AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

A review of processing of Cu/C base plate composites for interfacial control and improved properties

Jean-François Silvain1,2 ( )Jean-Marc Heintz1Amélie Veillere1Loic Constantin1,2Yong Feng Lu2( )
Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States of America
Show Author Information

Abstract

The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials with a high thermal conductivity and thermal expansion coefficient compatible with chip materials while still ensuring the reliability of the power modules. Metal matrix composites, especially copper matrix composites, containing carbon fibers, carbon nanofibers, or diamond are considered very promising as the next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties, as compared to pure copper, combined with lower density. This paper presents powder metallurgy and hot uniaxial pressing fabrication techniques for copper/carbon composite materials which promise to be efficient heat-dissipation materials for power electronic modules. Thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermal and thermomechanical properties. Control of interfaces (through a novel reinforcement surface treatment, the addition of a carbide-forming element inside the copper powders, and processing methods), when selected carefully and processed properly, will form the right chemical/mechanical bonding between copper and carbon, enhancing all of the desired thermal and thermomechanical properties while minimizing the deleterious effects. This paper outlines a variety of methods and interfacial materials that achieve these goals.

References

[1]

Luedtke A 2004 Adv. Eng. Mater. 6 142

[2]

Zweben C 1998 JOM 50 47

[3]

Geffroy P-M and Silvain J-F 2007 Mater. Sci. Forum 534 1505

[4]

Mathias J-D, Geffroy P-M and Silvain J-F 2009 Appl. Therm. Eng. 29 2391

[5]
Korb G, Buchgrader W and Schubert T 1998 IEEE/CPMT Berlin Int. Electronics Manufacturing Technology Symp. (27–28 April 1998)
[6]

Zweben C 2006 Adv. Packag. 15 20

[7]
Vincent C 2008 PhD Thesis University of Bordeaux, France
[8]
Veillère A 2009 PhD Thesis University of Bordeaux, France
[9]

Silvain J-F, Denis-Lutard V, Geoffroy P-M and Heintz J-M 2010 Mater. Sci. Forum 631–2 149

[10]

Sun S J and Zhang M D 1991 J. Mater. Sci. 26 5762

[11]

Koráb J, Štefánik P, Kavecký Š, Šebo P and Korb G 2002 Composites A 33 577

[12]
Buchgraber W, Korb G, Schubert T and Kempf B 2006 Microstructural Investigation and Analysis (Weinheim: Wiley) pp 150–5
[13]

Silvain J-F, Veillère A and Lu Y 2014 J. Phys.: Conf. Ser. 525 012015

[14]

Yoshida K and Morigami H 2004 Microelectron. Reliab. 44 303

[15]

Yuan S Q, Shen F, Chua C K and Zhou K 2018 Prog. Polym. Sci. 91 141

[16]

Xia L, Jia B, Zeng J and Xu J 2009 Mater. Charact. 60 363

[17]

Kang Q, He X, Ren S, Zhang L, Wu M, Guo C, Cui W and Qu X 2013 Appl. Therm. Eng. 60 423

[18]

Rambo C R, Travitzky N and Greil P 2015 J. Compos. Mater. 49 1971

[19]

Qu X, Zhang L, Wu M and Ren S 2011 Prog. Nat. Sci.-Mater. 21 189

[20]

Chu K, Jia C, Guo H and Li W 2013 J. Compos. Mater. 47 2945

[21]

Schubert T, Trindade B, Weißgärber T and Kieback B 2008 Mater. Sci. Eng. A 475 39

[22]

Chu K, Jia C, Guo H and Li W 2013 Mater. Des. 45 36

[23]

Dong Z J, Li X K, Yuan G M, Cong Y, Li N, Jiang Z Y and Hu Z J 2009 Thin Solid Films 517 3248

[24]

Zhang Y, Zhang H L, Wu J H and Wang X T 2011 Scr. Mater. 65 1097

[25]
Pierson H O 1996 Handbook of Refractory Carbides and Nitrides : Properties, Characteristics, Processing, and Applications (Norwich, NJ: Noyes Publications)
[26]

Mortimer D A and Nicholas M 1973 J. Mater. Sci. 8 640

[27]

Praksan K, Palaniappan S and Seshan S 1997 Composites A 28 1019

[28]

Koráb J, Stefánik P, Kavecky S, Sebo P and Korb G 2002 Composites A 33 133

[29]
Bouvard D et al 2009 Powder Metallurgy (London: ISTE Publishing) p 384
[30]

Pietrzak K et al 2017 Arch. Metall. Mater. 2B 1307

[31]

Sundaram R M, Sekiguchi A, Sekiya M, Yamada T and Hata K 2018 R. Soc. Open Sci. 5 180814

[32]

Zhang W, Hu Y, Pan J, Zhang J, Cui J, Yan Q and Ren S 2019 Nanotechnology 30 185701

[33]

Zain-ul-abdein M, Ijaz H, Saleem W, Raza K, Mahfouz A and Mabrouki T 2017 Materials 10 739

[34]

Zhang C, Cai Z, Tang Y, Wang R, Peng C and Feng Y 2018 Diam. Relat. Mater. 86 98

[35]

Wang L, Li J, Che Z, Wang X, Zhang H, Wang J and Kim M 2018 J. Alloys Compd. 749 1098

[36]

Chang G, Sun F, Duan J, Che Z, Wang X, Wang J, Kim M J and Zhang H 2018 Acta Mater. 160 235

[37]

Cho H J, Yan D, Tam J and Erb U 2019 J. Alloys Compd. 791 1128

[38]

Bai G, Wang L, Zhang Y, Wang X, Wang J, Kim M J and Zhang H 2019 Mater. Charact. 152 265

[39]

Pietrzak K et al 2016 J. Mater. Eng. Perform. 25 3077

[40]

Nayan N, Shukla A K, Chandran P, Rao Bakshi S, Murty S V S N, Pant B and Venkitakrishnan P V 2017 Mater. Sci. Eng. A 682 229

[41]

Liu D, Tian H, Lin L and Shi W 2019 Diam. Relat. Mater. 91 138

[42]

Hanada K, Matsuzaki K and Sano T 2004 J. Mater. Process. Technol. 153 514

[43]

Abyzov A M, Kidalov S V and Shakhov F M 2012 App. Therm. Eng. 48 72

[44]

Wu J, Zhang H, Zhang Y, Li J and Wang X 2012 Mater. Des. 39 87

[45]

Weber L and Tavangar R 2007 Scr. Mater. 57 988

[46]

Schubert T, Ciupinski L, Morgiel J, Weissmuller H, Weissgarber T and Kieback B 2007 Proc. European Powder Metallurgy Conf. p 319

[47]

Schubert T, Ciupinski L, Zielinski W, Michalski A, Weissgarber T and Kieback B 2008 Scr. Mater. 58 263

[48]

Schubert T, Trindade B, Weissgarber T and Kieback B 2008 Mater. Sci. Eng. A 475 39

[49]

Xia Y, Song Y Q, Lin C G, Cui S and Fang Z Z 2009 Trans. Nonferrous Met. Soc. China 19 1161

[50]

Chu K, Liu Z F, Jia C C, Chen H, Liang X B, Gao W J, Tian W H and Guo H 2010 J. Alloys Compd. 490 453

[51]

Rosinski M, Ciupinski L, Grzonka J, Michalski A and Kurzydlowski K J 2012 Diam. Relat. Mater. 27 29

[52]

Chu K, Jia C C, Guo H and Li W S 2013 Mater. Des. 45 36

[53]

Zhang Y, Zhang H L, Wu J H and Wang X T 2011 Scr. Mater. 65 1097

[54]

Dong Y H, Zhang R Q, He X B, Ye Z G and Qu X H 2012 Mater. Sci. Eng. B 177 1524

[55]

Mizuuchi K et al 2010 Mater. Sci. Forum 638 2115

[56]
Guillemet T 2013 PhD Thesis University of Bordeaux (France), University Nebraska Lincoln (USA)
[57]
Massalski T B 1990 Binary Alloy Phase Diagrams 2nd edn (Materials Park, OH: ASM International)
[58]

Veillere A, Heintz J-M, Chandra N, Douin J, Lahaye M, Lalet G, Vincent C and Silvain J-F 2011 Mater. Res. Bull. 47 375

[59]

Couillaud S, Lu Y F and Silvain J F 2014 J. Mater. Sci. 49 5537

[60]

Hologado M J, Rives V and San Roman S 1992 J. Mater. Sci. Lett. 11 1708

[61]

Ghosh-Dastidar A, Mahuli S, Agnihotri R and Fan L-S 1995 Chem. Eng. Sci. 50 2029

[62]

Silvain J-F, Bihr J-C, Lambert J, Alnot M and Ehrhardt J J 1995 J. Vac. Sci. Technol. A 13 1893

[63]

Silvain J-F, Vincent C, Heintz J-M and Chandra N 2009 Comput. Sci. Technol. 69 2474

[64]

Kiflawick I and Schlesinger M 1983 J. Electrochem. Soc. 130 872

[65]

Silvain J-F and Fouassier O 2004 Surf. Interface Anal. 36 769

[66]

Natividad E, Heintz J-M and Silvain J-F 2004 Surf. Sci. 557 129

[67]

Silvain J-F, Richard P, Douin J, Lahaye M and Heintz J-M 2007 Mater. Sci. Forum 534 1445

[68]

Silvain J-F, Vincent C, Guillement T, Veillere A and Heintz J-M 2012 Mater. Res. Bull. 47 500

[69]

Jiang X, Herricks T and Xia Y 2002 Nano Lett. 2 1333–8

[70]

Guillement T, Heintz J-M, Mortaigne B, Lu Y and Silvain J-F 2018 Adv. Eng. Mater. 20 1700894

[71]

Azina C, Roger J, Joulain A, Mauchamp V, Mortaigne B, Lu Y and Silvain J-F 2018 J. Alloys Compd. 738 292

[72]

Hamilton R L and Crosser O K 1962 Ind. Eng. Chem. Fundam. 1 187

[73]

Arnaud D, Barbery J, Biais R, Fargette B and Naudot P 2008 Tech. Ing. M4640 1

[74]

Roosen A 1998 Ceram. Trans. 1 675

[75]

Geffroy P-M, Chartier T and Silvain J-F 2007 J. Eur. Ceram. Soc. 27 291

[76]

Guillement T, Geffroy P-M, Heintz J-M, Chandra N, Lu Y and Silvain J-F 2012 Compsites A 43 1746

[77]

Jiang X, Herricks T and Xia Y 2002 Nano Lett. 2 1333

[78]

Ekimov E A, Suetin N V, Popovitch A F and Ralchenko V G 2008 Diam. Relat. Mater. 17 838

International Journal of Extreme Manufacturing
Pages 012002-012002
Cite this article:
Silvain J-F, Heintz J-M, Veillere A, et al. A review of processing of Cu/C base plate composites for interfacial control and improved properties. International Journal of Extreme Manufacturing, 2020, 2(1): 012002. https://doi.org/10.1088/2631-7990/ab61c5

285

Views

9

Downloads

28

Crossref

N/A

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 14 October 2019
Revised: 04 December 2019
Accepted: 13 December 2019
Published: 29 January 2020
© 2020 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return