J Environ Chem Eng. 11(1):109226. doi: 10.1016/j.jece.2022.109226.

 

Jamir I, Ezung LY, Merry L, Tikendra L, Devi RS, Nongdam P. 2024. Heavy metals clean up: the application of fungi for biosorption. Geomicrobiol J. 41(3):201–212. doi: 10.1080/01490451.2024.2307899.

 

Jarosz-Wilkołazka A, Grąz M, Braha B, Menge S, Schlosser D, Krauss GJ. 2006. Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals. 19:39–49. doi: 10.1007/s10534-005-4599-4.

 

Jarosz-Wilkołazka A, Malarczyk E, Pirszel J, Skowroński T, Leonowicz A. 2002. Uptake of cadmium ions in white-rot fungus Trametes versicolor: effect of Cd (II) ions on the activity of laccase. Cell Biol Int. 26(7):605–613. doi: 10.1006/cbir.2002.0887.

 

Javaid A, Bajwa R, Shafique U, Anwar J. 2011. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy. 35(5):1675–1682. doi: 10.1016/j.biombioe.2010.12.035.

 

Kaur P, Sharma S, Albarakaty FM, Kalia A, Hassan MM, Abd-Elsalam KA. 2022. Biosorption and bioleaching of heavy metals from electronic waste varied with microbial genera. Sustainability-Basel. 14(2):935. doi: 10.3390/su14020935.

 

Khozani MA, Emtiazi G, Aghaei SS, Ghasemi SM, Zolfaghari MR. 2021. Application of fungal laccase for heavy metals precipitation using tannin as a natural mediator. Int J Environ Sci Te. 18(8):2335–2344. doi: 10.1007/s13762-020-02992-7.

 

Kocaoba S, Arısoy M. 2011. The use of a white rot fungi (Pleurotus ostreatus) immobilized on amberlite XAD-4 as a new biosorbent in trace metal determination. Bioresource Technol. 102(17):8035–8039. doi: 10.1016/j.biortech.2011.05.004.

 

Kou B, He Y, Wang Y, Qu C, Tang J, Wu Y, Tan W, Yuan Y, Yu T. 2023. The relationships between heavy metals and bacterial communities in a coal gangue site. Environ Pollut. 322:121136. doi: 10.1016/j.envpol.2023.121136.

 

Kumar V, Dwivedi SK. 2021. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Environ Sci Pollut R. 28(9):10375–10412. doi: 10.1007/s11356-020-11491-8.

 

Latif W, Ciniglia C, Iovinella M, Shafiq M, Papa S. 2023. Role of white rot fungi in industrial wastewater treatment: a review. Appl Sci-Basel. 13(14):8318. doi: 10.3390/app13148318.

 

Lee JC, Kurniawan K, Kim S, Nguyen VT, Pandey BD. 2023. Ionic liquids-assisted solvent extraction of precious metals from chloride solutions. Sep Purif Rev. 52(3):242–261. doi: 10.1080/15422119.2022.2091458.

 

Li N, Liu J, Yang R, Wu L. 2020. Distribution, characteristics of extracellular polymeric substances of Phanerochaete chrysosporium under lead ion stress and the influence on Pb removal. Sci Rep-UK. 10(1):17633. doi: 10.1038/s41598-020-74983-0.

 

Li X, Wang Y, Pan Y, Yu H, Zhang X, Shen Y, Jiao S, Wu K, La G, Yuan Y, et al. 2017. Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J Hazard Mater. 330:1–8. doi: 10.1016/j.jhazmat.2017.01.047.

 

Lin G, Zeng B, Li J, Wang Z, Wang S, Hu T, Zhang L. 2023. A systematic review of metal organic frameworks materials for heavy metal removal: synthesis, applications and mechanism. Chem Eng J. 460:141710. doi: 10.1016/j.cej.2023.141710.

 

Liu J, Liu F, Ding C, Ma F, Yu H, Shi Y, Zhang X. 2020. Response of Trametes hirsuta to hexavalent chromium promotes laccase-mediated decolorization of reactive black 5. Ecotoxicol Environ Safe. 205:111134. doi: 10.1016/j.ecoenv.2020.111134.

 

Liu Q, Bai J, Li R, Gu W, Peng S, Wang J, Tang Z, Yu C. 2022. Electrochemical oxidation of copper-clad laminate for manufacturing printed circuit boards via bioleaching by the fungus Phanerochaete chrysosporium. Bioelectrochemistry. 144:108002. doi: 10.1016/j.bioelechem.2021.108002.

 

Liu Q, Bai JF, Gu WH, Peng SJ, Wang LC, Wang JW, Li HX. 2020. Leaching of copper from waste printed circuit boards using Phanerochaete chrysosporium fungi. Hydrometallurgy. 196:105427. doi: 10.1016/j.hydromet.2020.105427.

 

Liu Y, Wang H, Cui Y, Chen N. 2023. Removal of copper ions from wastewater: a review. Int J Env Res Pub He. 20(5):3885. doi: 10.3390/ijerph20053885.

 

Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, Zhang H. 2020. Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environ Res. 182:109061. doi: 10.1016/j.envres.2019.109061.

 

Lo YC, Cheng CL, Han YL, Chen BY, Chang JS. 2014. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation. Bioresource Technol. 160:182–190. doi: 10.1016/j.biortech.2014.02.008.

 

Maity S, Sarkar D, Poddar K, Patil P, Sarkar A. 2023. Biofilm-mediated heavy metal removal from aqueous system by multi-metal-resistant bacterial strain Bacillus sp. gh-s29. Appl Biochem Biotech. 195(8):4832–4850. doi: 10.1007/s12010-022-04288-7.

 

Mashitah MD, Azila YY, Bhatia S. 2008. Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresource Technol. 99(11):4742–4748. doi: 10.1016/j.biortech.2007.09.062.

 
Monachan M, Dixit N, Maliyekkal SM, Singh S. 2022. Reverse osmosis (RO) and nanofiltration (NF) membranes for emerging contaminants (ECs) removal. In: P. Singh S, Agarwal AK, Gupta T, Maliyekkal SM (eds). New Trends in Emerging Environmental Contaminants. Energy, Environment, and Sustainability. Springer, Singapore. p. 407–425. doi: 10.1007/978-981-16-8367-1_17.
 

Mudhoo A, Garg VK, Wang S. 2012. Removal of heavy metals by biosorption. Environ Chem Lett. 10(2):109–117. doi: 10.1007/s10311-011-0342-2.

 

Nandi A, Yan LJ, Jana CK, Das N. 2019. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019:1–19. doi: 10.1155/2019/9613090.

 

Noormohamadi HR, Fat’hi MR, Ghaedi M, Ghezelbash GR. 2019. Potentiality of white-rot fungi in biosorption of nickel and cadmium: modeling optimization and kinetics study. Chemosphere. 216:124–130. doi: 10.1016/j.chemosphere.2018.10.113.

 

Novotný Č, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, Šašek V. 2000. Irpexlacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biot. 54(6):850–853. doi: 10.1007/s002530000432.

 

Ofori-Sarpong G, Tien M, Osseo-Asare K. 2010. Myco-hydrometallurgy: coal model for potential reduction of preg-robbing capacity of carbonaceous gold ores using the fungus, Phanerochaete chrysosporium. Hydrometallurgy. 102(1–4):66–72. doi: 10.1016/j.hydromet.2010.02.007.

 

Osório da Rosa L, da Rosa Lo L, Rodrigues LF, Fontana RC, Moser LI, Lanzer RM, Campos CS, Camassola M. 2022. Mycotechnology to remove of metals from tannery and galvanic effluents-fungal species from the Amazon and Atlantic Forest show high efficiency. J Environ Manage. 319:115677. doi: 10.1016/j.jenvman.2022.115677.

 

Paranjape P, Sadgir P. 2023. Heavy metal removal using plant origin biomass and agricultural waste-derived biomass from aqueous media: a review. Water Cons Sci Eng. 8(1):9. doi: 10.1007/s41101-023-00177-0.

 

Park S, Liang Y. 2019. Bioleaching of trace elements and rare earth elements from coal fly ash. Int J Coal Sci Technol. 6(1):74–83. doi: 10.1007/s40789-019-0238-5.

 

Peyravi M, Rezaei H. 2023. Metals removal by membrane filtration. Met In Water. 331–351. doi: 10.1016/B978-0-323-95919-3.00014-8.

 

Priyanka DS, Dwivedi SK. 2023. Fungi mediated detoxification of heavy metals: insights on mechanisms, influencing factors and recent developments. J Water Proc Eng. 53:103800. doi: 10.1016/j.jwpe.2023.103800.

 

Racić G, Vukelić I, Kordić B, Radić D, Lazović M, Nešić L, Panković D. 2023. Screening of native Trichoderma species for nickel and copper bioremediation potential determined by FTIR and XRF. Microorganisms. 11(3):815. doi: 10.3390/microorganisms11030815.

 

Rajan S, Nandimandalam JR. 2024. Environmental health risk assessment and source apportion of heavy metals using chemometrics and pollution indices in the upper Yamuna river basin, India. Chemosphere. 346:140570. doi: 10.1016/j.chemosphere.2023.140570.

 
Rastegari AA, Yadav AN, Gupta A. 2019. Prospects of renewable bioprocessing in future energy systems 518. Cham: Springer International Publishing. doi: 10.1007/978-3-030-14463-0.
 

Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, Alfayez A, Hossain SZ, Hossain MM. 2022. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv. 7:100168. doi: 10.1016/j.envadv.2022.100168.

 

Rudakiya DM, Iyer V, Shah D, Gupte A, Nath K. 2018. Biosorption potential of Phanerochaete chrysosporium for arsenic, cadmium, and chromium removal from aqueous solutions. Glob Chall. 2(12):1800064. doi: 10.1002/gch2.201800064.

 

Saini R, Kaur G, Brar SK. 2024. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology. 15(4):683–689. doi: 10.1080/21501203.2023.2278308.

 

Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. 2023. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des. 189:530–571. doi: 10.1016/j.cherd.2022.11.042.

 

Santos AF, Almeida PV, Alvarenga P, Gando-Ferreira LM, Quina MJ. 2021. From wastewater to fertilizer products: alternative paths to mitigate phosphorus demand in European countries. Chemosphere. 284:131258. doi: 10.1016/j.chemosphere.2021.131258.

 

Sarwar A, Nayyar BG, Irshad H, Anwar P, Olihk N, Ajmal M. 2023. Mycofiltration of heavy metals (Pb, Cd, Hg) from aqueous solution by living biomass of two mushrooms Pleurotus ostreatus and Agaricus bisporus as biosorbents. J Water Chem Technol. 45(6):599–606. doi: 10.3103/S1063455X23060097.

 

Schlebusch I, Pott RWM, Tadie M. 2023. The ion flotation of copper, nickel, and cobalt using the biosurfactant surfactin. Discov Chem Eng. 3(1):7. doi: 10.1007/s43938-023-00023-8.

 

Schlunk I, Krause K, Wirth S, Kothe E. 2015. A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environ Sci Pollut Res. 22:19384–19393. doi: 10.1007/s11356-014-4044-8.

 
Scopus. 2024. [accessed 2024 Mar 30]. https://www.scopus.com/results/results.uri?sort.
 

Sharma KR, Giri R, Sharma RK. 2020. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora. Lett Appl Microbiol. 71(6):637–644. doi: 10.1111/lam.13372.

 

Sharma KR, Giri R, Sharma RK. 2023. Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int J Environ Sci Technol. 20(1):943–950. doi: 10.1007/s13762-022-03914-5.

 

Sharma KR, Naruka A, Raja M, Sharma RK. 2022. White rot fungus mediated removal of mercury from wastewater. Water Environ Res. 94(7):e10769. doi: 10.1002/wer.10769.

 

Sharma P, Pandey AK, Kim SH, Singh SP, Chaturvedi P, Varjani S. 2021. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environ Technol Innov. 24:101826. doi: 10.1016/j.eti.2021.101826.

 

Sharma S, Malaviya P. 2016. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng. 91:419–425. doi: 10.1016/j.ecoleng.2016.03.005.

 

Sing C, Yu J. 1998. Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Res. 32(9):2746–2752. doi: 10.1016/S0043-1354(98)00024-4.

 

Singh AL, Singh VK. 2018. Assessment of groundwater quality of Ballia district, Uttar Pradesh, India, with reference to arsenic contamination using multivariate statistical analysis. Appl Water Sci. 8:1–18. doi: 10.1007/s13201-018-0737-3.

 

Singh VK, Singh R, Rajput VD, Singh VK. 2023. Halophytes for the sustainable remediation of heavy metal-contaminated sites: recent developments and future perspectives. Chemosphere. 313:137524. doi: 10.1016/j.chemosphere.2022.137524.

 

Sibel K, Dilek A, Sema E, Yesilada O. 2005. Biosorption of copper (II) by live and dried biomass of the white rot fungi Phanerochaete chrysosporium and funalia trogii. Eng Life Sci. 5(1):72–77. doi: 10.1002/elsc.200420057.

 

Skotta A, Jmiai A, Elhayaoui W, El-Asri A, Tamimi M, Assabbane A, El Issami S. 2023. Suspended matter and heavy metals (Cu and Zn) removal from water by coagulation/flocculation process using a new bio-flocculant: Lepidium sativum. J Taiwan Inst Chem Eng. 145:104792. doi: 10.1016/j.jtice.2023.104792.

 

Tamjidi S, Ameri A, Esmaeili H. 2023. A review of the application of fungi as an effective and attractive bio-adsorbent for biosorption of heavy metals from wastewater. Environ Monit Assess. 195(1):91. doi: 10.1007/s10661-022-10687-4.

 

Tan Z, Losantos D, Li Y, Sarrà M. 2023. Biotransformation of chloramphenicol by white-rot-fungi Trametes versicolor under cadmium stress. Bioresource Technol. 369:128508. doi: 10.1016/j.biortech.2022.128508.

 

Tarver S, Gray D, Loponov K, Das DB, Sun T, Sotenko M. 2019. Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. Int Biodeter Biodegr. 143:104724. doi: 10.1016/j.ibiod.2019.104724.

 

Topare NS, Wadgaonkar VS. 2023. A review on application of low-cost adsorbents for heavy metals removal from wastewater. Mater Today-Proc. 77:8–18. doi: 10.1016/j.matpr.2022.08.450.

 

Velarde L, Nabavi MS, Escalera E, Antti ML, Akhtar F. 2023. Adsorption of heavy metals on natural zeolites: a review. Chemosphere. 328:138508. 10.1016/j.chemosphere.2023.138508.

 

Wang Y, Qin J, Zhou S, Lin X, Ye L, Song C, Yan Y. 2015. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion. Water Res. 73:252–264. doi: 10.1016/j.watres.2015.01.034.

 

Waqas M, Ahmad H. 2024. Trapping of heavy metal ions from electroplating wastewater with phosphorylated double-shelled hollow spheres. Chemosphere. 350:140968. doi: 10.1016/j.chemosphere.2023.140968.

 

Wollenberg A, Kretzschmar J, Drobot B, Hübner R, Freitag L, Lehmann F, Günther A, Stumpf T, Raff J. 2021. Uranium (VI) bioassociation by different fungi–a comparative study into molecular processes. J Hazard Mater. 411:125068. doi: 10.1016/j.jhazmat.2021.125068.

 

Xiang H, Min X, Tang CJ, Sillanpää M, Zhao F. 2022. Recent advances in membrane filtration for heavy metal removal from wastewater: a mini review. J Water Proc Eng. 49:103023. doi: 10.1016/j.jwpe.2022.103023.

 

Xiong W, Yang M, Wang J, Wang H, Zhao P, Li Z, Liu B, Kong X, Duan H, Zhao Y. 2023. Removal, recycle and reutilization of multiple heavy metal ions from electroplating wastewater using super-stable mineralizer Ca-based layered double hydroxides. Chem Eng Sci. 279:118928. doi: 10.1016/j.ces.2023.118928.

 

Xu F, Chen P, Li H, Qiao S, Wang J, Wang Y, Wang X, Wu B, Liu H, Wang C, et al. 2021. Comparative transcriptome analysis reveals the differential response to cadmium stress of two pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. J Hazard Mater. 416:125814. doi: 10.1016/j.jhazmat.2021.125814.

 

Xu P, Liu L, Zeng G, Huang D, Lai C, Zhao M, Huang C, Li N, Wei Z, Wu H, et al. 2014. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 98(14):6409–6418. doi: 10.1007/s00253-014-5667-x.

 

Yang HY, Liu Q, Chen GB, Tong LL, Ali A. 2018. Bio-dissolution of pyrite by Phanerochaete chrysosporium. T Nonferr Metal Soc. 28(4):766–774. doi: 10.1016/S1003-6326(18)64709-0.

 

Yang S, Sun X, Shen Y, Chang C, Guo E, La G, Zhao Y, Li X. 2017. Tolerance and removal mechanisms of heavy metals by fungus Pleurotus ostreatus Haas. Water Air Soil Poll. 228(4):1–9. doi: 10.1007/s11270-016-3170-y.

 

Yetis Ü, Özcengiz G, Dilek FB, Ergen N, Erbay A, Dölek A. 1998. Heavy metal biosorption by white-rot fungi. Water Sci Technol. 38(4–5):323–330. doi: 10.2166/wst.1998.0656.

 

Yildirim N, Kardas E, Ince M. 2022. The use of Phanerochaete chrysosporium as an alternative bioremediation tool of heavy metal, chemical oxygen demand and phosphate from landfill leachate. Desalin Water Treat. 247:156–160. doi: 10.5004/dwt.2022.28042.

 

Yin K, Wang Q, Lv M, Chen L. 2019. Microorganism remediation strategies towards heavy metals. Chem Eng J. 360:1553–1563. doi: 10.1016/j.cej.2018.10.226.

 

Zhang Q, Zeng G, Chen G, Yan M, Chen A, Du J, Huang J, Yi B, Zhou Y, He X, et al. 2015. The effect of heavy metal-induced oxidative stress on the enzymes in white rot fungus Phanerochaete chrysosporium. Appl Biochem Biotech. 175(3):1281–1293. doi: 10.1007/s12010-014-1298-z.

 

Zhao WW, Zhu G, Daugulis AJ, Chen Q, Ma HY, Zheng P, Liang J, Ma XK. 2020. Removal and biomineralization of Pb2+ in water by fungus Phanerochaete chrysoporium. J Clean Prod. 260:120980. doi: 10.1016/j.jclepro.2020.120980.

 

Zulfadhly Z, Mashitah MD, Bhatia S. 2001. Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut. 112(3):463–470. doi: 10.1016/s0269-7491(00)00136-6.

Mycology
Pages 585-601
Cite this article:
Singh VK, Singh R. Role of white rot fungi in sustainable remediation of heavy metals from the contaminated environment. Mycology, 2024, 15(4): 585-601. https://doi.org/10.1080/21501203.2024.2389290
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return