AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Sub-10 nm fabrication: methods and applications

Yiqin Chen1Zhiwen Shu1Shi Zhang1Pei Zeng1Huikang Liang1Mengjie Zheng2Huigao Duan1 ( )
National Engineering Research Center for High Efficiency Grinding, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
Advanced Design & Manufacturing Group for Micro/Nanophotonics, Jihua Laboratory, Foshan 528000, People's Republic of China
Show Author Information

Abstract

Reliable fabrication of micro/nanostructures with sub-10 nm features is of great significance for advancing nanoscience and nanotechnology. While the capability of current complementary metal-oxide semiconductor (CMOS) chip manufacturing can produce structures on the sub-10 nm scale, many emerging applications, such as nano-optics, biosensing, and quantum devices, also require ultrasmall features down to single digital nanometers. In these emerging applications, CMOS-based manufacturing methods are currently not feasible or appropriate due to the considerations of usage cost, material compatibility, and exotic features. Therefore, several specific methods have been developed in the past decades for different applications. In this review, we attempt to give a systematic summary on sub-10 nm fabrication methods and their related applications. In the first and second parts, we give a brief introduction of the background of this research topic and explain why sub-10 nm fabrication is interesting from both scientific and technological perspectives. In the third part, we comprehensively summarize the fabrication methods and classify them into three main approaches, including lithographic, mechanics-enabled, and post-trimming processes. The fourth part discusses the applications of these processes in quantum devices, nano-optics, and high-performance sensing. Finally, a perspective is given to discuss the challenges and opportunities associated with this research topic.

References

[1]

Feynman R P 1959 Plenty of room at the bottom APS Annual Meeting

[2]

Seisyan R P 2011 Nanolithography in microelectronics: a review Tech. Phys. 56 1061–73

[3]
Martín-Palma R J, Agullo-Rueda F and Martínez-Duart J 2006 Nanotechnology for Microelectronics and Optoelectronics 1st (Amsterdam, The Netherlands: Elsevier) edn (available at: www.elsevier.com/books/nanotechnology-for-microelectronics-andoptoelectronics/martin-palma/978-0-08-044553-3)
[4]

Serrano E, Rus G and García-Martínez J 2009 Nanotechnology for sustainable energy Renew. Sustain. Energy Rev. 13 2373–84

[5]
Baldev R, van de Voorde M and Mahajan Y 2017 Nanotechnology for Energy Sustainability, 3 Volume Set (Weinheim, Germany: Wiley‐VCH) (available at: http://as.wiley.com/WileyCDA/WileyTitle/productCd-3527340149.html)
[6]

Wang Z L and Wu W Z 2012 Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems Angew. Chem., Int. Ed. 51 11700–21

[7]

Thrall J H 2004 Nanotechnology and medicine Radiology 230 315–8

[8]

Fine D et al 2013 Silicon micro- and nanofabrication for medicine Adv. Healthc. Mater. 2 632–66

[9]

Emerich D F and Thanos C G 2003 Nanotechnology and medicine Expert Opin. Biol. Ther. 3 655–63

[10]

Spinney P S, Howitt D G, Smith R L and Collins S D 2010 Nanopore formation by low-energy focused electron beam machining Nanotechnology 21 375301

[11]

Scognamiglio V 2013 Nanotechnology in glucose monitoring: advances and challenges in the last 10 years Biosens. Bioelectron. 47 12–25

[12]
Webster T J 2011 Nanotechnology Enabled in Situ Sensors for Monitoring Health (New York, United States: Springer-Verlag) (available at: https://link.springer.com/book/10.1007%2F978-1-4419-7291-0)
[13]

Chen Y Q, Duan X Y, Matuschek M, Zhou Y M, Neubrech F, Duan H G and Liu N 2017 Dynamic color displays using stepwise cavity resonators Nano Lett. 17 5555–60

[14]

Li J X, Chen Y Q, Hu Y Q, Duan H G and Liu N 2020 Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display ACS Nano 14 7892–8

[15]

Yang Z M, Chen Y Q, Zhou Y M, Wang Y S, Dai P, Zhu X P and Duan H G 2017 Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities Adv. Opt. Mater. 5 1700029

[16]

Chen J F, Laidig T L, Wampler K E and Caldwell R F 1997 Practical method for full-chip optical proximity correction Proc. SPIE, Optical Microlithography X vol 3051 p 790

[17]

Kumar K, Duan H G, Hegde R S, Koh S C W, Wei J N and Yang J K W 2012 Printing colour at the optical diffraction limit Nat. Nanotechnol. 7 557–61

[18]

Yang J K W, Chen Y J, Huang T L, Duan H G, Thiyagarajah N, Hui H K, Leong S H and Ng V 2011 Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in2 Nanotechnology 22 385301

[19]

Yang J K W, Duan H G, Law J B K, Low H Y and Cord B 2011 Miniaturization of grayscale images J. Vac. Sci. Technol. B 29 06F313

[20]

Moosburger J, Kamp M, Forchel A, Ferrini R, Leuenberger D, Houdré R, Anand S and Berggren J 2002 Nanofabrication of high quality photonic crystals for integrated optics circuits Nanotechnology 13 341–5

[21]

Siampour H, Kumar S and Bozhevolnyi S I 2017 Nanofabrication of plasmonic circuits containing single photon sources ACS Photonics 4 1879–84

[22]

Elshaari A W, Pernice W, Srinivasan K, Benson O and Zwiller V 2020 Hybrid integrated quantum photonic circuits Nat. Photon. 14 285–98

[23]

Hu Y Q et al 2020 Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface Nano Lett. 20 994–1002

[24]

Hu Y Q, Luo X H, Chen Y Q, Liu Q, Li X, Wang Y S, Liu N and Duan H G 2019 3D-integrated metasurfaces for full-colour holography Light Sci. Appl. 8 86

[25]

Hoch H C, Jelinski L W and Craighead H G 1997 Nanofabrication and biosystems: integrating materials science, engineering and biology J. Clin. Eng. 22 26

[26]
Kumar C S S R, Hormes J and Leuschner C 2005 Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications, and Impact (Weinheim, Germany: Wiley‐VCH) (available at: https://onlinelibrary.wiley.com/doi/book/10.1002/3527603476)
[27]

Quake S R and Scherer A 2000 From micro- to nanofabrication with soft materials Science 290 1536–40

[28]

Stanford M G, Rack P D and Jariwala D 2018 Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene Npj 2D Mater. Appl. 2 20

[29]

Jürgens D, Greiner A, Stützle R, Habenicht A, Te Sligte E and Oberthaler M K 2004 Quantum features in atomic nanofabrication using exactly resonant standing waves Phys. Rev. Lett. 93 237402

[30]

Herman A 2013 Tip-based nanofabrication as a rapid prototyping tool for quantum science and technology Rev. Theor. Sci. 1 3–33

[31]

Lin B J 2015 Making lithography work for the 7-nm node and beyond in overlay accuracy, resolution, defect, and cost Microelectron. Eng. 143 91–101

[32]

de Simone D and Vandenberghe G 2019 Printability study of EUV double patterning for CMOS metal layers Proc. SPIE, Extreme Ultraviolet(EUV) Lithography X vol 10957 p 109570Q

[33]

Brunner T A, Chen X M, Gabor A, Higgins C, Sun L and Mack C A 2017 Line-edge roughness performance targets for EUV lithography Proc. SPIE, Extreme Ultraviolet (EUV) Lithography VIII (San Jose, California, United States) vol 10143 p 101430E

[34]

Chen R, Li Y C, Cai J M, Cao K and Lee H B R 2020 Atomic level deposition to extend Moore's law and beyond Int. J. Extreme Manuf. 2 022002

[35]
Guo D et al 2016 FINFET technology featuring high mobility SiGe channel for 10 nm and beyond IEEE Symposium on VLSI Technology (Honolulu, HI, USA) (https://doi.org/10.1109/VLSIT.2016.7573360)
[36]

Chang C and Sakdinawat A 2014 Ultra-high aspect ratio high-resolution nanofabrication for hard x-ray diffractive optics Nat. Commun. 5 4243

[37]

Shapiro D A et al 2014 Chemical composition mapping with nanometre resolution by soft x-ray microscopy Nat. Photon. 8 765–9

[38]

Chao W L, Harteneck B D, Liddle J A, Anderson E H and Attwood D T 2005 Soft x-ray microscopy at a spatial resolution better than 15 nm Nature 435 1210–3

[39]

Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko V A, McNulty I, Winarski R, Holt M V and David C 2017 Interlaced zone plate optics for hard x-ray imaging in the 10 nm range Sci. Rep. 7 43624

[40]

Chao W L, Kim J, Rekawa S, Fischer P and Anderson E H 2009 Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy Opt. Express 17 17669–77

[41]

Deamer D, Akeson M and Branton D 2016 Three decades of nanopore sequencing Nat. Biotechnol. 34 518–24

[42]

Derrington I M, Butler T Z, Collins M D, Manrao E, Pavlenok M, Niederweis M and Gundlach J H 2010 Nanopore DNA sequencing with MspA Proc. Natl Acad. Sci. USA 107 16060–5

[43]

Maitra R D, Kim J and Dunbar W B 2012 Recent advances in nanopore sequencing Electrophoresis 33 3418–28

[44]

Branton D et al 2008 The potential and challenges of nanopore sequencing Nat. Biotechnol. 26 1146–53

[45]

Jain M, Olsen H E, Paten B and Akeson M 2016 The oxford nanopore MinION: delivery of nanopore sequencing to the genomics community Genome Biol. 17 239

[46]

Natarajan C M, Tanner M G and Hadfield R H 2012 Superconducting nanowire single-photon detectors: physics and applications Supercond. Sci. Technol. 25 063001

[47]

Marsili F, Najafi F, Dauler E, Bellei F, Hu X L, Csete M, Molnar R J and Berggren K K 2011 Single-photon detectors based on ultranarrow superconducting nanowires Nano Lett. 11 2048–53

[48]

Korzh B et al 2020 Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector Nat. Photon. 14 250–5

[49]

Dauler E A, Grein M E, Kerman A J, Marsili F, Miki S, Nam S W, Shaw M D, Terai H, Verma V B and Yamashita T 2014 Review of superconducting nanowire single-photon detector system design options and demonstrated performance Opt. Eng. 53 081907

[50]

Wang L, Chen S M, Zhang J Y, Zhou J, Yang C T, Chen Y Q and Duan H G 2018 High performance 33.7 GHz surface acoustic wave nanotransducers based on AlScN/diamond/Si layered structures Appl. Phys. Lett. 113 093503

[51]

Zheng J P et al 2020 30 GHz surface acoustic wave transducers with extremely high mass sensitivity Appl. Phys. Lett. 116 123502

[52]

Chen Z et al 2020 Ultrahigh-frequency surface acoustic wave sensors with giant mass-loading effects on electrodes ACS Sens. 5 1657–64

[53]

Auth C et al 2012 A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors Symp. on VLSI Technology (VLSIT) (Honolulu, HI, USA) (IEEE) pp 131–2

[54]
Bohr M 2014 14 nm process technology: opening new horizons (available at: www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/bohr-14nm-idf-2014-brief.pdf)
[55]

Auth C et al 2018 A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects Proc. 2017 IEEE Int. Electron. Devices Meeting pp 29.1.1–4

[56]

Li J L, Gershow M, Stein D, Brandin E and Golovchenko J A 2003 DNA molecules and configurations in a solid-state nanopore microscope Nat. Mater. 2 611–5

[57]

Khanal S, Spitale A, Bhattarai N, Bahena D, Velazquez-Salazar J J, Mejía-Rosales S, Mariscal M M and José-Yacaman M 2014 Synthesis, characterization, and growth simulations of Cu-Pt bimetallic nanoclusters Beilstein J. Nanotechnol. 5 1371–9

[58]

Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F and Bawendi M G 1997 (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites J. Phys. Chem. B 101 9463–75

[59]

Li Z Q, Chen Y Q, Zhu X P, Zheng M J, Dong F L, Chen P P, Xu L H, Chu W G and Duan H G 2016 Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching Nanotechnology 27 365302

[60]

Tan S F, Wu L, Yang J K W, Bai P, Bosman M and Nijhuis C A 2014 Quantum plasmon resonances controlled by molecular tunnel junctions Science 343 1496–9

[61]

Duan H G, Fernández-Domínguez A I, Bosman M, Maier S A and Yang J K W 2012 Nanoplasmonics: classical down to the nanometer scale Nano Lett. 12 1683–9

[62]

Xiang Q, Zhu X P, Chen Y Q and Duan H G 2016 Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap Nanotechnology 27 075201

[63]

Zuloaga J, Prodan E and Nordlander P 2009 Quantum description of the plasmon resonances of a nanoparticle dimer Nano Lett. 9 887–91

[64]

Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer Nano Lett. 12 1333–9

[65]

Zhu W Q and Crozier K B 2014 Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering Nat. Commun. 5 5228

[66]

Wang L, Fine D, Jung T, Basu D, von Seggern H and Dodabalapur A 2004 Pentacene field-effect transistors with sub-10-nm channel lengths Appl. Phys. Lett. 85 1772–4

[67]

Ni Z Y et al 2016 Performance upper limit of sub-10 nm monolayer MoS2 transistors Adv. Electron. Mater. 2 1600191

[68]

Nourbakhsh A et al 2016 MoS2 field-effect transistor with sub-10 nm channel length Nano Lett. 16 7798–806

[69]

Ward D R, Hüser F, Pauly F, Cuevas J C and Natelson D 2010 Optical rectification and field enhancement in a plasmonic nanogap Nat. Nanotechnol. 5 732–6

[70]

Wu L, Duan H G, Bai P, Bosman M, Yang J K W and Li E P 2013 Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles ACS Nano 7 707–16

[71]

Wiener A, Duan H G, Bosman M, Horsfield A P, Pendry J B, Yang J K W, Maier S A and Fernández-Domínguez A I 2013 Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms ACS Nano 7 6287–96

[72]

Zheng M J, Yang Y, Zhu D, Chen Y Q, Shu Z W, Berggren K K, Soljačić M and Duan H G 2021 Enhancing plasmonic spectral tunability with anomalous material dispersion Nano Lett. 21 91–98

[73]

Sargent E H 2005 Infrared quantum dots Adv. Mater. 17 515–22

[74]

Narasimha S et al 2017 A 7 nm CMOS technology platform for mobile and high performance compute application Proc. 2017 IEEE Int. Electron Devices Meeting pp 29.5.1–4

[75]

Yu Z Q, Wang C M, Du Y, Thevuthasan S and Lyubinetsky I 2008 Reproducible tip fabrication and cleaning for UHV STM Ultramicroscopy 108 873–7

[76]

Wang Y M, Lu L X, Srinivasan B M, Asbahi M, Zhang Y W and Yang J K W 2015 High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting Sci. Rep. 5 9654

[77]

Liang X G and Chou S Y 2008 Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis Nano Lett. 8 1472–6

[78]

Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 A single-atom transistor Nat. Nanotechnol. 7 242–6

[79]

Jeong S J, Xia G D, Kim B H, Shin D O, Kwon S H, Kang S W and Kim S O 2008 Universal block copolymer lithography for metals, semiconductors, ceramics, and polymers Adv. Mater. 20 1898–904

[80]

Chen X S et al 2013 Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves Nat. Commun. 4 2361

[81]

Fan J A, Wu C, Bao K, Bao J M, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Self-assembled plasmonic nanoparticle clusters Science 328 1135–8

[82]

Tian J H, Liu B, Li X L, Yang Z L, Ren B, Wu S T, Tao N J and Tian Z Q 2006 Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method J. Am. Chem. Soc. 128 14748–9

[83]

Hatzor A and Weiss P S 2001 Molecular rulers for scaling down nanostructures Science 291 1019–20

[84]

Wang Y D, Abb M, Boden S A, Aizpurua J, de Groot C H and Muskens O L 2013 Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling Nano Lett. 13 5647–53

[85]

Capodieci L 2006 From optical proximity correction to lithography-driven physical design (1996–2006): 10 years of resolution enhancement technology and the roadmap enablers for the next decade Proc. SPIE, Optical Microlithography XIX. 6154 615401

[86]

Garofalo J, Biddick C J, Kostelak R L and Vaidya S 1993 Mask assisted off-axis illumination technique for random logic J. Vac. Sci. Technol. B 11 2651

[87]

Levenson M D, Viswanathan N S and Simpson R A 1982 Improving resolution in photolithography with a phase-shifting mask IEEE Trans. Electron Devices 29 1828–36

[88]

Lin B J 2002 The k3 coefficient in non-paraxial (lambda)/NA scaling equations for resolution, depth of focus, and immersion lithography J. Micro-Nanolith. MEMS, MOEMS 1 7

[89]

Bencher C, Chen Y M, Dai H X, Montgomery W and Huli L 2008 22 nm half-pitch patterning by CVD spacer self alignment double patterning (SADP) Proc. SPIE, Optical Microlithography XXI vol 6924 p 69244E

[90]

Nakayama K, Kodama C, Kotani T, Nojima S, Mimotogi S and Miyamoto S 2012 Self-aligned double and quadruple patterning layout principle Proc. SPIE, Design for Manufacturability through Design-Process Integration VI vol 8327 p 83270V

[91]

Chen Y J, Cheng Q and Kang W L 2012 Technological merits, process complexity, and cost analysis of self-aligned multiple patterning Proc. SPIE, Optical Microlithography vol 8326 p 832620

[92]

van Schoot J, van Ingen Schenau K, Valentin C and Migura S 2015 EUV lithography scanner for sub-8 nm resolution Proc. SPIE, Extreme Ultraviolet (EUV) Lithography VI vol 9422 p 94221F

[93]

Kim S S et al 2017 Progress in EUV lithography toward manufacturing Proc. SPIE, Extreme Ultraviolet (EUV) Lithography VIII vol 10143 p 1014306

[94]

Meiling H 2009 EUV—breaking new ground Laser Technol. J. 6 37–39

[95]

Chen Y and Xiong S S 2020 Directed self-assembly of block copolymers for sub-10 nm fabrication Int. J. Extreme Manuf. 2 032006

[96]

Delgadillo P A R, Thode C J, Nealey P F, Gronheid R, Wu H P, Cao Y, Neisser M, Somervell M H and Nafus K 2012 Implementation of a chemo-epitaxy flow for directed self-assembly on 300-mm wafer processing equipment J. Micro-Nanolith. MEMS, MOEMS 11 031302

[97]

Lane A P, Yang X M, Maher M J, Blachut G, Asano Y, Someya Y, Mallavarapu A, Sirard S M, Ellison C J and Willson C G 2017 Directed self-assembly and pattern transfer of five nanometer block copolymer lamellae ACS Nano 11 7656–65

[98]

Liu C C et al 2018 Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond Nat. Electron. 1 562–9

[99]

Tseng Y C, Peng Q, Ocola L E, Elam J W and Darling S B 2011 Enhanced block copolymer lithography using sequential infiltration synthesis J. Phys. Chem. C 115 17725–9

[100]

Peng Q, Tseng Y C, Darling S B and Elam J W 2011 A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates ACS Nano 5 4600–6

[101]

Jeong S J, Kim J Y, Kim B H, Moon H S and Kim S O 2013 Directed self-assembly of block copolymers for next generation nanolithography Mater. Today 16 468–76

[102]

Maher M J, Rettner C T, Bates C M, Blachut G, Carlson M C, Durand W J, Ellison C J, Sanders D P, Cheng J Y and Willson C G 2015 Directed self-assembly of silicon-containing block copolymer thin films ACS Appl. Mater. Interfaces 7 3323–8

[103]

Finn A, Hensel R, Hagemann F, Kirchner R, Jahn A and Fischer W J 2012 Geometrical properties of multilayer nano-imprint-lithography molds for optical applications Microelectron. Eng. 98 284–7

[104]

Lan H B and Liu H Z 2013 UV-nanoimprint lithography: structure, materials and fabrication of flexible molds J. Nanosci. Nanotechnol. 13 3145–72

[105]

Austin M D, Ge H X, Wu W, Li M T, Yu Z N, Wasserman D, Lyon S A and Chou S Y 2004 Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography Appl. Phys. Lett. 84 5299–301

[106]

Hua F et al 2004 Polymer imprint lithography with molecular-scale resolution Nano Lett. 4 2467–71

[107]

Austin M D, Zhang W, Ge H X, Wasserman D, Lyon S A and Chou S Y 2005 6 nm half-pitch lines and 0.04 µm2 static random access memory patterns by nanoimprint lithography Nanotechnology 16 1058–61

[108]

Chou S Y and Krauss P R 1997 Imprint lithography with sub-10 nm feature size and high throughput Microelectron. Eng. 35 237–40

[109]

Wu W et al 2008 Sub-10 nm nanoimprint lithography by wafer bowing Nano Lett. 8 3865–9

[110]

Chou S Y, Krauss P R, Zhang W, Guo L J and Zhuang L 1997 Sub-10 nm imprint lithography and applications J. Vac. Sci. Technol. B 15 2897

[111]

Kuo C W, Shiu J Y, Chen P L and Somorjai G A 2003 Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution J. Phys. Chem. B 107 9950–3

[112]
Li W D, Wu W and Williams R S 2013 Single-digit nanometer nanoimprint templates SPIE Newsroom (https://doi.org/10.1117/2.1201307.004975)
[113]

Li W D, Wu W and Williams R S 2012 Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns J. Vac. Sci. Technol. B 30 06F304

[114]

Cord B, Yang J, Duan H G, Joy D C, Klingfus J and Berggren K K 2009 Limiting factors in sub-10 nm scanning-electron-beam lithography J. Vac. Sci. Technol. B 27 2616

[115]

Duan H G, Manfrinato V R, Yang J K W, Winston D, Cord B M and Berggren K K 2010 Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale J. Vac. Sci. Technol. B 28 11–7

[116]

Manfrinato V R, Zhang L H, Su D, Duan H G, Hobbs R G, Stach E A and Berggren K K 2013 Resolution limits of electron-beam lithography toward the atomic scale Nano Lett. 13 1555–8

[117]

Manfrinato V R, Camino F E, Stein A, Zhang L H, Lu M, Stach E A and Black C T 2019 Patterning Si at the 1 nm length scale with aberration-corrected electron-beam lithography: tuning of plasmonic properties by design Adv. Funct. Mater. 29 1903429

[118]

Yang J K W, Cord B, Duan H G, Berggren K K, Klingfus J, Nam S W, Kim K B and Rooks M J 2009 Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography J. Vac. Sci. Technol. B 27 2622

[119]

Duan H G, Winston D, Yang J K W, Cord B M, Manfrinato V R and Berggren K K 2010 Sub-10-nm half-pitch electron-beam lithography by using poly(methyl methacrylate) as a negative resist J. Vac. Sci. Technol. B 28 58–62

[120]

Liu Q, Zhao J, Guo J, Wu R, Liu W, Chen Y, Du G and Duan H 2021 Sub-5 nm lithography with single GeV heavy ions using inorganic resist Nano Lett. 21 2390–6

[121]

van Dorp W F, van Someren B, Hagen C W, Kruit P and Crozier P A 2005 Approaching the resolution limit of nanometer-scale electron beam-induced deposition Nano Lett. 5 1303–7

[122]

Shen Y T, Xu T, Tan X D, He L B, Yin K, Wan N and Sun L T 2018 In situ repair of 2D chalcogenides under electron beam irradiation Adv. Mater. 30 1705954

[123]

Fischbein M D and Drndić M 2007 Sub-10 nm device fabrication in a transmission electron microscope Nano Lett. 7 1329–37

[124]

Friedensen S E, Parkin W M, Mlack J T and Drndić M 2018 Transmission electron microscope nanosculpting of topological insulator bismuth selenide ACS Nano 12 6949–55

[125]

Das P M et al 2016 Controlled sculpture of black phosphorus nanoribbons ACS Nano 10 5687–95

[126]

Fischbein M D and Drndić M 2008 Electron beam nanosculpting of suspended graphene sheets Appl. Phys. Lett. 93 113107

[127]

Zandbergen H W, van Duuren R J H A, Alkemade P F A, Lientschnig G, Vasquez O, Dekker C and Tichelaar F D 2005 Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles Nano Lett. 5 549–53

[128]

Li P, Chen S Y, Dai H F, Yang Z M, Chen Z Q, Wang Y S, Chen Y Q, Peng W Q, Shan W B and Duan H G 2021 Recent advances in focused ion beam nanofabrication for nanostructures and devices: fundamentals and applications Nanoscale 13 1529–65

[129]

Winston D et al 2011 Neon ion beam lithography (NIBL) Nano Lett. 11 4343–7

[130]

Hill R, Notte J A and Scipioni L 2012 Scanning helium ion microscopy Adv. Imaging Electron Phys. 170 65–148

[131]

Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Extraordinary optical transmission through sub-wavelength hole arrays Nature 391 667–9

[132]

Seo M A et al 2009 Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit Nat. Photon. 3 152–6

[133]

Nagpal P, Lindquist N C, Oh S H and Norris D J 2009 Ultrasmooth patterned metals for plasmonics and metamaterials Science 325 594–7

[134]

Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L, Bao W, Ogletree D F, Schuck P J, Cabrini S and Weber-Bargioni A 2013 Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography Nano Lett. 13 2687–91

[135]

Klingner N, Hlawacek G, Mazarov P, Pilz W, Meyer F and Bischoff L 2020 Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources Beilstein J. Nanotechnol. 11 1742–9

[136]

Wu H, Stern L A, Xia D, Ferranti D, Thompson B, Klein K L, Gonzalez C M and Rack P D 2014 Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing J. Mater. Sci. Mater. Electron. 25 587–95

[137]

Stanford M G, Pudasaini P R, Cross N, Mahady K, Hoffman A N, Mandrus D G, Duscher G, Chisholm M F and Rack P D 2017 Tungsten diselenide patterning and nanoribbon formation by gas-assisted focused-helium-ion-beam-induced etching Small Methods 1 1600060

[138]

Crommie M F, Lutz C P and Eigler D M 1993 Confinement of electrons to quantum corrals on a metal surface Science 262 218–20

[139]

Ballard J B et al 2014 Pattern transfer of hydrogen depassivation lithography patterns into silicon with atomically traceable placement and size control J. Vac. Sci. Technol. B 32 041804

[140]

Cho Y K R, Rawlings C D, Wolf H, Spieser M, Bisig S, Reidt S, Sousa M, Khanal S R, Jacobs T D B and Knoll A W 2017 Sub-10 nanometer feature size in silicon using thermal scanning probe lithography ACS Nano 11 11890–7

[141]

Neuber C et al 2014 Molecular glass resists for scanning probe lithography Proc. SPIE, Alternative Lithographic Technologies VI vol 9049 p 90491V

[142]

Rangelow I W, Ivanov T, Sarov Y, Schuh A, Frank A, Hartmann H, Zöllner J P, Olynick D L and Kalchenko V 2010 Nanoprobe maskless lithography Proc. SPIE, Alternative Lithographic Technologies Ⅱ vol 7637 p 76370V

[143]

Kaestner M and Rangelow I W 2011 Scanning proximal probe lithography for sub-10 nm resolution on calixresorcinarene J. Vac. Sci. Technol. B 29 06FD02

[144]

Kaestner M and Rangelow I W 2020 Scanning probe lithography on calixarene towards single-digit nanometer fabrication Int. J. Extreme Manuf. 2 032005

[145]

Kaestner M, Hofer M and Rangelow I W 2013 Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography J. Micro-Nanolith. MEMS, MOEMS 12 031111

[146]

Weis C D et al 2008 Single atom doping for quantum device development in diamond and silicon . J. Vac. Sci. Technol. B 26 2596–600

[147]

Piner R D, Zhu J, Xu F, Hong S H and Mirkin C A 1999 "Dip-pen" nanolithography Science 283 661–3

[148]

Chen X D, Jeon Y M, Jang J W, Qin L D, Huo F W, Wei W and Mirkin C A 2008 On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics J. Am. Chem. Soc. 130 8166–8

[149]

Schmucker A L, Barin G, Brown K A, Rycenga M, Coskun A, Buyukcakir O, Osberg K D, Stoddart J F and Mirkin C A 2013 Electronic and optical vibrational spectroscopy of molecular transport junctions created by on-wire lithography Small 9 1900–3

[150]

Chen Y Q, Xiang Q, Li Z Q, Wang Y S, Meng Y H and Duan H G 2016 "Sketch and Peel" lithography for high-resolution multiscale patterning Nano Lett. 16 3253–9

[151]

Zhang S et al 2020 Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances Nanotechnology 31 325202

[152]

Zhang S, Li G C, Chen Y Q, Zhu X P, Liu S D, Lei D Y and Duan H G 2016 Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation ACS Nano 10 11105–14

[153]

Zheng M J et al 2019 Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates Microsystems. Nanoeng. 5 54

[154]

Chen Y Q, Zhang S, Shu Z W, Wang Z L, Liu P, Zhang C, Wang Y S, Liu Q, Duan H G and Liu Y J 2020 Adhesion-engineering-enabled "Sketch and Peel" lithography for aluminum plasmonic nanogaps Adv. Opt. Mater. 8 1901202

[155]

Chen Y Q, Shu Z W, Feng Z Y, Kong L A, Liu Y and Duan H G 2020 Reliable patterning, transfer printing and post-assembly of multiscale adhesion-free metallic structures for nanogap device applications Adv. Funct. Mater. 30 2002549

[156]

Xiang Q, Chen Y Q, Li Z Q, Bi K X, Zhang G H and Duan H G 2016 An anti-ultrasonic-stripping effect in confined micro/nanoscale cavities and its applications for efficient multiscale metallic patterning Nanoscale 8 19541–50

[157]

Chen Y Q, Bi K X, Wang Q J, Zheng M J, Liu Q, Han Y X, Yang J B, Chang S L, Zhang G H and Duan H G 2016 Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via "Sketch and Peel" strategy ACS Nano 10 11228–36

[158]

Chen Y Q, Hu Y Q, Zhao J Y, Deng Y S, Wang Z L, Cheng X, Lei D Y, Deng Y B and Duan H G 2020 Topology optimization-based inverse design of plasmonic nanodimer with maximum near-field enhancement Adv. Funct. Mater. 30 2000642

[159]

Zeng P et al 2021 Fabrication of single-nanometer metallic gaps via spontaneous nanoscale dewetting Nanotechnology 32 205302

[160]

Zeng P, Liu Q, Zheng M J, Chen Y Q, Liu G Y and Duan H G 2020 Ion-beam-etching based lift-off for reliable patterning of dense and inverse metallic nanostructures towards 10-nm scale Microelectron. Eng. 232 111406

[161]

Liu Q, Song Y, Zeng P, Zhang C, Chen Y Q, Wang H B, Luo Y and Duan H G 2020 High-fidelity fabrication of plasmonic nanoholes array via ion-beam planarization for extraordinary transmission applications Appl. Surf. Sci. 526 146690

[162]

Im H, Bantz K C, Lindquist N C, Haynes C L and Oh S H 2010 Vertically oriented sub-10-nm plasmonic nanogap arrays Nano Lett. 10 2231–6

[163]

Beesley D J, Semple J, Jagadamma L K, Amassian A, McLachlan M A, Anthopoulos T D and deMello J C 2014 Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography Nat. Commun. 5 3933

[164]

Qin L D, Park S, Huang L and Mirkin C A 2005 On-wire lithography Science 309 113–5

[165]

Theiss J, Pavaskar P, Echternach P M, Muller R E and Cronin S B 2010 Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates Nano Lett. 10 2749–54

[166]

de Poortere E P, Stormer H L, Huang L M, Wind S J, O'Brien S, Huang M and Hone J 2006 1-to 2-nm-wide nanogaps fabricated with single-walled carbon nanotube shadow masks J. Vac. Sci. Technol. B 24 3213

[167]

Jung W B, Jang S, Cho S Y, Jeon H J and Jung H T 2020 Recent progress in simple and cost-effective top-down lithography for ≈10 nm scale nanopatterns: from edge lithography to secondary sputtering lithography Adv. Mater. 32 1907101

[168]

Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C and Orlianges J C 2012 High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes Appl. Phys. Lett. 100 213507

[169]

Yang A K, Huntington M D, Cardinal M F, Masango S S, van Duyne R P and Odom T W 2014 Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing ACS Nano 8 7639–47

[170]

Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S and Haensch W 2012 Sub-10 nm carbon nanotube transistor Nano Lett. 12 758–62

[171]

Zhu W Q, Banaee M G, Wang D X, Chu Y Z and Crozier K B 2011 Lithographically fabricated optical antennas with gaps well below 10 nm Small 7 1761–6

[172]

Duan H G, Hu H L, Hui H K, Shen Z X and Yang J K W 2013 Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas Nanotechnology 24 185301

[173]

Jeon H J, Kim K H, Baek Y K, Kim D W and Jung H T 2010 New top-down approach for fabricating high-aspect-ratio complex nanostructures with 10 nm scale features Nano Lett. 10 3604–10

[174]

Jeon H J, Jeong H S, Kim Y H, Jung W B, Kim J Y and Jung H T 2014 Fabrication of 10 nm-scale complex 3D nanopatterns with multiple shapes and components by secondary sputtering phenomenon ACS Nano 8 1204–12

[175]

Jeon H J, Kim J Y, Jung W B, Jeong H S, Kim Y H, Shin D O, Jeong S J, Shin J, Kim S O and Jung H T 2016 Complex high-aspect-ratio metal nanostructures by secondary sputtering combined with block copolymer self-assembly Adv. Mater. 28 8439–45

[176]

Abramova V, Slesarev A S and Tour J M 2013 Meniscus-mask lithography for narrow graphene nanoribbons ACS Nano 7 6894–8

[177]

Asbahi M, Mehraeen S, Wang F K, Yakovlev N, Chong K S L, Cao J S, Tan M C and Yang J K W 2015 Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution Nano Lett. 15 6066–70

[178]

Rothemund P W K 2006 Folding DNA to create nanoscale shapes and patterns Nature 440 297–302

[179]

Castro C E, Kilchherr F, Kim D N, Shiao E L, Wauer T, Wortmann P, Bathe M and Dietz H 2011 A primer to scaffolded DNA origami Nat. Methods 8 221–9

[180]

Bald I and Keller A 2014 Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy Molecules 19 13803–23

[181]

Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Conductance of a molecular junction Science 278 252–4

[182]

Dubois V, Niklaus F and Stemme G 2016 Crack-defined electronic nanogaps Adv. Mater. 28 2178–82

[183]

Xiang D, Jeong H, Lee T and Mayer D 2013 Mechanically controllable break junctions for molecular electronics Adv. Mater. 25 4845–67

[184]

Johnston D E, Strachan D R and Johnson A T C 2007 Parallel fabrication of nanogap electrodes Nano Lett. 7 2774–7

[185]

Ward D R, Grady N K, Levin C S, Halas N J, Wu Y P, Nordlander P and Natelson D 2007 Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy Nano Lett. 7 1396–400

[186]

Strachan D R, Smith D E, Fischbein M D, Johnston D E, Guiton B S, Drndić M, Bonnell D A and Johnson A T 2006 Clean electromigrated nanogaps imaged by transmission electron microscopy Nano Lett. 6 441–4

[187]

Ward D R, Corley D A, Tour J M and Natelson D 2011 Vibrational and electronic heating in nanoscale junctions Nat. Nanotechnol. 6 33–38

[188]

Cui A J, Liu Z, Dong H L, Wang Y J, Zhen Y G, Li W X, Li J J, Gu C Z and Hu W P 2015 Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1–2 nm by focused ion beam milling Adv. Mater. 27 3002–6

[189]

Zhu J, Xue M Q, Zhao D, Zhang M N, Duan L, Qiu Y and Cao T B 2011 Facile fabrication of metallic nanostructures by tunable cracking and transfer printing Angew. Chem., Int. Ed. 50 12478–82

[190]

Zhao Q, Wang W J, Shao J Y, Li X M, Tian H M, Liu L, Mei X S, Ding Y C and Lu B H 2016 Nanoscale electrodes for flexible electronics by swelling controlled cracking Adv. Mater. 28 6337–44

[191]

Wang Y S, Liu P, Shi H M, Li X, Chen Y Q, Zhang S, Zhang C and Duan H G 2020 Deterministic thermal micro-reflow of lithographic structures for Sub-10-nm metallic gaps fabrication Microelectron. Eng. 225 111275

[192]

Liu W J, Zou Q S, Zheng C Q and Jin C J 2019 Metal-assisted transfer strategy for construction of 2D and 3D nanostructures on an elastic substrate ACS Nano 13 440–8

[193]

Hu Y W, Xuan Y, Wang X L, Deng B W, Saei M, Jin S Y, Irudayaraj J and Cheng G J 2016 Superplastic formation of metal nanostructure arrays with ultrafine gaps Adv. Mater. 28 9152–62

[194]

Duan H G and Berggren K K 2010 Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion Nano Lett. 10 3710–6

[195]

Duan H G, Yang J K W and Berggren K K 2011 Controlled collapse of high-aspect-ratio nanostructures Small 7 2661–8

[196]

Hu M, Ou F S, Wu W, Naumov I, Li X M, Bratkovsky A M, Williams R S and Li Z Y 2010 Gold nanofingers for molecule trapping and detection J. Am. Chem. Soc. 132 12820–2

[197]

Savage K J, Hawkeye M M, Esteban R, Borisov A G, Aizpurua J and Baumberg J J 2012 Revealing the quantum regime in tunnelling plasmonics Nature 491 574–7

[198]

Morpurgo A F, Marcus C M and Robinson D B 1999 Controlled fabrication of metallic electrodes with atomic separation Appl. Phys. Lett. 74 2084–6

[199]

Lam B, Zhou W D, Kelley S O and Sargent E H 2015 Programmable definition of nanogap electronic devices using self-inhibited reagent depletion Nat. Commun. 6 6940

[200]

Xiang Q, Chen Y Q, Wang Y S, Zheng M J, Li Z Q, Peng W, Zhou Y M, Feng B, Chen Y F and Duan H G 2016 Low-voltage-exposure-enabled hydrogen silsesquioxane bilayer-like process for three-dimensional nanofabrication Nanotechnology 27 254002

[201]

Xiang Q, Li Z Q, Zheng M J, Liu Q, Chen Y Q, Yang L, Jiang T and Duan H G 2018 Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers Nanotechnology 29 105301

[202]

Li J L, Stein D, McMullan C, Branton D, Aziz M J and Golovchenko J A 2001 Ion-beam sculpting at nanometre length scales Nature 412 166–9

[203]
Yeasmin S, Xing X X, Duan L and Yobas L 2017 Nanofluidic diode biosensor featuring a single nanoslit for label-free detection of cardiac troponin biomarker Proc. TRANSDUCERS 2017–19th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Kaohsiung, Taiwan) pp 854–7
[204]

Spende A et al 2015 TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements Nanotechnology 26 335301

[205]

Walavalkar S S, Hofmann C E, Homyk A P, Henry M D, Atwater H A and Scherer A 2010 Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars Nano Lett. 10 4423–8

[206]

Liao W S, Cheunkar S, Cao H H, Bednar H R, Weiss P S and Andrews A M 2012 Subtractive patterning via chemical lift-off lithography Science 337 1517–21

[207]

Gierak J et al 2007 Sub-5 nm FIB direct patterning of nanodevices Microelectron. Eng. 84 779–83

[208]

Duan H G, Hu H L, Kumar K, Shen Z X and Yang J K W 2011 Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps ACS Nano 5 7593–600

[209]

Tong L M, Xu H X and Käll M 2014 Nanogaps for SERS applications MRS Bull. 39 163–8

[210]

Wang X J, Zhu X P, Shi H M, Chen Y Q, Chen Z Q, Zeng Y X, Tang Z X and Duan H G 2018 Three-dimensional-stacked gold nanoparticles with sub-5 nm gaps on vertically aligned TiO2 nanosheets for surface-enhanced Raman scattering detection down to 10 fM scale ACS Appl. Mater. Interfaces 10 35607–14

[211]

Wang X J, Zhu X P, Chen Y Q, Zheng M J, Xiang Q, Tang Z X, Zhang G H and Duan H G 2017 Sensitive surface-enhanced Raman scattering detection using on-demand postassembled particle-on-film structure ACS Appl. Mater. Interfaces 9 31102–10

[212]

Dong L L, Yang X, Zhang C, Cerjan B, Zhou L N, Tseng M L, Zhang Y, Alabastri A, Nordlander P and Halas N J 2017 Nanogapped au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy Nano Lett. 17 5768–74

[213]

Lesser-Rojas L, Ebbinghaus P, Vasan G, Chu M L, Erbe A and Chou C F 2014 Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements Nano Lett. 14 2242–50

[214]

Chen X S, Ciracì C, Smith D R and Oh S H 2015 Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities Nano Lett. 15 107–13

[215]

Huck C, Neubrech F, Vogt J, Toma A, Gerbert D, Katzmann J, Härtling T and Pucci A 2014 Surface-enhanced infrared spectroscopy using nanometer-sized gaps ACS Nano 8 4908–14

[216]

Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Müllen K and Moerner W E 2009 Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna Nat. Photon. 3 654–7

[217]

Sivis M, Duwe M, Abel B and Ropers C 2013 Extreme-ultraviolet light generation in plasmonic nanostructures Nat. Phys. 9 304–9

[218]

Kim S, Jin J, Kim Y J, Park I Y, Kim Y and Kim S W 2008 High-harmonic generation by resonant plasmon field enhancement Nature 453 757–60

[219]

Regmi R et al 2016 All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules Nano Lett. 16 5143–51

[220]

Metzger B, Hentschel M, Schumacher T, Lippitz M, Ye X C, Murray C B, Knabe B, Buse K and Giessen H 2014 Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas Nano Lett. 14 2867–72

[221]

Roy S, Chen X J, Li M H, Peng Y F, Anariba F and Gao Z Q 2009 Mass-produced nanogap sensor arrays for ultrasensitive detection of DNA J. Am. Chem. Soc. 131 12211–7

[222]

Desai S B et al 2016 MoS2 transistors with 1-nanometer gate lengths Science 354 99–102

[223]

Vogelsang J, Robin J, Nagy B J, Dombi P, Rosenkranz D, Schiek M, Groß P and Lienau C 2015 Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons Nano Lett. 15 4685–91

[224]

Ropers C, Solli D R, Schulz C P, Lienau C and Elsaesser T 2007 Localized multiphoton emission of femtosecond electron pulses from metal nanotips Phys. Rev. Lett. 98 043907

[225]

Li T, Hu W P and Zhu D B 2010 Nanogap electrodes Adv. Mater. 22 286–300

[226]

Chen X, Guo Z, Yang G M, Li J, Li M Q, Liu J H and Huang X J 2010 Electrical nanogap devices for biosensing Mater. Today 13 28–41

[227]

Feng G D et al 2020 A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation Adv. Mater. 32 1906171

[228]

Qin L et al 2020 5 nm nanogap electrodes and arrays by super-resolution laser lithography Nano Lett. 20 4916–23

[229]

Kuo H S, Hwang I S, Fu T Y, Lu Y H, Lin C Y and Tsong T T 2008 Gas field ion source from an Ir/W 〈111〉 single-atom tip Appl. Phys. Lett. 92 063106

[230]

Ward B W, Notte J A and Economou N P 2006 Helium ion microscope: a new tool for nanoscale microscopy and metrology J. Vac. Sci. Technol. B 24 2871

[231]

Kwok H, Briggs K and Tabard-Cossa V 2014 Nanopore fabrication by controlled dielectric breakdown PLoS One 9 e92880

[232]

Heng J B, Aksimentiev A, Ho C, Dimitrov V, Sorsch T W, Miner J F, Mansfield W M, Schulten K and Timp G 2005 Beyond the gene chip Bell Labs Tech. J. 10 5–22

[233]

Thundat T 2010 DNA sequencing: read with quantum mechanics Nat. Nanotechnol. 5 246–67

[234]

Nicoli F, Verschueren D, Klein M, Dekker C and Jonsson M P 2014 DNA translocations through solid-state plasmonic nanopores Nano Lett. 14 6917–25

[235]

Assad O N, Gilboa T, Spitzberg J, Juhasz M, Weinhold E and Meller A 2017 Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection Adv. Mater. 29 1605442

[236]

Binning G, Rohrer H, Gerber C and Weibel E 1982 Surface studies by scanning tunneling microscopy Phys. Rev. Lett. 49 57–61

[237]

Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Kondo effect in a single-electron transistor Nature 391 156–9

[238]

Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer Science 280 1238–42

[239]

Baghdadi R, Arpaia R, Charpentier S, Golubev D, Bauch T and Lombardi F 2015 Fabricating nanogaps in YBa2Cu3O7−δ for hybrid proximity-based josephson junctions Phys. Rev. Appl. 4 014022

[240]

Putnam W P, Hobbs R G, Keathley P D, Berggren K K and Kärtner F X 2017 Optical-field-controlled photoemission from plasmonic nanoparticles Nat. Phys. 13 335–9

[241]

Lim D K, Jeon K S, Kim H M, Nam J M and Suh Y D 2010 Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection Nat. Mater. 9 60–67

[242]

Zhang Z L, Yang P F, Xu H X and Zheng H R 2013 Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers J. Appl. Phys. 113 033102

[243]

Binnig G and Rohrer H 1986 Scanning tunneling microscopy IBM J. Res. Dev. 30 355–69

[244]

Hausmann B J M et al 2013 Coupling of NV centers to photonic crystal nanobeams in diamond Nano Lett. 13 5791–6

[245]

Chen P C, Liu X L, Hedrick J L, Xie Z, Wang S Z, Lin Q Y, Hersam M C, Dravid V P and Mirkin C A 2016 Polyelemental nanoparticle libraries Science 352 1565–9

[246]

Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J and Dai H J 2008 Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors Phys. Rev. Lett. 100 206803

[247]

Valenta J, Juhasz R and Linnros J 2002 Photoluminescence from single silicon quantum dots at room temperature J. Lumin. 98 15–22

International Journal of Extreme Manufacturing
Pages 032002-032002
Cite this article:
Chen Y, Shu Z, Zhang S, et al. Sub-10 nm fabrication: methods and applications. International Journal of Extreme Manufacturing, 2021, 3(3): 032002. https://doi.org/10.1088/2631-7990/ac087c

417

Views

13

Downloads

137

Crossref

145

Web of Science

147

Scopus

0

CSCD

Altmetrics

Received: 21 February 2021
Revised: 30 April 2021
Accepted: 04 June 2021
Published: 01 July 2021
© 2021 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return