AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Paper | Open Access

Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures

Ying Liu1,5Wei Xiong2,5Da Wei Li1Yao Lu1Xi Huang1Huan Liu2Li Sha Fan1Lan Jiang3Jean-François Silvain4Yong Feng Lu1
Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, United States of America
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
School of Mechanical Engineering, Beijing Institute of Technology,Beijing, 100081, People’s Republic of China
Institut de Chimie de la Matière Condensée de Bordeaux, Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex, France

5 These authors contributed equally to this work.

Show Author Information

Abstract

Three-dimensional (3D) electrically conductive micro/nanostructures are now a key component in a broad range of research and industry fields. In this work, a novel method is developed to realize metallic 3D micro/nanostructures with silver-thiol-acrylate composites via two-photon polymerization followed by femtosecond laser nanojoining. Complex 3D micro/nanoscale conductive structures have been successfully fabricated with ~200 nm resolution. The loading of silver nanowires (AgNWs) and joining of junctions successfully enhance the electrical conductivity of the composites from insulating to 92.9 S m−1 at room temperature. Moreover, for the first time, a reversible switching to a higher conductivity is observed, up to ~105 S m−1 at 523 K. The temperature-dependent conductivity of the composite is analyzed following the variable range hopping and thermal activation models. The nanomaterial assembly and joining method demonstrated in this study pave a way towards a wide range of device applications, including 3D electronics, sensors, memristors, micro/nanoelectromechanical systems, and biomedical devices, etc.

References

[1]
Skylar-Scott M A, Gunasekaran S and Lewis J A 2016 Proc. Natl Acad. Sci. 113 6137–42 Huang W, Yu X, Froeter P, Xu R, Ferreira P and Li X 2012 Nano Lett. 12 6283 Xu S, Yan Z, Jang K-I, Huang W, Fu H, Kim J, Wei Z, Flavin M, McCracken J and Wang R 2015 Science 347 154
[2]
Ge J, Yao H B, Wang X, Ye Y D, Wang J L, Wu Z Y, Liu J W, Fan F J, Gao H L and Zhang C L 2013 Angew. Chem. 125 1698 He W and Ye C 2015 J. Mater. Sci. Technol. 31 581
[3]

Ching N N, Wong H, Li W J, Leong P H and Wen Z 2002 Sensors Actuators A 97 685

[4]

Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S and Wegener M 2009 Science 325 1513

[5]

Soukoulis C M and Wegener M 2011 Nat. Photon. 5 523

[6]
Chen X, Sun K, Zhang E and Zhang N 2013 RSC Adv. 3 432 Qiao Z, Yang X, Yang S, Zhang L and Cao B 2016 Chem. Commun. 52 7998
[7]

André J C 2017 From Additive Manufacturing to 3D/4D Printing 2: Current Techniques, Improvements and Their Limitations (New York: Wiley) p 121

[8]

Spangenberg A, Hobeika N, Stehlin F, Pierre Malval J, Wieder F, Prabhakaran P, Baldeck P and Sopper O 2013 Updates in Advanced Lithography (Rijeka: InTech)

[9]

Farahani R D, Dubé M and Therriault D 2016 Adv. Mater. 28 5794

[10]
Radke A, Gissibl T, Klotzbücher T, Braun P V and Giessen H 2011 Adv. Mater. 23 3018 Huang T Y, Sakar M S, Mao A, Petruska A J, Qiu F, Chen X B, Kennedy S, Mooney D and Nelson B J 2015 Adv. Mater. 27 6644
[11]
Xu B B, Xia H, Niu L G, Zhang Y L, Sun K, Chen Q D, Xu Y, Lv Z Q, Li Z H and Misawa H 2010 Small 6 1762 Wang H, Liu S, Zhang Y-L, Wang J-N, Wang L, Xia H, Chen Q-D, Ding H and Sun H-B 2015 Sci. Technol. Adv. Mater. 16 024805 Blasco E, Müller J, Müller P, Trouillet V, Schön M, Scherer T, Barner‐Kowollik C and Wegener M 2016 Adv. Mater. 28 3592 Hu Q, Sun X-Z, Parmenter C D, Fay M W, Smith E F, Rance G A, He Y, Zhang F, Liu Y and Irvine D 2017 Sci. Rep. 7 17150
[12]
Bakhtina N A, Loeffelmann U, MacKinnon N and Korvink J G 2015 Adv. Funct. Mater. 25 1683 Xiong W, Liu Y, Jiang L J, Zhou Y S, Li D W, Jiang L, Silvain J F and Lu Y F 2016 Adv. Mater. 28 2002 Ushiba S, Shoji S, Masui K, Kono J and Kawata S 2014 Adv. Mater. 26 5653
[13]
Tabrizi S, Cao Y, Lin H and Jia B 2017 Sci. China Phys., Mech. Astron. 60 034201 Masui K, Shoji S, Asaba K, Rodgers T C, Jin F, Duan X-M and Kawata S 2011 Opt. Express 19 22786
[14]

Hu N, Fukunaga H, Atobe S, Liu Y and Li J 2011 Sensors 11 10691

[15]

Murphy C J and Jana N R 2002 Adv. Mater. 14 80

[16]

Peng P, Liu L, Gerlich A P, Hu A and Zhou Y N 2013 Part. Part. Syst. Charact. 30 420

[17]

Jiang X, Zeng Q and Yu A 2007 Langmuir 23 2218

[18]
Tan H, Zhan T and Fan W Y 2006 J. Phys. Chem. B 110 21690 Jiang L, Xiong W, Zhou Y, Liu Y, Huang X, Li D, Baldacchini T, Jiang L and Lu Y 2016 Opt. Express 24 13687
[19]

Sokołowski K, Szynkowska M I, Pawlaczyk A, Łukomska-Szymańska M and Sokołowski J 2014 Acta Biochim. Pol. 61 317–23

[20]

Brostow W, Gorman B P and Olea-Mejia O 2007 Mater. Lett. 61 1333

[21]

Jonušauskas L, Lau M, Gruber P, Gökce B, Barcikowski S, Malinauskas M and Ovsianikov A 2016 Nanotechnology 27 154001

[22]

Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Jiang L, Baldacchini T and Lu Y F 2012 Light: Sci. Appl. 1 e6

[23]

Rekštytė S, Jonavičius T, Gailevičius D, Malinauskas M, Mizeikis V, Gamaly E G and Juodkazis S 2016 Adv. Opt. Mater. 4 1209

[24]

Guney M and Fedder G 2016 J. Micromech. Microeng. 26 105011

[25]

Roldughin V and Vysotskii V 2000 Prog. Org. Coat. 39 81

[26]

Vafaei A, Hu A and Goldthorpe I A 2014 Nano-Micro Lett. 6 293

[27]

Lee J-Y, Connor S T, Cui Y and Peumans P 2008 Nano Lett. 8 689

[28]

Tokuno T, Nogi M, Karakawa M, Jiu J, Nge T T, Aso Y and Suganuma K 2011 Nano Res. 4 1215

[29]
Garnett E C, Cai W, Cha J J, Mahmood F, Connor S T, Christoforo M G, Cui Y, McGehee M D and Brongersma M L 2012 Nat. Mater. 11 241 Nian Q, Saei M, Xu Y, Sabyasachi G, Deng B, Chen Y P and Cheng G J 2015 ACS Nano 9 10018 Ha J, Lee B J, Hwang D J and Kim D 2016 RSC Adv. 6 86232
[30]

Langley D, Lagrange M, Giusti G, Jimenez C, Bréchet Y, Nguyen N D and Bellet D 2014 Nanoscale 6 13535

[31]

Liu L, Peng P, Hu A, Zou G, Duley W and Zhou Y N 2013 Appl. Phys. Lett. 102 073107

[32]
Jain P K, Qian W and El-Sayed M A 2006 J. Am. Chem. Soc. 128 2426 Huang H, Liu L, Peng P, Hu A, Duley W and Zhou Y 2012 J. Appl. Phys. 112 123519
[33]

Hu A, Peng P, Alarifi H, Zhang X, Guo J, Zhou Y and Duley W 2012 J. Laser Appl. 24 042001

[34]

Chen H, Gao Y, Zhang H, Liu L, Yu H, Tian H, Xie S and Li J 2004 J. Phys. Chem. B 108 12038

[35]

Khan M A M, Kumar S, Ahamed M, Alrokayan S A and AlSalhi M S 2011 Nanoscale Res. Lett. 6 434

[36]
Jeong D S, Thomas R, Katiyar R, Scott J, Kohlstedt H, Petraru A and Hwang C S 2012 Rep. Prog. Phys. 75 076502 Waser R and Aono M 2007 Nat. Mater. 6 833
[37]

Stallinga P 2011 Adv. Mater. 23 3356

[38]

Pender L and Fleming R 1975 J. Appl. Phys. 46 3426

[39]
Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039 Psarras G 2006 Composites A 37 1545
[40]
Joo J, Long S, Pouget J, Oh E, MacDiarmid A and Epstein A 1998 Phys. Rev. B 57 9567 Gangopadhyay R, De A and Das S 2000 J. Appl. Phys. 87 2363
[41]

Mahendia S, Tomar A and Kumar S 2010 J. Alloys Compd. 508 406

[42]

Sachenko A, Belyaev A, Boltovets N, Brunkov P, Jmerik V, Ivanov S, Kapitanchuk L, Konakova R, Klad'ko V and Romanets P 2015 Semiconductors 49 461

[43]

Liem H, Cabanillas-Gonzalez J, Etchegoin P and Bradley D 2004 J. Phys.: Condens. Matter 16 721

[44]

Wang C, Podgórski M and Bowman C N 2014 Mater. Horiz. 1 535

[45]

Ramos M, Fortunati E, Peltzer M, Dominici F, Jiménez A, del Carmen Garrigós M and Kenny J M 2014 Polym. Degrad. Stab. 108 158

[46]

Mutiso R M, Kikkawa J M and Winey K I 2013 Appl. Phys. Lett. 103 221_1

[47]

White S I, Vora P M, Kikkawa J M and Winey K I 2011 Adv. Funct. Mater. 21 233

International Journal of Extreme Manufacturing
Pages 025001-025001
Cite this article:
Liu Y, Xiong W, Li DW, et al. Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures. International Journal of Extreme Manufacturing, 2019, 1(2): 025001. https://doi.org/10.1088/2631-7990/ab17f7

258

Views

9

Downloads

39

Crossref

N/A

Web of Science

44

Scopus

0

CSCD

Altmetrics

Received: 24 March 2019
Revised: 07 April 2019
Accepted: 07 April 2019
Published: 07 May 2019
© 2019 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return