AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing

Institute for Applied Materials - Applied Materials Physics, Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021, Germany
Show Author Information

Abstract

Traditional electrode manufacturing for lithium-ion batteries is well established, reliable, and has already reached high processing speeds and improvements in production costs. For modern electric vehicles, however, the need for batteries with high gravimetric and volumetric energy densities at cell level is increasing; and new production concepts are required for this purpose. During the last decade, laser processing of battery materials emerged as a promising processing tool for either improving manufacturing flexibility and product reliability or enhancing battery performances. Laser cutting and welding already reached a high level of maturity and it is obvious that in the near future they will become frequently implemented in battery production lines. This review focuses on laser texturing of electrode materials due to its high potential for significantly enhancing battery performances beyond state-of-the-art. Technical approaches and processing strategies for new electrode architectures and concepts will be presented and discussed with regard to energy and power density requirements. The boost of electrochemical performances due to laser texturing of energy storage materials is currently proven at the laboratory scale. However, promising developments in high-power, ultrafast laser technology may push laser structuring of batteries to the next technical readiness level soon. For demonstration in pilot lines adapted to future cell production, process upscaling regarding footprint area and processing speed are the main issues as well as the economic aspects with regards to CapEx amortization and the benefits resulting from the next generation battery. This review begins with an introduction of the three-dimensional battery and thick film concept, made possible by laser texturing. Laser processing of electrode components, namely current collectors, anodes, and cathodes will be presented. Different types of electrode architectures, such as holes, grids, and lines, were generated; their impact on battery performances are illustrated. The usage of high-energy materials, which are on the threshold of commercialization, is highlighted. Battery performance increase is triggered by controlling lithium-ion diffusion kinetics in liquid electrolyte filled porous electrodes. This review concludes with a discussion of various laser parameter tasks for process upscaling in a new type of extreme manufacturing.

References

[1]

Kwade A, Haselrieder W, Leithoff R, Modlinger A, Dietrich F and Droeder K 2018 Nat. Energy 3 290

[2]

Luetke M, Franke V, Techel A, Himmer T, Klotzbach U, Wetzig A and Beyer E 2011 Phys. Procedia 12 286

[3]

Helm J, Schulz A, Olowinsky A, Dohrn A and Poprawe R 2020 Weld. World 64 611

[4]

Schmidt P A, Schmitz P and Zaeh M F 2016 J. Laser Appl. 28 022423

[5]

Brand M J, Schmidt P A, Zaeh M F and Jossen A 2015 J. Energy Storage 1 7

[6]

De Bono P and Blackburn J 2015 Laser welding of copper and aluminium battery interconnections Industrial Laser Applications Symp. (Ilas 2015) (International Society for Optics and Photonics) vol 9657 p 96570M

[7]

Pfleging W 2018 Nanophotonics 7 549

[8]

Habedank J B, Endres J, Schmitz P, Zaeh M F and Huber H P 2018 J. Laser Appl. 30 032205

[9]

Tsuda T et al 2018 Electrochim. Acta 291 267

[10]

Park J, Hyeon S, Jeong S and Kim H-J 2019 J. Ind. Eng. Chem. 70 178

[11]

Smyrek P, Pröll J, Seifert H J and Pfleging W 2016 J. Electrochem. Soc. 163 A19

[12]
Vedder C, Hawelka D, Wolter M, Leiva D, Stollenwerk J and Wissenbach K 2016 Laser-based drying of battery electrode layers Int. Congress on Applications of Lasers & Electro-Optics (Laser Institute of America) vol 2016 p N501
[13]
Broadhead J and Kuo H C 2001 Electrochemical principles and reactions Handbook of Batteries 3rd edn, ed D Linden (New York: McGraw-Hill) pp 2.1–37
[14]
Wang W, Wei X, Choi D, Lu X, Yang G and Sun C 2015 Electrochemical cells for medium-and large-scale energy storage: fundamentals Advances in Batteries for Medium and Large-scale Energy Storage (Amsterdam: Elsevier) pp 3–28
[15]

Ebner M and Wood V 2015 J. Electrochem. Soc. 162 A3064

[16]

Pfleging W and Pröll J 2014 J. Mater. Chem. A 2 14918

[17]

Gao J, Shi S-Q and Li H 2015 Chin. Phys. B 25 018210

[18]

Wu Z, Xie Z, Yoshida A, Wang Z, Hao X, Abudula A and Guan G 2019 Renewable Sustainable Energy Rev. 109 367

[19]

Zhang Y, Marschilok A C, Takeuchi K J, Kercher A K, Takeuchi E S and Dudney N J 2019 Chem. Mater. 31 6135

[20]

Long J W, Dunn B, Rolison D R and White H S 2004 Chem. Rev. 104 4463

[21]

Ferrari S, Loveridge M, Beattie S D, Jahn M, Dashwood R J and Bhagat R 2015 J. Power Sources 286 25

[22]

Serra P and Piqué A 2019 Adv. Mater. Technol. 4 1800099

[23]

Zhang M, Mei H, Chang P and Cheng L 2020 J. Mater. Chem. A 8 10670

[24]

Pröll J, Kim H, Pique A, Seifert H J and Pfleging W 2014 J. Power Sources 255 116

[25]

Ma L, Nie M, Xia J and Dahn J 2016 J. Power Sources 327 145

[26]

Noh H J, Youn S, Yoon C S and Sun Y K 2013 J. Power Sources 233 121

[27]

Bak S-M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S-J, Kim K-B, Chung K Y, Yang X-Q and Nam K-W 2014 ACS Appl. Mater. Interfaces 6 22594

[28]

Obrovac M and Christensen L 2004 Electrochem. Solid-State Lett. 7 A93

[29]

Liang B, Liu Y and Xu Y 2014 J. Power Sources 267 469

[30]
Steen M, Lebedeva N, Di Persio F and Boon-Brett L 2017 JRC Science for Policy Report (available at: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC108043/kjna28837enn.pdf)
[31]

Roberts M et al 2011 J. Mater. Chem. 21 9876

[32]

Li J, Daniel C and Wood D 2011 J. Power Sources 196 2452

[33]

Kim H, Auyeung R C Y and Piqué A 2007 J. Power Sources 165 413

[34]

Wollersheim O and Pfleging W 2012 ATZ Elektron. 7 52

[35]

Wood D L, Li J L and Daniel C 2015 J. Power Sources 275 234

[36]

Jaiser S, Muller M, Baunach M, Bauer W, Scharfer P and Schabel W 2016 J. Power Sources 318 210

[37]

Muller M, Pfaffmann L, Jaiser S, Baunach M, Trouillet V, Scheiba F, Scharfer P, Schabel W and Bauer W 2017 J. Power Sources 340 1

[38]

Yue Y and Liang H 2018 Small Methods 2 1800056

[39]

Yamada M, Watanabe T, Gunji T, Wu J and Matsumoto F 2020 Electrochem 1 124

[40]

Miao Y, Hynan P, von Jouanne A and Yokochi A 2019 Energies 12 1074

[41]

Pagliaro M and Meneguzzo F 2019 Heliyon 5 e01866

[42]

Ramoni M O, Zhang Y, Zhang H-C and Ghebrab T 2017 Int. J. Adv. Manuf. Technol. 88 3067

[43]

Neuenschwander B, Jaeggi B, Schmid M and Hennig G 2014 Phys. Procedia 56 1047

[44]

Bolsinger M, Weller M, Ruck S, Kaya P, Riegel H and Knoblauch V 2020 Electrochim. Acta 330 135163

[45]

Zhu P, Seifert H J and Pfleging W 2019 Appl. Sci. 9 4067

[46]

Smyrek P, Bergfeldt T, Seifert H J and Pfleging W 2019 J. Mater. Chem. A 7 5656

[47]

Ni J and Li L 2020 Adv. Mater. 32 2000288

[48]

Pröll J, Kohler R, Torge M, Ulrich S, Ziebert C, Bruns M, Seifert H J and Pfleging W 2011 Appl. Surf. Sci. 257 9968

[49]

Tsuda T, Ando N, Utaka T, Kojima K, Nakamura S, Hayashi N, Soma N, Gunji T, Tanabe T and Ohsaka T 2019 Electrochim. Acta 298 827

[50]

Tsuda T, Ishihara Y, Watanabe T, Ando N, Gunji T, Soma N, Nakamura S, Hayashi N, Ohsaka T and Matsumoto F 2019 Electrochemistry 87 370

[51]

Pfleging W and Gotcu P 2019 Appl. Sci. 9 3588

[52]

Schweidler S, de Biasi L, Schiele A, Hartmann P, Brezesinski T and Janek J 2018 J. Phys. Chem. C 122 8829

[53]

Dühnen S, Betz J, Kolek M, Schmuch R, Winter M and Placke T 2020 Small Methods 4 2000039

[54]

Graetz J, Ahn C C, Yazami R and Fultz B 2003 Electrochem. Solid-State Lett. 6 A194

[55]

Kim J S, Pfleging W, Kohler R, Seifert H J, Kim T Y, Byun D, Jung H G, Choi W C and Lee J K 2015 J. Power Sources 279 13

[56]

Kraft L, Habedank J B, Frank A, Rheinfeld A and Jossen A 2020 J. Electrochem. Soc. 167 013506

[57]

Habedank J B, Kriegler J and Zaeh M F 2019 J. Electrochem. Soc. 166 A3940

[58]

Zheng Y, Seifert H J, Shi H, Zhang Y, Kübel C and Pfleging W 2019 Electrochim. Acta 317 502

[59]

Shi H, Liu X, Wu R, Zheng Y, Li Y, Cheng X, Pfleging W and Zhang Y 2019 Appl. Sci. 9 956

[60]

Park K-Y, Park J-W, Seong W M, Yoon K, Hwang T-H, Ko K-H, Han J-H, Jaedong Y and Kang K 2020 J. Power Sources 468 228369

[61]

Mangang M, Seifert H J and Pfleging W 2016 J. Power Sources 304 24

[62]

Zheng Y, Pfäffl L, Seifert H J and Pfleging W 2019 Appl. Sci. 9 4218

[63]

Lai W and Ciucci F 2011 Electrochim. Acta 56 4369

[64]

Mottay E, Liu X B, Zhang H B, Mazur E, Sanatinia R and Pfleging W 2016 MRS Bull. 41 984

[65]

Habedank J B, Schwab D, Kiesbauer B and Zaeh M F 2020 J. Laser Appl. 32 022053

[66]

Jansen T, Kandula M W, Blass D, Hartwig S, Haselrieder W and Dilger K 2020 Energy Technol. 8 1900519

[67]

Lutey A H, Fortunato A, Ascari A, Carmignato S and Leone C 2015 Opt. Laser Technol. 65 164

[68]

Zhang Y, Li J, Yang R, Liu T and Yan Y 2019 Opt. Lasers Eng. 118 14

[69]
Du K 2008 Concepts, features, and developments of slab laser oscillators and amplifiers Solid State Lasers XVII: Technology and Devices (International Society for Optics and Photonics) vol 6871 p 68710O
[70]
Li D and Du K 2011 Picosecond laser with 400W average power and 1mJ pulse energy Solid State Lasers XX: Technology and Devices (International Society for Optics and Photonics) vol 7912 p 79120N
[71]
Schille J, Schneider L, Streek A, Kloetzer S and Loeschner U 2016 High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner Laser-based Micro-and Nanoprocessing X (International Society for Optics and Photonics) vol 9736 p 97360R
[72]
[73]
Pfleging W, Kohler R, Scholz S, Ziebert C and Proell J 2011 Spring 2011 Materials Research Society Meeting - Symposium TT: Laser-Material Interactions at Micro/Nanoscales April 2011 San Francisco 1365 mrss 11–1365
[74]

Mangang M, Pröll J, Tarde C, Seifert H J and Pfleging W 2014 Proc. SPIE 8968 0M1

[75]

Pröll J, Kim H, Mangang M, Seifert H J, Piqué A and Pfleging W 2014 Proc. SPIE 8968 051

[76]

Mangang M, Gotcu-Freis P, Seifert H J and Pfleging W 2015 Proc. SPIE 9351 0K1

[77]

Pröll J, Schmitz B, Niemöeller A, Robertz B, Schäfer M, Torge M, Smyrek P, Seifert H J and Pfleging W 2015 Proc. SPIE 9351 1F1

[78]

Smyrek P, Kim H, Zheng Y, Seifert H J, Piqué A and Pfleging W 2016 Proc. SPIE 9738 973806

[79]

Smyrek P, Zheng Y, Seifert H J and Pfleging W 2016 Proc. SPIE 9736 1C1

[80]
Pfleging W, Kohler R and Pröll J 2014 Patent (issued) EP 2 697 850 B1, US9337462B2, WO 2012/139553 1
[81]
Sutter D et al 2020 Next generation of high-power industrial ultrafast lasers based on InnoSlab technology (Conference Presentation SPIE LASE (SPIE)
[82]
Sutter D H, Dietz T, Bauer D, Scelle R, Budnicki A, Killi A, Jenne M, Kleiner J, Flamm D and Sailer M 2019 High power and high energy ultrafast disk lasers for industrial applications CLEO: Science and Innovations (Optical Society of America) p JM3E. 2
[83]

Schütz V, Horn A and Stute U 2012 Proc. SPIE 8244 82440X1

[84]
Durand J-M, Duarte M J and Clerens P 2017 European energy storage technology development roadmap towards 2030 Int Energy Storage Policy Regul Work vol 108 (Available at: https://ease-storage.eu/wp-content/uploads/2015/10/EASEEERA-recommendations-Roadmap-LR.pdf)
[85]

Habedank J B, Günter F J, Billot N, Gilles R, Neuwirth T, Reinhart G and Zaeh M F 2019 Int. J. Adv. Manuf. Technol. 102 2769

International Journal of Extreme Manufacturing
Pages 012002-012002
Cite this article:
Pfleging W. Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing. International Journal of Extreme Manufacturing, 2021, 3(1): 012002. https://doi.org/10.1088/2631-7990/abca84

571

Views

12

Downloads

82

Crossref

N/A

Web of Science

79

Scopus

0

CSCD

Altmetrics

Received: 27 July 2020
Revised: 19 August 2020
Accepted: 15 November 2020
Published: 08 December 2020
© 2020 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return