AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Scanning probe lithography on calixarene towards single-digit nanometer fabrication

Marcus KaestnerIvo W Rangelow
Institute of Micro- and Nanoelectronics, Nanoscale Systems Group, Faculty of Electrical Engineering and Information Technology, Ilmenau University of Technology, Gustav-Kirchhoff-Str. 1, 98693 Ilmenau, Germany
Show Author Information

Abstract

Cost effective patterning based on scanning probe nanolithography (SPL) has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications. One of the fundamental advantages of SPL is its capability for patterning and imaging employing the same probe. This is achieved with self-sensing and self-actuating cantilevers, also known as ‘active’ cantilevers. Here we used active cantilevers to demonstrate a novel path towards single digit nanoscale patterning by employing a low energy (<100 eV) electron exposure to thin films of molecular resist. By tuning the electron energies to the lithographically relevant chemical resist transformations, the interaction volumes can be highly localized. This method allows for greater control over spatially confined lithography and enhances sensitivity. We found that at low electron energies, the exposure in ambient conditions required approximately 10 electrons per single calixarene molecule to induce a crosslinking event. The sensitivity was 80-times greater than a classical electron beam exposure at 30 keV. By operating the electro-exposure process in ambient conditions a novel lithographic reaction scheme based on a direct ablation of resist material (positive tone) is presented.

References

[1]

Prati E and Shinada T 2013 Single-Atom Nanoelectronics (Singapore: Pan Stanford)

[2]

Müller M, Fiedler T, Gröger R, Koch T, Walheim S, Obermair C and Schimmel T 2004 Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching Surf. Interface Anal. 36 189–92

[3]

Liu M Z, Amro N A and Liu G Y 2008 Nanografting for surface physical chemistry Annu. Rev. Phys. Chem. 59 367–86

[4]

Mamin H J and Rugar D 1992 Thermomechanical writing with an atomic force microscope tip Appl. Phys. Lett. 61 1003–5

[5]

Fenwick O, Bozec L, Credgington D, Hammiche A, Lazzerini G M, Silberberg Y R and Cacialli F 2009 Thermochemical nanopatterning of organic semiconductors Nat. Nanotechnol. 4 664–8

[6]

Torrey J D, Vasko S E, Kapetanovic A, Zhu Z H, Scholl A and Rolandi M 2010 Scanning probe direct-write of germanium nanostructures Adv. Mater. 22 4639–42

[7]

Jegadesan S, Sindhu S and Valiyaveettil S 2006 Easy writing of nanopatterns on a polymer film using electrostatic nanolithography Small 2 481–4

[8]

Marrian C R K, Dobisz E A and Dagata J A 1992 Electron-beam lithography with the scanning tunneling microscope J. Vac. Sci. Technol. B 10 2877–81

[9]

Park J, Park J Y, Choi T and Seo Y 2011 Graphite patterning in a controlled gas environment Nanotechnology 22 335304

[10]

Rangelow I W, Ivanov T, Sarov Y, Schuh A, Frank A, Hartmann H, Zöllner J P, Olynick D L and Kalchenko V 2010 Nanoprobe maskless lithography Proc. SPIE 7637 76370V

[11]

Anderson E H, Olynick D L, Chao W L, Harteneck B and Veklerov E 2001 Influence of sub-100 nm scattering on high-energy electron beam lithography J. Vac. Sci. Technol. B 19 2504–7

[12]

Marrian C R K and Tennant D M 2003 Nanofabrication J. Vac. Sci. Technol. A 21 S207–15

[13]

Cord B, Yang J, Duan H G, Joy D C, Klingfus J and Berggren K K 2009 Limiting factors in sub-10 nm scanning-electron-beam lithography J. Vac. Sci. Technol. B 27 2616–21

[14]

Grigorescu A E and Hagen C W 2009 Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art Nanotechnology 20 292001

[15]

Walz M M, Vollnhals F, Rietzler F, Schirmer M, Steinruck H P and Marbach H 2012 Investigation of proximity effects in electron microscopy and lithography Appl. Phys. Lett. 100 053118

[16]

Manfrinato V R, Zhang L H, Su D, Duan H G, Hobbs R G, Stach E A and Berggren K K 2013 Resolution limits of electron-beam lithography toward the atomic scale Nano Lett. 13 1555–8

[17]

Manfrinato V R et al 2014 Determining the resolution limits of electron-beam lithography: direct measurement of the point-spread function Nano Lett. 14 4406–12

[18]

Manfrinato V R, Cheong L L, Duan H G, Winston D, Smith H I and Berggren K K 2011 Sub-5 keV electron-beam lithography in hydrogen silsesquioxane resist Microelectron. Eng. 88 3070–4

[19]
Greeneich J S 1980 Electron-beam processes Electron-BeamTechnology in Microelectronic Fabrication ed G R Brewer(New York: Academic) pp 59–140
[20]

Joy D C 1983 The spatial resolution limit of electron lithography Microelectron. Eng. 1 103–19

[21]

Schock K D, Prins F E, Strähle S and Kern D P 1997 Resist processes for low-energy electron-beam lithography J. Vac. Sci. Technol. B 15 2323–6

[22]

Wu B and Neureuther A R 2001 Energy deposition and transfer in electron-beam lithography J. Vac. Sci. Technol. B 19 2508–11

[23]

Joy D C 1995 A database on electron-solid interactions Scanning 17 270–5

[24]

De Vera P, Abril I and Garcia-Molina R 2011 Inelastic scattering of electron and light ion beams in organic polymers J. Appl. Phys. 109 094901

[25]

Tilke A, Vogel M, Simmel F, Kriele A, Blick R H, Lorenz H, Wharam D A and Kotthaus J P 1999 Low-energy electron-beam lithography using calixarene J. Vac. Sci. Technol. B 17 1594–7

[26]

Shirota Y 2005 Photo- and electroactive amorphous molecular materials - molecular design, syntheses, reactions, properties, and applications J. Mater. Chem. 15 75–93

[27]

Dai J Y, Chang S W, Hamad A, Yang D, Felix N and Ober C K 2006 Molecular glass resists for high-resolution patterning Chem. Mater. 18 3404–11

[28]

Fujita J, Ohnishi Y, Ochiai Y, Nomura E and Matsui S 1996 Nanometer-scale resolution of calixarene negative resist in electron beam lithography J. Vac. Sci. Technol. B 14 4272–6

[29]

Ishida M, J I F, Ogura T, Ochiai Y, Ohshima E and Momoda J 2003 Sub-10-nm-scale lithography using p-chloromethyl-methoxy-calix[4]arene resist Jpn. J. Appl. Phys. 42 3913–6

[30]

Solak H H, Ekinci Y, Kaser P and Park S 2007 Photon-beam lithography reaches 12.5 nm half-pitch resolution J. Vac. Sci. Technol. B 25 91–95

[31]

Ohnishi Y, Fujita J, Ochiai Y and S M 1997 Calixarenes- prospective materials for nanofabrication Microelectron. Eng. 35 117–20

[32]

Charlesby A 1960 Atomic Radiation and Polymers (Oxford: Pergamon)

[33]

Perkins F K, Dobisz E A and Marrian C R K 1993 Determination of acid diffusion rate in a chemically amplified resist with scanning tunneling microscope lithography J. Vac. Sci. Technol. B 11 2597–602

[34]

Wilder K, Quate C F, Adderton D, Bernstein R and Elings V 1998 Noncontact nanolithography using the atomic force microscope Appl. Phys. Lett. 73 2527–9

[35]

Wilder K, Quate C F, Singh B and Kyser D F 1998 Electron beam and scanning probe lithography: a comparison J. Vac. Sci. Technol. B 16 3864–73

[36]
Ruderisch A 2003 Synthese Von Calixaren- UndResorcinarenderivaten Und Deren Anwendung inChromatographie Und Nanotechnologie (Tübingen: Eberhard-Karls-Universit¨at Tübingen)
[37]
Sailer H 2007 Evaluierung Hochauflösender, Nicht Polymerer Elektronenstrahllacke Auf Calixaren–Basis (Tübingen: Universitaet Tübingen)
[38]

Prins F E, Pfeiffer J, Raible S, Kern D P and Schurig V 1998 Systematic studies of functionalized calixarenes as negative tone electron beam Microelectron. Eng. 41–2 359–62

[39]

De Oteyza D G, Perera P N, Schmidt M, Falch M, Dhuey S D, Harteneck B D, Schwartzberg A M, Schuck P J, Cabrini S and Olynick D L 2012 Sub-20 nm laser ablation for lithographic dry development Nanotechnology 23 185301

[40]

Perera P N, Schwartzberg A M, De Oteyza D G, Dhuey S D, Harteneck B D, Cabrini S and Olynick D L 2012 Selective laser ablation of radiation exposed methyl acetoxy calix(6)arene J. Vac. Sci. Technol. B 30 06FI02

[41]

Vorbringer-Doroshovets N et al 2013 0.1-nanometer resolution positioning stage for sub-10 nm scanning probe lithography Proc. SPIE 8680 868018

[42]

Kaestner M et al 2014 Scanning probes in nanostructure fabrication J. Vac. Sci. Technol. B 32 06F101

[43]

Heidenreich R D, Thompson L F, Feit E D and Melliar-Smith C M 1973 Fundamental aspects of electron beam lithography. Ⅰ. Depth-dose response of polymeric electron beam resists J. Appl. Phys. 44 4039–47

[44]

Thompson L F, Feit E D, Melliar-Smith C M and Heidenreich R D 1973 Fundamental aspects of electron beam lithography. Ⅱ. Low-voltage exposure of negative resists J. Appl. Phys. 44 4048–51

[45]

Vriens L 1966 Binary-encounter electron-atom collision theory Phys. Rev. 141 88–92

[46]

Vriens L 1966 Electron exchange in binary encounter collision theory Proc. Phys. Soc. 89 13–21

[47]

Kanik I, Trajmar S and Nickel J C 1992 Total cross section measurements for electron scattering on CH4 from 4 to 300 eV Chem. Phys. Lett. 193 281–6

[48]

Giordan J C, Moore J H and Tossell J A 1986 Anion states of organometallic molecules and their ligands Acc. Chem. Res. 19 281–6

[49]
Kim Y K et al Electron-impact cross sections for ionization and excitation database (http://www.nist.gov/pml/data/ionization/index.cfm)
[50]

Tanuma S, Powell C J and Penn D R 1990 Electron inelastic mean free paths in solids at low energies J. Electron. Spectrosc. Relat. Phenom. 52 285–91

[51]

Tanuma S, Powell C J and Penn D R 1992 Inelastic mean free paths of low-energy electrons in solids Acta Phys. Pol. A 81 169–86

[52]

Michaud M, Wen A and Sanche L 2003 Cross sections for low-energy (1-100 eV) electron elastic and inelastic scattering in amorphous ice Radiat. Res. 159 3–22

[53]

Mašín Z, Gorfinkiel J D, Jones D B, Bellm S M and Brunger M J 2012 Elastic and inelastic cross sections for low-energy electron collisions with pyrimidine J. Chem. Phys. 136 144310

[54]

Chang T H P, Kern D P and Muray L P 1992 Arrayed miniature electron beam columns for high throughput sub-100 Nm lithography J. Vac. Sci. Technol. B 10 2743–8

[55]

Silver C S, Spallas J P and Muray L P 2007 Multiple beam sub-80-nm lithography with miniature electron beam column arrays J. Vac. Sci. Technol. B 25 2258–65

[56]

Hordon L S, Huang Z R, Maluf N, Browning R and Pease R F W 1993 Limits of low-energy electron optics J. Vac. Sci. Technol. B 11 2299–303

[57]

Rangelow I W 2006 Scanning proximity probes for nanoscience and nanofabrication Microelectron. Eng. 83 1449–55

[58]

Rangelow I W, Ivanov T, Ahmad A, Kaestner M, Lenk C, Bozchalooi I S, Xia F Z, Youcef-Toumi K, Holz M and Reum A 2017 Review article: active scanning probes: a versatile toolkit for fast imaging and emerging nanofabrication J. Vac. Sci. Technol. B 35 06G101

[59]

Kaestner M et al 2015 Advanced electric-field scanning probe lithography on molecular resist using active cantilever J. Micro/Nanolith. MEMS MOEMS 14 031202

[60]

Fowler R H and Nordheim L 1928 Electron emission in intense electric fields Proc. R. Soc. A 119 173–81

[61]

Young R, Ward J and Scire F 1972 The topografiner: an instrument for measuring surface microtopography Rev. Sci. Instrum. 43 999–1011

[62]
Kragler K 1997 Rastersondenlithographie Mit Niederenergetischen Elektronen (Nürnberg: Friedrich-Alexander-Universität Erlangen-Nürnberg)
[63]

Olynick D L et al 2015 Selective laser ablation in resists and block copolymers for high resolution lithographic patterning J. Photopolym. Sci. Technol. 28 663–8

[64]

Angelov T et al 2016 Six-axis AFM in SEM with self-sensing and self-transduced cantilever for high speed analysis and nanolithography J. Vac. Sci. Technol. B 34 06KB01

[65]

Wilson H A 1923 The motion of electrons in gases Proc. R. Soc. A 103 53–57

[66]
Kapzow N A 1955 Elektrische Vorgänge in Gasen Und Im Vakuum (Berlin: VEB Deutscher Verlag der Wissenschaften)
[67]

Seah M P and Dench W A 1979 Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids Surf. Interface Anal. 1 2–11

[68]

Torok J et al 2013 Secondary electrons in EUV lithography J. Photopolym. Sci. Technol. 26 625–34

[69]
Denbeaux G et al 2013 Measurement of the role of secondaryelectrons in EUV resist exposures Proc. Int. Workshop onEUV Lithography (https://www.euvlitho.com/2013/P29.PDF)
[70]

Marrian C R K, Dobisz E A and Colton R J 1990 Lithographic studies of an e-beam resist in a vacuum scanning tunneling microscope J. Vac. Sci. Technol. A 8 3563–9

[71]

Marrian C R K and Colton R J 1990 Low-voltage electron beam lithography with a scanning tunneling microscope Appl. Phys. Lett. 56 755–7

[72]

Dobisz E A, Marrian C R K and Colton R J 1990 Lithography with a 50 KV e beam and a vacuum scanning tunneling microscope in a polydiacetylene negative resist J. Vac. Sci. Technol. B 8 1754–8

[73]
Zhang L B, Shi J X, Yuan J L, Chang M and Wang X H 2003 The overview of scanning probe lithography by electronbeam exposure of organic resists Proc. 2003 3rd IEEEConf. on Nanotechnology (San Francisco, CA: IEEE)pp 797–800
[74]

Lyuksyutov S F, Paramonov P B, Sharipov R A and Sigalov G 2004 Induced nanoscale deformations in polymers using atomic force microscopy Phys. Rev. B 70 174110

[75]

Ohto M, Yamaguchi S and Tanaka K 1995 Migration of metals on graphite in scanning tunneling microscopy Japan. J. Appl. Phys. 34 L694–7

[76]

Leuschner R, Günther E, Falk G, Hammerschmidt A, Kragler K, Rangelow I W and Zimmermann J 1996 Bilayer resist process for exposure with low-voltage electrons (STM-lithography) Microelectron. Eng 30 447–50

[77]

Lenk C et al 2018 Experimental study of field emission from ultrasharp silicon, diamond, GaN, and tungsten tips in close proximity to the counter electrode J. Vac. Sci. Technol. B 36 06JL03

[78]

Kondo S, Heike S, Lutwyche M and Wada Y 1995 Surface modification mechanism of materials with scanning tunneling microscope J. Appl. Phys. 78 155–60

[79]

Kaestner M and Rangelow I W 2011 Scanning proximal probe lithography for sub-10 nm resolution on calix[4]resorcinarene J. Vac. Sci. Technol. B 29 06FD02

[80]

Krivoshapkina Y, Kaestner M, Lenk C, Lenk S and Rangelow I W 2017 Low-energy electron exposure of ultrathin polymer films with scanning probe lithography Microelectron. Eng. 177 78–86

[81]

Lyuksyutov S F, Vaia R A, Paramonov P B, Juhl S, Waterhouse L, Ralich R M, Sigalov G and Sancaktar E 2003 Electrostatic nanolithography in polymers using atomic force microscopy Nat. Mater. 2 468–72

[82]

Rangelow I W et al 2018 Atomic force microscope integrated with a scanning electron microscope for correlative nanofabrication and microscopy J. Vac. Sci. Technol. B 36 06J102

[83]

Holz M, Reuter C, Reum A, Ahmad A, Hofmann M, Ivanov T, Mechold S and Rangelow I W 2019 Atomic force microscope integrated into a scanning electron microscope for fabrication and metrology at the nanometer scale Proc. SPIE 11148 111481F

[84]

Holz M, Reuter C, Ahmad A, Reum A, Hofmann M, Ivanov T and Rangelow I W 2019 Correlative microscopy and nanofabrication with AFM integrated with SEM Microsc. Today 27 24–30

[85]

Holz M, F I A, Reuter C, Ahmad A, Hofmann M, Reum A, Ivanov T and Rangelow I W 2019 Tip-based electron beam induced deposition using active cantilevers J. Vac. Sci. Technol. B 37 061812

[86]

Rangelow I W et al 2016 Pattern-generation and pattern-transfer for single-digit Nano devices J. Vac. Sci. Technol. B 34 06K202

[87]

Durrani Z, Jones M, Abualnaja F, Wang C, Kaestner M, Lenk S, Lenk C, Rangelow I W and Andreev A 2018 Room-temperature single dopant atom quantum dot transistors in silicon, formed by field-emission scanning probe lithography J. Appl. Phys. 124 144502

[88]

Kaestner M, Hofer M and I W R 2013 Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography J. Micro/Nanolith. MEMS MOEMS 12 031111

[89]

Kaestner M and I W R 2012 Multi-step scanning probe lithography (SPL) on calixarene with overlay alignment Proc. SPIE 8323 83231G

[90]
Tennant D M 1999 Limits of conventional lithographyNanotechnology ed G Timp (Berlin: Springer) pp 161–205
[91]

Lenk C et al 2019 High-throughput process chain for single electron transistor devices based on field-emission scanning probe lithography and Smart Nanoimprint lithography technology J. Vac. Sci. Technol. B 37 021603

[92]

Rangelow I W et al 2017 Single Nano-digit and closed-loop scanning probe lithography for manufacturing of electronic and optical nanodevices Proc. SPIE 10456 1045621

[93]

Rangelow I W et al 2018 Field-emission scanning probe lithography with self-actuating and self-sensing cantilevers for devices with single digit nanometer dimensions Proc. SPIE 10584 1058406

[94]

Holz M et al 2018 Field-emission scanning probe lithography tool for 150 mm Wafer J. Vac. Sci. Technol. B 36 06JL06

International Journal of Extreme Manufacturing
Pages 032005-032005
Cite this article:
Kaestner M, Rangelow IW. Scanning probe lithography on calixarene towards single-digit nanometer fabrication. International Journal of Extreme Manufacturing, 2020, 2(3): 032005. https://doi.org/10.1088/2631-7990/aba2d8

300

Views

8

Downloads

20

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 12 March 2020
Revised: 10 June 2020
Accepted: 02 July 2020
Published: 04 August 2020
© 2020 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return