AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

The fabrication, characterization and functionalization in molecular electronics

Yi Zhao1Wenqing Liu1Jiaoyang Zhao1Yasi Wang2Jueting Zheng1Junyang Liu1,2 ( )Wenjing Hong1,2Zhong-Qun Tian1,2
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People’s Republic of China
Show Author Information

Abstract

Developments in advanced manufacturing have promoted the miniaturization of semiconductor electronic devices to a near-atomic scale, which continuously follows the ‘top-down’ construction method. However, huge challenges have been encountered with the exponentially increased cost and inevitably prominent quantum effects. Molecular electronics is a highly interdisciplinary subject that studies the quantum behavior of electrons tunneling in molecules. It aims to assemble electronic devices in a ‘bottom-up’ manner on this scale through a single molecule, thereby shedding light on the future design of logic circuits with new operating principles. The core technologies in this field are based on the rapid development of precise fabrication at a molecular scale, regulation at a quantum scale, and related applications of the basic electronic component of the ‘electrode–molecule–electrode junction’. Therefore, the quantum charge transport properties of the molecule can be controlled to pave the way for the bottom-up construction of single-molecule devices. The review firstly focuses on the collection and classification of the construction methods for molecular junctions. Thereafter, various characterization and regulation methods for molecular junctions are discussed, followed by the properties based on tunneling theory at the quantum scale of the corresponding molecular electronic devices. Finally, a summary and perspective are given to discuss further challenges and opportunities for the future design of electronic devices.

References

[1]

Moore G E 1998 Cramming more components onto integrated circuits Proc. IEEE 86 82–5

[2]

Salahuddin S, Ni K and Datta S 2018 The era of hyper-scaling in electronics Nat. Electron. 1 442–50

[3]

Chen Y, Shu Z, Zhang S, Zeng P, Liang H, Zheng M and Duan H 2021 Sub-10 nm fabrication: methods and applications Int. J. Extreme Manuf. 3 032002

[4]

Yang Y, Gu C and Li J 2019 Sub-5 nm metal nanogaps: physical properties, fabrication methods, and device applications Small 15 e1804177

[5]

Fang F, Zhang N, Guo D, Ehmann K, Cheung B, Liu K and Yamamura K 2019 Towards atomic and close-to-atomic scale manufacturing Int. J. Extreme Manuf. 1 012001

[6]

Luo S, Mancini A, Berte R, Hoff B H, Maier S A and de Mello J C 2021 Massively parallel arrays of size-controlled metallic nanogaps with gap-widths down to the sub-3-nm level Adv. Mater. 33 e2100491

[7]

Luo S, Hoff B H, Maier S A and de Mello J C 2021 Scalable fabrication of metallic nanogaps at the sub-10 nm level Adv. Sci. 8 2102756

[8]

Liu J et al 2019 Transition from tunneling leakage current to molecular tunneling in single-molecule junctions Chemistry 5 390–401

[9]

Peercy P S 2000 The drive to miniaturization Nature 406 1023–6

[10]
van Ruitenbeek J M 2016 Molecular electronics: a briefoverview of the status of the field Single-MoleculeElectronics: An Introduction to Synthesis, Measurementand Theory ed M Kiguchi (Singapore: SpringerSingapore) pp 1–23
[11]

Xiang D, Wang X L, Jia C C, Lee T and Guo X F 2016 Molecular-scale electronics: from concept to function Chem. Rev. 116 4318–440

[12]

Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F and Guo X 2019 Concepts in the design and engineering of single-molecule electronic devices Nat. Rev. Phys. 1 211–30

[13]

Su T A, Neupane M, Steigerwald M L, Venkataraman L and Nuckolls C 2016 Chemical principles of single-molecule electronics Nat. Rev. Mater. 1 16002

[14]

Chen H L and Stoddart J F 2021 From molecular to supramolecular electronics Nat. Rev. Mater. 6 804–28

[15]

Gehring P, Thijssen J M and van der Zant H S J 2019 Single-molecule quantum-transport phenomena in break junctions Nat. Rev. Phys. 1 381–96

[16]

Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S and Moth-Poulsen K 2014 Single-molecule electronics: from chemical design to functional devices Chem. Soc. Rev. 43 7378–411

[17]

Cui A, Dong H and Hu W 2015 Nanogap electrodes towards solid state single-molecule transistors Small 11 6115–41

[18]

Tsutsui M and Taniguchi M 2012 Single molecule electronics and devices Sensors 12 7259–729

[19]

Bai J, Li X, Zhu Z, Zheng Y and Hong W 2021 Single-molecule electrochemical transistors Adv. Mater. 33 2005883

[20]

Hong C, Yang S and Ndukaife J C 2020 Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers Nat. Nanotechnol. 15 908–13

[21]

Wang T and Nijhuis C A 2016 Molecular electronic plasmonics Appl. Mater. Today 3 73–86

[22]

Chen L J, Feng A N, Wang M N, Liu J Y, Hong W J, Guo X F and Xiang D 2018 Towards single-molecule optoelectronic devices Sci. China-Chem. 61 1368–84

[23]

Barla P, Joshi V K and Bhat S 2021 Spintronic devices: a promising alternative to CMOS devices J. Comput. Electron. 20 805–37

[24]

Komoto Y, Fujii S, Iwane M and Kiguchi M 2016 Single-molecule junctions for molecular electronics J. Mater. Chem. C 4 8842–58

[25]

Lu Z, Zheng J, Shi J, Zeng B-F, Yang Y, Hong W and Tian Z-Q 2021 Application of micro/nanofabrication techniques to on-chip molecular electronics Small Methods 5 2001034

[26]

Evers F, Korytár R, Tewari S and van Ruitenbeek J M 2020 Advances and challenges in single-molecule electron transport Rev. Mod. Phys. 92 035001

[27]

Makk P, Tomaszewski D, Martinek J, Balogh Z, Csonka S, Wawrzyniak M, Frei M, Venkataraman L and Halbritter A 2012 Correlation analysis of atomic and single-molecule junction conductance ACS Nano 6 3411–23

[28]

Haiss W, Nichols R J, van Zalinge H, Higgins S J, Bethell D and Schiffrin D J 2004 Measurement of single molecule conductivity using the spontaneous formation of molecular wires Phys. Chem. Chem. Phys. 6 4330–7

[29]

Haiss W, van Zalinge H, Higgins S J, Bethell D, Höbenreich H, Schiffrin D J and Nichols R J 2003 Redox state dependence of single molecule conductivity J. Am. Chem. Soc. 125 15294–5

[30]

Xu B and Tao N 2003 Measurement of single-molecule resistance by repeated formation of molecular junctions Science 301 1221–3

[31]

Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Dependence of single-molecule junction conductance on molecular conformation Nature 442 904–7

[32]

Garner M H et al 2018 Comprehensive suppression of single-molecule conductance using destructive sigma-interference Nature 558 415–9

[33]

Huang Z, Xu B, Chen Y, Ventra M D and Tao N 2006 Measurement of current-induced local heating in a single molecule junction Nano Lett. 6 1240–4

[34]

Xu B, Xiao X and Tao N J 2003 Measurements of single-molecule electromechanical properties J. Am. Chem. Soc. 125 16164–5

[35]

Frei M, Aradhya S V, Hybertsen M S and Venkataraman L 2012 Linker dependent bond rupture force measurements in single-molecule junctions J. Am. Chem. Soc. 134 4003–6

[36]

Aradhya S V, Frei M, Hybertsen M S and Venkataraman L 2012 Van der Waals interactions at metal/organic interfaces at the single-molecule level Nat. Mater. 11 872–6

[37]

Lumbroso O S, Simine L, Nitzan A, Segal D and Tal O 2018 Electronic noise due to temperature differences in atomic-scale junctions Nature 562 240–4

[38]

Hong W, Li H, Liu S, Fu Y, Li J, Kaliginedi V, Decurtins S and Wandlowski T 2012 Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au-C sigma-bonds J. Am. Chem. Soc. 134 19425–31

[39]

Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Conductance of a molecular junction Science 278 252–4

[40]

Zhou C, Muller C J, Deshpande M R, Sleight J W and Reed M A 1995 Microfabrication of a mechanically controllable break junction in silicon Appl. Phys. Lett. 67 1160–2

[41]

Huber R et al 2008 Electrical conductance of conjugated oligomers at the single molecule level J. Am. Chem. Soc. 130 1080–4

[42]

Dubois V, Raja S N, Gehring P, Caneva S, van der Zant H S J, Niklaus F and Stemme G 2018 Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices Nat. Commun. 9 3433

[43]

Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J and Renaud N 2016 Mechanically controlled quantum interference in individual π-stacked dimers Nat. Chem. 8 1099–104

[44]

Lörtscher E, Ciszek J W, Tour J and Riel H 2006 Reversible and controllable switching of a single-molecule junction Small 2 973–7

[45]

Lörtscher E, Gotsmann B, Lee Y, Yu L, Rettner C and Riel H 2012 Transport properties of a single-molecule diode ACS Nano 6 4931–9

[46]

Jeong H, Domulevicz L K and Hihath J 2021 Design and fabrication of a MEMS-based break junction device for mechanical strain-correlated optical characterization of a single-molecule J. Microelectromech. Syst. 30 126–36

[47]

Jeong H, Li H B, Domulevicz L and Hihath J 2020 An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies Adv. Funct. Mater. 30 2000615

[48]

Song H, Kim Y, Jang Y H, Jeong H, Reed M A and Lee T 2009 Observation of molecular orbital gating Nature 462 1039–43

[49]

Hoffmann-Vogel R 2017 Electromigration and the structure of metallic nanocontacts Appl. Phys. Rev. 4 031302

[50]

Kim Y, Ang C H, Ang K and Chang S W 2021 Electromigrated nanogaps: a review on the fabrications and applications J. Vac. Sci. Technol. B 39 010802

[51]

Park H, Lim A K L, Alivisatos A P, Park J and McEuen P L 1999 Fabrication of metallic electrodes with nanometer separation by electromigration Appl. Phys. Lett. 75 301–3

[52]

Ward D R, Corley D A, Tour J M and Natelson D 2011 Vibrational and electronic heating in nanoscale junctions Nat. Nanotechnol. 6 33–38

[53]

Qin L, Park S, Huang L and Mirkin Chad A 2005 On-wire lithography Science 309 113–5

[54]

Guo X et al 2006 Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules Science 311 356

[55]

Guo X and Nuckolls C 2009 Functional single-molecule devices based on SWNTs as point contacts J. Mater. Chem. 19 5470–3

[56]

Qi P, Javey A, Rolandi M, Wang Q, Yenilmez E and Dai H 2004 Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes J. Am. Chem. Soc. 126 11774–5

[57]

Wei D, Liu Y, Cao L, Wang Y, Zhang H and Yu G 2008 Real time and in situ control of the gap size of nanoelectrodes for molecular devices Nano Lett. 8 1625–30

[58]

Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald M L, Wu X, Liu Z and Guo X 2012 Building high-throughput molecular junctions using indented graphene point contacts Angew. Chem., Int. Ed. 51 12228–32

[59]

Prins F, Barreiro A, Ruitenberg J W, Seldenthuis J S, Aliaga-Alcalde N, Vandersypen L M K and van der Zant H S J 2011 Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes Nano Lett. 11 4607–11

[60]

Caneva S, Gehring P, García-Suárez V M, García-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C and van der Zant H S J 2018 Mechanically controlled quantum interference in graphene break junctions Nat. Nanotechnol. 13 1126–31

[61]

Chen F, Li X, Hihath J, Huang Z and Tao N 2006 Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules J. Am. Chem. Soc. 128 15874–81

[62]

Hong W, Manrique D Z, Moreno-García P, Gulcur M, Mishchenko A, Lambert C J, Bryce M R and Wandlowski T 2012 Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group J. Am. Chem. Soc. 134 2292–304

[63]

Di Ventra M and Taniguchi M 2016 Decoding DNA, RNA and peptides with quantum tunnelling Nat. Nanotechnol. 11 117–26

[64]

Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M and Cahen D 2016 Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping Proc. Natl Acad. Sci. USA 113 10785

[65]

Yang C et al 2021 Electric field–catalyzed single-molecule Diels-Alder reaction dynamics Sci. Adv. 7 eabf0689

[66]

Li P, Jia C and Guo X 2021 Structural transition dynamics in carbon electrode-based single-molecule junctions Chin. J. Chem. 39 223–31

[67]

Schoonveld W A, Wildeman J, Fichou D, Bobbert P A, van Wees B J and Klapwijk T M 2000 Coulomb-blockade transport in single-crystal organic thin-film transistors Nature 404 977–80

[68]

Park J et al 2002 Coulomb blockade and the Kondo effect in single-atom transistors Nature 417 722–5

[69]

Pasupathy A N, Bialczak R C, Martinek J, Grose J E, Donev L A K, McEuen P L and Ralph D C 2004 The Kondo effect in the presence of ferromagnetism Science 306 86–89

[70]

Bai J et al 2019 Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating Nat. Mater. 18 364–9

[71]

Huang B et al 2018 Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions J. Am. Chem. Soc. 140 17685–90

[72]

Li Y et al 2019 Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport Nat. Mater. 18 357–63

[73]

Liu J, Huang X, Wang F and Hong W 2019 Quantum interference effects in charge transport through single-molecule junctions: detection, manipulation, and application Acc. Chem. Res. 52 151–60

[74]

Lee W, Kim K, Jeong W, Zotti L A, Pauly F, Cuevas J C and Reddy P 2013 Heat dissipation in atomic-scale junctions Nature 498 209–12

[75]

Mosso N, Drechsler U, Menges F, Nirmalraj P, Karg S, Riel H and Gotsmann B 2017 Heat transport through atomic contacts Nat. Nanotechnol. 12 430–3

[76]

Cui L, Jeong W, Hur S, Matt M, Klöckner J C, Pauly F, Nielaba P, Cuevas J C, Meyhofer E and Reddy P 2017 Quantized thermal transport in single-atom junctions Science 355 1192–5

[77]

Cui L, Hur S, Akbar Z A, Klöckner J C, Jeong W, Pauly F, Jang S-Y, Reddy P and Meyhofer E 2019 Thermal conductance of single-molecule junctions Nature 572 628–33

[78]

Tsutsui M, Morikawa T, He Y, Arima A and Taniguchi M 2015 High thermopower of mechanically stretched single-molecule junctions Sci. Rep. 5 11519

[79]

Morikawa T, Arima A, Tsutsui M and Taniguchi M 2014 Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions Nanoscale 6 8235–41

[80]

Tsutsui M, Morikawa T, Arima A and Taniguchi M 2013 Thermoelectricity in atom-sized junctions at room temperatures Sci. Rep. 3 3326

[81]

Tsutsui M, Kawai T and Taniguchi M 2012 Unsymmetrical hot electron heating in quasi-ballistic nanocontacts Sci. Rep. 2 217

[82]

Emberly E G and Kirczenow G 2002 Molecular spintronics: spin-dependent electron transport in molecular wires Chem. Phys. 281 311–24

[83]

Li H, Shi W, Song J, Jang H-J, Dailey J, Yu J and Katz H E 2019 Chemical and biomolecule sensing with organic field-effect transistors Chem. Rev. 119 3–35

[84]

Zhang C, Chen P and Hu W 2015 Organic field-effect transistor-based gas sensors Chem. Soc. Rev. 44 2087–107

[85]

Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F and Schull G 2014 Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope Phys. Rev. Lett. 112 047403

[86]

Schwarz F and Lörtscher E 2014 Break-junctions for investigating transport at the molecular scale J. Phys.-Condes. Matter 26 474201

[87]

Khoo K H, Chen Y, Li S and Quek S Y 2015 Length dependence of electron transport through molecular wires—a first principles perspective Phys. Chem. Chem. Phys. 17 77–96

[88]

McCreery R L 2004 Molecular electronic junctions Chem. Mater. 16 4477–96

[89]

Scholes G D et al 2017 Using coherence to enhance function in chemical and biophysical systems Nature 543 647–56

[90]

Fano U 1961 Effects of configuration interaction on intensities and phase shifts Phys. Rev. 124 1866–78

[91]

Hong W, Valkenier H, Mészáros G, Manrique D Z, Mishchenko A, Putz A, García P M, Lambert C J, Hummelen J C and Wandlowski T 2011 An MCBJ case study: the influence of π-conjugation on the single-molecule conductance at a solid/liquid interface Beilstein J. Nanotechnol. 2 699–713

[92]

Yang G et al 2017 Protonation tuning of quantum interference in azulene-type single-molecule junctions Chem. Sci. 8 7505–9

[93]

Zhang Y-P et al 2018 Distinguishing diketopyrrolopyrrole isomers in single-molecule junctions via reversible stimuli-responsive quantum interference J. Am. Chem. Soc. 140 6531–5

[94]

Jeong H, Kim D, Xiang D and Lee T 2017 High-yield functional molecular electronic devices ACS Nano 11 6511–48

[95]

Vilan A, Aswal D and Cahen D 2017 Large-area, ensemble molecular electronics: motivation and challenges Chem. Rev. 117 4248–86

[96]

Zheng H, Jiang F, He R, Yang Y, Shi J and Hong W 2019 Charge transport through peptides in single-molecule electrical measurements Chin. J. Chem. 37 1083–96

[97]

Liu Z et al 2011 Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy Nat. Commun. 2 305

[98]

Tian J H, Liu B, Li X, Yang Z L, Ren B, Wu S T, Tao N and Tian Z Q 2006 Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method J. Am. Chem. Soc. 128 14748–9

[99]

Akkerman H B, Blom P W M, de Leeuw D M and de Boer B 2006 Towards molecular electronics with large-area molecular junctions Nature 441 69–72

[100]

Holmlin R E, Haag R, Chabinyc M L, Ismagilov R F, Cohen A E, Terfort A, Rampi M A and Whitesides G M 2001 Electron transport through thin organic films in metal−insulator−metal junctions based on self-assembled monolayers J. Am. Chem. Soc. 123 5075–85

[101]

Chiechi R C, Weiss E A, Dickey M D and Whitesides G M 2008 Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers Angew. Chem., Int. Ed. 47 142–4

[102]

Feldman A K, Steigerwald M L, Guo X and Nuckolls C 2008 Molecular electronic devices based on single-walled carbon nanotube electrodes Acc. Chem. Res. 41 1731–41

[103]

Ghasemi S and Moth-Poulsen K 2021 Single molecule electronic devices with carbon-based materials: status and opportunity Nanoscale 13 659–71

[104]

Jia C, Ma B, Xin N and Guo X 2015 Carbon electrode–molecule junctions: a reliable platform for molecular electronics Acc. Chem. Res. 48 2565–75

[105]

Black J R 1969 Electromigration—a brief survey and some recent results IEEE Trans. Electron Devices 16 338–47

[106]

Houck A A, Labaziewicz J, Chan E K, Folk J A and Chuang I L 2005 Kondo effect in electromigrated gold break junctions Nano Lett. 5 1685–8

[107]

Esen G and Fuhrer M S 2005 Temperature control of electromigration to form gold nanogap junctions Appl. Phys. Lett. 87 263101

[108]

Strachan D R, Smith D E, Johnston D E, Park T H, Therien M J, Bonnell D A and Johnson A T 2005 Controlled fabrication of nanogaps in ambient environment for molecular electronics Appl. Phys. Lett. 86 043109

[109]

Hoffmann R, Weissenberger D, Hawecker J and Stöffler D 2008 Conductance of gold nanojunctions thinned by electromigration Appl. Phys. Lett. 93 043118

[110]

Campbell J M and Knobel R G 2013 Feedback-controlled electromigration for the fabrication of point contacts Appl. Phys. Lett. 102 023105

[111]

Johnston D E, Strachan D R and Johnson A T C 2007 Parallel fabrication of nanogap electrodes Nano Lett. 7 2774–7

[112]

Suga H, Suzuki H, Otsu K, Abe T, Umeta Y, Tsukagoshi K, Sumiya T, Shima H, Akinaga H and Naitoh Y 2020 Feedback electromigration assisted by alternative voltage operation for the fabrication of facet-edge nanogap electrodes ACS Appl. Nano Mater. 3 4077–83

[113]

O’Neill K, Osorio E A and van der Zant H S J 2007 Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes Appl. Phys. Lett. 90 133109

[114]

Prins F, Hayashi T, de Vos van Steenwijk B J A, Gao B, Osorio E A, Muraki K and van der Zant H S J 2009 Room-temperature stability of Pt nanogaps formed by self-breaking Appl. Phys. Lett. 94 123108

[115]

Wheeler P J, Chen R and Natelson D 2013 Noise in electromigrated nanojunctions Phys. Rev. B 87 155411

[116]

Kanamaru Y, Ando M and Shirakashi J-I 2014 Ultrafast feedback-controlled electromigration using a field-programmable gate array J. Vac. Sci. Technol. B 33 02B106

[117]

Xiang A, Hou S and Liao J 2014 Tuning the local temperature during feedback controlled electromigration in gold nanowires Appl. Phys. Lett. 104 223113

[118]

Rothemund P, Morris Bowers C, Suo Z and Whitesides G M 2018 Influence of the contact area on the current density across molecular tunneling junctions measured with EGaIn top-electrodes Chem. Mater. 30 129–37

[119]

Karuppannan S K, Hongting H, Troadec C, Vilan A and Nijhuis C A 2019 Ultrasmooth and photoresist-free micropore-based EGaIn molecular junctions: fabrication and how roughness determines voltage response Adv. Funct. Mater. 29 1904452

[120]

Nijhuis C A, Reus W F, Barber J R, Dickey M D and Whitesides G M 2010 Charge transport and rectification in arrays of SAM-based tunneling junctions Nano Lett. 10 3611–9

[121]

Nijhuis C A, Reus W F, Barber J R and Whitesides G M 2012 Comparison of SAM-based junctions with Ga2O3/EGaIn top electrodes to other large-area tunneling junctions J. Phys. Chem. C 116 14139–50

[122]

Wan A, Jiang L, Sangeeth C S S and Nijhuis C A 2014 Reversible soft top-contacts to yield molecular junctions with precise and reproducible electrical characteristics Adv. Funct. Mater. 24 4442–56

[123]

Zhu Z, Daniel T A, Maitani M, Cabarcos O M, Allara D L and Winograd N 2006 Controlling gold atom penetration through alkanethiolate self-assembled monolayers on Au{111} by adjusting terminal group intermolecular interactions J. Am. Chem. Soc. 128 13710–9

[124]

Kim T-W, Wang G, Lee H and Lee T 2007 Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions Nanotechnology 18 315204

[125]

Haick H and Cahen D 2008 Contacting organic molecules by soft methods: towards molecule-based electronic devices Acc. Chem. Res. 41 359–66

[126]

Ulgut B and Abruña H D 2008 Electron transfer through molecules and assemblies at electrode surfaces Chem. Rev. 108 2721–36

[127]

Khoshmanesh K, Tang S-Y, Zhu J Y, Schaefer S, Mitchell A, Kalantar-zadeh K and Dickey M D 2017 Liquid metal enabled microfluidics Lab Chip 17 974–93

[128]

Peng Z-L, Chen Z-B, Zhou X-Y, Sun -Y-Y, Liang J-H, Niu Z-J, Zhou X-S and Mao B-W 2012 Single molecule conductance of carboxylic acids contacting Ag and Cu electrodes J. Phys. Chem. C 116 21699–705

[129]

Aradhya S V, Frei M, Halbritter A and Venkataraman L 2013 Correlating structure, conductance, and mechanics of silver atomic-scale contacts ACS Nano 7 3706–12

[130]

Ternes M, González C, Lutz C P, Hapala P, Giessibl F J, Jelínek P and Heinrich A J 2011 Interplay of conductance, force, and structural change in metallic point contacts Phys. Rev. Lett. 106 016802

[131]

Li X et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312

[132]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666

[133]

Dai H 2002 Carbon nanotubes: synthesis, integration, and properties Acc. Chem. Res. 35 1035–44

[134]

Avouris P 2002 Molecular electronics with carbon nanotubes Acc. Chem. Res. 35 1026–34

[135]

Tsukagoshi K, Yagi I and Aoyagi Y 2004 Pentacene nanotransistor with carbon nanotube electrodes Appl. Phys. Lett. 85 1021–3

[136]

Collins P G, Hersam M, Arnold M, Martel R and Avouris P 2001 Current saturation and electrical breakdown in multiwalled carbon nanotubes Phys. Rev. Lett. 86 3128–31

[137]

Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M and Dai H 2004 High-field quasiballistic transport in short carbon nanotubes Phys. Rev. Lett. 92 106804

[138]

Collins P G, Arnold M S and Avouris P 2001 Engineering carbon nanotubes and nanotube circuits using electrical breakdown Science 292 706–9

[139]

Whalley A C, Steigerwald M L, Guo X and Nuckolls C 2007 Reversible switching in molecular electronic devices J. Am. Chem. Soc. 129 12590–1

[140]

Thiele C et al 2014 Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts Appl. Phys. Lett. 104 103102

[141]

Roy S, Vedala H, Roy A D, Kim D-H, Doud M, Mathee K, Shin H-K, Shimamoto N, Prasad V and Choi W 2008 Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes Nano Lett. 8 26–30

[142]

Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–91

[143]

Nef C, Pósa L, Makk P, Fu W, Halbritter A, Schönenberger C and Calame M 2014 High-yield fabrication of nm-size gaps in monolayer CVD graphene Nanoscale 6 7249–54

[144]

Mol J A, Lau C S, Lewis W J M, Sadeghi H, Roche C, Cnossen A, Warner J H, Lambert C J, Anderson H L and Briggs G A D 2015 Graphene-porphyrin single-molecule transistors Nanoscale 7 13181–5

[145]

Sadeghi H, Mol J A, Lau C S, Briggs G A D, Warner J and Lambert C J 2015 Conductance enlargement in picoscale electroburnt graphene nanojunctions Proc. Natl Acad. Sci. USA 112 2658

[146]

Lau C S, Mol J A, Warner J H and Briggs G A D 2014 Nanoscale control of graphene electrodes Phys. Chem. Chem. Phys. 16 20398–401

[147]

Zhu Y, Tan Z and Hong W 2021 Simultaneous electrical and mechanical characterization of single-molecule junctions using AFM-BJ technique ACS Omega 6 30873–88

[148]

Zhou X-S, Liang J-H, Chen Z-B and Mao B-W 2011 An electrochemical jump-to-contact STM-break junction approach to construct single molecular junctions with different metallic electrodes Electrochem. Commun. 13 407–10

[149]

Wang Y-H, Zhou X-Y, Sun -Y-Y, Han D, Zheng J-F, Niu Z-J and Zhou X-S 2014 Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction Electrochim. Acta 123 205–10

[150]

Li X-M, Wang Y-H, Seng J-W, Zheng J-F, Cao R, Shao Y, Chen J-Z, Li J-F, Zhou X-S and Mao B-W 2021 z-Piezo pulse-modulated STM break junction: toward single-molecule rectifiers with dissimilar metal electrodes ACS Appl. Mat. Interfaces 13 8656–63

[151]

Vezzoli A, Brooke R J, Ferri N, Brooke C, Higgins S J, Schwarzacher W and Nichols R J 2018 Charge transport at a molecular GaAs nanoscale junction Faraday Discuss. 210 397–408

[152]

Vezzoli A, Brooke R J, Ferri N, Higgins S J, Schwarzacher W and Nichols R J 2017 Single-molecule transport at a rectifying GaAs contact Nano Lett. 17 1109–15

[153]

Vezzoli A, Brooke R J, Higgins S J, Schwarzacher W and Nichols R J 2017 Single-molecule photocurrent at a metal–molecule–semiconductor junction Nano Lett. 17 6702–7

[154]

Aragonès A C, Darwish N, Ciampi S, Sanz F, Gooding J J and Díez-Pérez I 2017 Single-molecule electrical contacts on silicon electrodes under ambient conditions Nat. Commun. 8 15056

[155]

Peiris C R, Ciampi S, Dief E M, Zhang J, Canfield P J, Le Brun A P, Kosov D S, Reimers J R and Darwish N 2020 Spontaneous S–Si bonding of alkanethiols to Si(111)–H: towards Si–molecule–Si circuits Chem. Sci. 11 5246–56

[156]

Peiris C R, Vogel Y B, Le Brun A P, Aragonès A C, Coote M L, Díez-Pérez I, Ciampi S and Darwish N 2019 Metal–single-molecule–semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes J. Am. Chem. Soc. 141 14788–97

[157]

Kim T, Liu Z-F, Lee C, Neaton J B and Venkataraman L 2014 Charge transport and rectification in molecular junctions formed with carbon-based electrodes Proc. Natl Acad. Sci. USA 111 10928

[158]

Rudnev A V, Kaliginedi V, Droghetti A, Ozawa H, Kuzume A, Haga M-A, Broekmann P and Rungger I 2017 Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts Sci. Adv. 3 e1602297

[159]

Liu L et al 2016 Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene–gold nanogap electrodes Nanoscale 8 14507–13

[160]

Tao S et al 2019 Graphene-contacted single molecular junctions with conjugated molecular wires ACS Appl. Nano Mater. 2 12–18

[161]

Zhang Q, Liu L, Tao S, Wang C, Zhao C, González C, Dappe Y J, Nichols R J and Yang L 2016 Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions Nano Lett. 16 6534–40

[162]

He C, Zhang Q, Fan Y, Zhao C, Zhao C, Ye J, Dappe Y J, Nichols R J and Yang L 2019 Effect of asymmetric anchoring groups on electronic transport in hybrid metal/molecule/graphene single molecule junctions ChemPhysChem 20 1830–6

[163]

He C, Zhang Q, Gao T, Liu C, Chen Z, Zhao C, Zhao C, Nichols R J, Dappe Y J and Yang L 2020 Charge transport in hybrid platinum/molecule/graphene single molecule junctions Phys. Chem. Chem. Phys. 22 13498–504

[164]

He C, Zhang Q, Tao S, Zhao C, Zhao C, Su W, Dappe Y J, Nichols R J and Yang L 2018 Carbon-contacted single molecule electrical junctions Phys. Chem. Chem. Phys. 20 24553–60

[165]

Xiang D, Jeong H, Lee T and Mayer D 2013 Mechanically controllable break junctions for molecular electronics Adv. Mater. 25 4845–67

[166]

Moreland J and Ekin J W 1985 Electron tunneling experiments using Nb-Sn ‘break’ junctions J. Appl. Phys. 58 3888–95

[167]

Muller C J, van Ruitenbeek J M and de Jongh L J 1992 Experimental observation of the transition from weak link to tunnel junction Physica C 191 485–504

[168]

Muller C J, van Ruitenbeek J M and de Jongh L J 1992 Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width Phys. Rev. Lett. 69 140–3

[169]

Li R et al 2017 Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions J. Am. Chem. Soc. 139 14344–7

[170]

Liu J et al 2017 Radical-enhanced charge transport in single-molecule phenothiazine electrical junctions Angew. Chem., Int. Ed. 56 13061–5

[171]

Boussaad S and Tao N J 2002 Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method Appl. Phys. Lett. 80 2398–400

[172]

He H X, Boussaad S, Xu B Q, Li C Z and Tao N J 2002 Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps J. Electroanal. Chem. 522 167–72

[173]

Li C Z, He H X and Tao N J 2000 Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching Appl. Phys. Lett. 77 3995–7

[174]

Liu B, Xiang J, Tian J-H, Zhong C, Mao B-W, Yang F-Z, Chen Z-B, Wu S-T and Tian Z-Q 2005 Controllable nanogap fabrication on microchip by chronopotentiometry Electrochim. Acta 50 3041–7

[175]

Mészáros G, Kronholz S, Karthäuser S, Mayer D and Wandlowski T 2007 Electrochemical fabrication and characterization of nanocontacts and nm-sized gaps Appl. Phys. A 87 569–75

[176]

Tian J-H et al 2010 The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules Nanotechnology 21 274012

[177]

Yang Y, Chen Z, Liu J, Lu M, Yang D, Yang F and Tian Z 2011 An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements Nano Res. 4 1199–207

[178]

Yang Y, Liu J, Feng S, Wen H, Tian J, Zheng J, Schöllhorn B, Amatore C, Chen Z and Tian Z 2016 Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted–MCBJ Nano Res. 9 560–70

[179]

Zheng J-T et al 2016 Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions Electrochim. Acta 200 268–75

[180]

Yang Y et al 2011 Conductance histogram evolution of an EC–MCBJ fabricated Au atomic point contact Nanotechnology 22 275313

[181]

Yi Z, Banzet M, Offenhäusser A and Mayer D 2010 Fabrication of nanogaps with modified morphology by potential-controlled gold deposition Phys. Status Solidi 4 73–75

[182]

van Ruitenbeek J M, Alvarez A, Piñeyro I, Grahmann C, Joyez P, Devoret M H, Esteve D and Urbina C 1996 Adjustable nanofabricated atomic size contacts Rev. Sci. Instrum. 67 108–11

[183]

Arroyo C R, Frisenda R, Moth-Poulsen K, Seldenthuis J S, Bjørnholm T and van der Zant H S J 2013 Quantum interference effects at room temperature in OPV-based single-molecule junctions Nanoscale Res. Lett. 8 234

[184]

Kim Y et al 2012 Charge transport characteristics of diarylethene photoswitching single-molecule junctions Nano Lett. 12 3736–42

[185]

Schirm C, Matt M, Pauly F, Cuevas J C, Nielaba P and Scheer E 2013 A current-driven single-atom memory Nat. Nanotechnol. 8 645–8

[186]

Stefani D, Guo C, Ornago L, Cabosart D, El Abbassi M, Sheves M, Cahen D and van der Zant H S J 2021 Conformation-dependent charge transport through short peptides Nanoscale 13 3002–9

[187]

Zhang S et al 2021 In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation Nano Today 39 101226

[188]

Yang Y, Liu J, Zheng J, Lu M, Shi J, Hong W, Yang F and Tian Z 2017 Promising electroplating solution for facile fabrication of Cu quantum point contacts Nano Res. 10 3314–23

[189]

Tan Z et al 2019 Atomically defined angstrom-scale all-carbon junctions Nat. Commun. 10 1748

[190]

Zhao S et al 2020 Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction Sci. Adv. 6 eaba6714

[191]

Champagne A R, Pasupathy A N and Ralph D C 2005 Mechanically adjustable and electrically gated single-molecule transistors Nano Lett. 5 305–8

[192]

Martin C A, Smit R H M, van der Zant H S J and van Ruitenbeek J M 2009 A nanoelectromechanical single-atom switch Nano Lett. 9 2940–5

[193]

Martin C A, van Ruitenbeek J M and van der Zant H S J 2010 Sandwich-type gated mechanical break junctions Nanotechnology 21 265201

[194]

Perrin M L, Verzijl C J O, Martin C A, Shaikh A J, Eelkema R, van Esch J H, van Ruitenbeek J M, Thijssen J M, van der Zant H S J and Dulić D 2013 Large tunable image-charge effects in single-molecule junctions Nat. Nanotechnol. 8 282–7

[195]

Mangin A, Anthore A, Della Rocca M L, Boulat E and Lafarge P 2009 Transport through metallic nanogaps in an in-plane three-terminal geometry J. Appl. Phys. 105 014313

[196]

Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q and Mayer D 2013 Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating Nano Lett. 13 2809–13

[197]

Arima A, Tsutsui M, Morikawa T, Yokota K and Taniguchi M 2014 Fabrications of insulator-protected nanometer-sized electrode gaps J. Appl. Phys. 115 114310

[198]

Muthusubramanian N, Galan E, Maity C, Eelkema R, Grozema F C and van der Zant H S J 2016 Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments Appl. Phys. Lett. 109 013102

[199]

Zhao Z, Guo C, Ni L, Zhao X, Zhang S and Xiang D 2021 In situ photoconductivity measurements of imidazole in optical fiber break-junctions Nanoscale Horiz. 6 386–92

[200]

Benner D, Boneberg J, Nürnberger P, Waitz R, Leiderer P and Scheer E 2014 Lateral and temporal dependence of the transport through an atomic gold contact under light irradiation: signature of propagating surface plasmon polaritons Nano Lett. 14 5218–23

[201]

Fischer A C, Forsberg F, Lapisa M, Bleiker S J, Stemme G, Roxhed N and Niklaus F 2015 Integrating MEMS and ICs Microsyst. Nanoeng. 1 15005

[202]

Karipidou Z et al 2016 Ultrarobust thin-film devices from self-assembled metal–terpyridine oligomers Adv. Mater. 28 3473–80

[203]

Kushmerick J G, Naciri J, Yang J C and Shashidhar R 2003 Conductance scaling of molecular wires in parallel Nano Lett. 3 897–900

[204]

Snider G, Kuekes P, Hogg T and Williams R S 2005 Nanoelectronic architectures Appl. Phys. A 80 1183–95

[205]

Stan M R, Franzon P D, Goldstein S C, Lach J C and Ziegler M M 2003 Molecular electronics: from devices and interconnect to circuits and architecture Proc. IEEE 91 1940–57

[206]

Green J E et al 2007 A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre Nature 445 414–7

[207]

Park S, Wang G, Cho B, Kim Y, Song S, Ji Y, Yoon M-H and Lee T 2012 Flexible molecular-scale electronic devices Nat. Nanotechnol. 7 438–42

[208]

Morteza Najarian A, Szeto B, Tefashe U M and McCreery R L 2016 Robust all-carbon molecular junctions on flexible or semi-transparent substrates using ‘process-friendly’ fabrication ACS Nano 10 8918–28

[209]

Puebla-Hellmann G, Venkatesan K, Mayor M and Lörtscher E 2018 Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices Nature 559 232–5

[210]

Kos D, Assumpcao D R, Guo C and Baumberg J J 2021 Quantum tunneling induced optical rectification and plasmon-enhanced photocurrent in nanocavity molecular junctions ACS Nano 15 14535–43

[211]

Wan A, Suchand Sangeeth C S, Wang L, Yuan L, Jiang L and Nijhuis C A 2015 Arrays of high quality SAM-based junctions and their application in molecular diode based logic Nanoscale 7 19547–56

[212]

Luo Y et al 2002 Two-dimensional molecular electronics circuits ChemPhysChem 3 519–25

[213]

Melosh N A, Boukai A, Diana F, Gerardot B, Badolato A, Petroff P M and Heath J R 2003 Ultrahigh-density nanowire lattices and circuits Science 300 112–5

[214]

Kaliginedi V, Moreno-García P, Valkenier H, Hong W, García-Suárez V M, Buiter P, Otten J L H, Hummelen J C, Lambert C J and Wandlowski T 2012 Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires J. Am. Chem. Soc. 134 5262–75

[215]

Huang C, Rudnev A V, Hong W and Wandlowski T 2015 Break junction under electrochemical gating: testbed for single-molecule electronics Chem. Soc. Rev. 44 889–901

[216]

Choi S H, Risko C, Delgado M C R, Kim B, Brédas J-L and Frisbie C D 2010 Transition from tunneling to hopping transport in long, conjugated oligo-imine wires connected to metals J. Am. Chem. Soc. 132 4358–68

[217]

Hines T, Diez-Perez I, Hihath J, Liu H, Wang Z-S, Zhao J, Zhou G, Müllen K and Tao N 2010 Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence J. Am. Chem. Soc. 132 11658–64

[218]

Ho Choi S, Kim B and Frisbie C D 2008 Electrical resistance of long conjugated molecular wires Science 320 1482–6

[219]

Lu Q, Liu K, Zhang H, Du Z, Wang X and Wang F 2009 From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s ACS Nano 3 3861–8

[220]

Moreno-García P et al 2013 Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution J. Am. Chem. Soc. 135 12228–40

[221]

Zhao X, Huang C, Gulcur M, Batsanov A S, Baghernejad M, Hong W, Bryce M R and Wandlowski T 2013 Oligo(aryleneethynylene)s with terminal pyridyl groups: synthesis and length dependence of the tunneling-to-hopping transition of single-molecule conductances Chem. Mater. 25 4340–7

[222]

Wang W, Lee T and Reed M A 2003 Mechanism of electron conduction in self-assembled alkanethiol monolayer devices Phys. Rev. B 68 035416

[223]

Venkataraman L, Klare J E, Tam I W, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Single-molecule circuits with well-defined molecular conductance Nano Lett. 6 458–62

[224]

Li X, He J, Hihath J, Xu B, Lindsay S M and Tao N 2006 Conductance of single alkanedithiols: conduction mechanism and effect of molecule−electrode contacts J. Am. Chem. Soc. 128 2135–41

[225]

Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C and Venkataraman L 2007 Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines J. Am. Chem. Soc. 129 15768–9

[226]

Quinn J R, Foss F W, Venkataraman L and Breslow R 2007 Oxidation potentials correlate with conductivities of aromatic molecular wires J. Am. Chem. Soc. 129 12376–7

[227]

Liu K, Wang X and Wang F 2008 Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level ACS Nano 2 2315–23

[228]

Wen H-M, Yang Y, Zhou X-S, Liu J-Y, Zhang D-B, Chen Z-B, Wang J-Y, Chen Z-N and Tian Z-Q 2013 Electrical conductance study on 1,3-butadiyne-linked dinuclear ruthenium(ii) complexes within single molecule break junctions Chem. Sci. 4 2471–7

[229]

Algethami N, Sadeghi H, Sangtarash S and Lambert C J 2018 The conductance of porphyrin-based molecular nanowires increases with length Nano Lett. 18 4482–6

[230]

Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton J B, Nuckolls C and Venkataraman L 2014 Tunable charge transport in single-molecule junctions via electrolytic gating Nano Lett. 14 1400–4

[231]

Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A and Evers F 2008 Charge transport in single Au | alkanedithiol | Au junctions: coordination geometries and conformational degrees of freedom J. Am. Chem. Soc. 130 318–26

[232]

Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B and Venkataraman L 2009 Mechanically controlled binary conductance switching of a single-molecule junction Nat. Nanotechnol. 4 230–4

[233]

Vonlanthen D, Mishchenko A, Elbing M, Neuburger M, Wandlowski T and Mayor M 2009 Chemically controlled conductivity: torsion-angle dependence in a single-molecule biphenyldithiol junction Angew. Chem., Int. Ed. 48 8886–90

[234]

You S, J-T L, Guo J and Jiang Y 2017 Recent advances in inelastic electron tunneling spectroscopy Adv. Phys. X 2 907–36

[235]

Smit R H M, Noat Y, Untiedt C, Lang N D, van Hemert M C and van Ruitenbeek J M 2002 Measurement of the conductance of a hydrogen molecule Nature 419 906–9

[236]

Stipe B C, Rezaei M A and Ho W 1998 Single-molecule vibrational spectroscopy and microscopy Science 280 1732–5

[237]

Kim Y, Song H, Strigl F, Pernau H-F, Lee T and Scheer E 2011 Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation Phys. Rev. Lett. 106 196804

[238]

Long D P, Lazorcik J L, Mantooth B A, Moore M H, Ratner M A, Troisi A, Yao Y, Ciszek J W, Tour J M and Shashidhar R 2006 Effects of hydration on molecular junction transport Nat. Mater. 5 901–8

[239]

Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H and Murakoshi K 2013 Single molecule dynamics at a mechanically controllable break junction in solution at room temperature J. Am. Chem. Soc. 135 1009–14

[240]

Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P and Natelson D 2008 Simultaneous measurements of electronic conduction and Raman response in molecular junctions Nano Lett. 8 919–24

[241]

Yoon H P, Maitani M M, Cabarcos O M, Cai L, Mayer T S and Allara D L 2010 Crossed-nanowire molecular junctions: a new multispectroscopy platform for conduction−structure correlations Nano Lett. 10 2897–902

[242]

de Nijs B et al 2017 Plasmonic tunnel junctions for single-molecule redox chemistry Nat. Commun. 8 994

[243]

Guo C et al 2018 Molecular orbital gating surface-enhanced Raman scattering ACS Nano 12 11229–35

[244]

Zhao Z et al 2018 Shaping the atomic-scale geometries of electrodes to control optical and electrical performance of molecular devices Small 14 1703815

[245]

Bi H, Palma C-A, Gong Y, Hasch P, Elbing M, Mayor M, Reichert J and Barth J V 2018 Voltage-driven conformational switching with distinct Raman signature in a single-molecule junction J. Am. Chem. Soc. 140 4835–40

[246]

Kos D, Di Martino G, Boehmke A, de Nijs B, Berta D, Földes T, Sangtarash S, Rosta E, Sadeghi H and Baumberg J J 2020 Optical probes of molecules as nano-mechanical switches Nat. Commun. 11 5905

[247]

Domulevicz L, Jeong H, Paul N K, Gomez-Diaz J S and Hihath J 2021 Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity Angew. Chem., Int. Ed. 60 16436–41

[248]

Ludoph B and Ruitenbeek J M V 1999 Thermopower of atomic-size metallic contacts Phys. Rev. B 59 12290–3

[249]

Reddy P, Jang S-Y, Segalman Rachel A and Majumdar A 2007 Thermoelectricity in molecular junctions Science 315 1568–71

[250]

Tan A, Sadat S and Reddy P 2010 Measurement of thermopower and current-voltage characteristics of molecular junctions to identify orbital alignment Appl. Phys. Lett. 96 013110

[251]

Elbing M, Ochs R, Koentopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber H B and Mayor M 2005 A single-molecule diode Proc. Natl Acad. Sci. USA 102 8815

[252]

Batra A, Darancet P, Chen Q, Meisner J S, Widawsky J R, Neaton J B, Nuckolls C and Venkataraman L 2013 Tuning rectification in single-molecular diodes Nano Lett. 13 6233–7

[253]

Capozzi B, Xia J, Adak O, Dell E J, Liu Z-F, Taylor J C, Neaton J B, Campos L M and Venkataraman L 2015 Single-molecule diodes with high rectification ratios through environmental control Nat. Nanotechnol. 10 522–7

[254]

Ke G, Duan C, Huang F and Guo X 2020 Electrical and spin switches in single-molecule junctions InfoMat 2 92–112

[255]

Song H, Reed M A and Lee T 2011 Single molecule electronic devices Adv. Mater. 23 1583–608

[256]

Dulić D, van der Molen S J, Kudernac T, Jonkman H T, de Jong J J D, Bowden T N, van Esch J, Feringa B L and van Wees B J 2003 One-way optoelectronic switching of photochromic molecules on gold Phys. Rev. Lett. 91 207402

[257]

Odell A, Delin A, Johansson B, Rungger I and Sanvito S 2010 Investigation of the conducting properties of a photoswitching dithienylethene molecule ACS Nano 4 2635–42

[258]

Pärs M, Hofmann C C, Willinger K, Bauer P, Thelakkat M and Köhler J 2011 An organic optical transistor operated under ambient conditions Angew. Chem., Int. Ed. 50 11405–8

[259]

He J et al 2005 Switching of a photochromic molecule on gold electrodes: single-molecule measurements Nanotechnology 16 695–702

[260]

Meng F, Hervault Y-M, Shao Q, Hu B, Norel L, Rigaut S and Chen X 2014 Orthogonally modulated molecular transport junctions for resettable electronic logic gates Nat. Commun. 5 3023

[261]

Cao Y, Dong S, Liu S, Liu Z and Guo X 2013 Toward functional molecular devices based on graphene–molecule junctions Angew. Chem., Int. Ed. 52 3906–10

[262]

Kumar A S, Ye T, Takami T, Yu B-C, Flatt A K, Tour J M and Weiss P S 2008 Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments Nano Lett. 8 1644–8

[263]

Pakula C, Zaporojtchenko V, Strunskus T, Zargarani D, Herges R and Faupel F 2010 Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites Nanotechnology 21 465201

[264]

Smaali K, Lenfant S, Karpe S, Oçafrain M, Blanchard P, Deresmes D, Godey S, Rochefort A, Roncali J and Vuillaume D 2010 High on−off conductance switching ratio in optically-driven self-assembled conjugated molecular systems ACS Nano 4 2411–21

[265]

Jia C et al 2016 Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity Science 352 1443–5

[266]

Jia C, Wang J, Yao C, Cao Y, Zhong Y, Liu Z, Liu Z and Guo X 2013 Conductance switching and mechanisms in single-molecule junctions Angew. Chem., Int. Ed. 52 8666–70

[267]

Tsuji Y and Hoffmann R 2014 Frontier orbital control of molecular conductance and its switching Angew. Chem., Int. Ed. 53 4093–7

[268]

Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W, Royal G and Wandlowski T 2013 Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions J. Am. Chem. Soc. 135 5974–7

[269]

Broman S L, Lara-Avila S, Thisted C L, Bond A D, Kubatkin S, Danilov A and Nielsen M B 2012 Dihydroazulene photoswitch operating in sequential tunneling regime: synthesis and single-molecule junction studies Adv. Funct. Mater. 22 4249–58

[270]

Lara-Avila S, Danilov A V, Kubatkin S E, Broman S L, Parker C R and Nielsen M B 2011 Light-triggered conductance switching in single-molecule dihydroazulene/vinylheptafulvene junctions J. Phys. Chem. C 115 18372–7

[271]

Li T et al 2013 Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions Adv. Mater. 25 4164–70

[272]

Seo S, Min M, Lee S M and Lee H 2013 Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes Nat. Commun. 4 1920

[273]

Battacharyya S, Kibel A, Kodis G, Liddell P A, Gervaldo M, Gust D and Lindsay S 2011 Optical modulation of molecular conductance Nano Lett. 11 2709–14

[274]

Orbelli Biroli A et al 2011 A multitechnique physicochemical investigation of various factors controlling the photoaction spectra and of some aspects of the electron transfer for a series of push–pull Zn(II) porphyrins acting as dyes in DSSCs J. Phys. Chem. C 115 23170–82

[275]

Klajn R 2014 Spiropyran-based dynamic materials Chem. Soc. Rev. 43 148–84

[276]

Cai S et al 2019 Light-driven reversible intermolecular proton transfer at single-molecule junctions Angew. Chem., Int. Ed. 58 3829–33

[277]

Zhang X, Hou L and Samorì P 2016 Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials Nat. Commun. 7 11118

[278]

Taniguchi M, Tsutsui M, Yokota K and Kawai T 2010 Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal–molecule–metal junctions Chem. Sci. 1 247–53

[279]

Ferri N, Algethami N, Vezzoli A, Sangtarash S, McLaughlin M, Sadeghi H, Lambert C J, Nichols R J and Higgins S J 2019 Hemilabile ligands as mechanosensitive electrode contacts for molecular electronics Angew. Chem., Int. Ed. 58 16583–9

[280]

Diez-Perez I, Hihath J, Hines T, Wang Z-S, Zhou G, Müllen K and Tao N 2011 Controlling single-molecule conductance through lateral coupling of π orbitals Nat. Nanotechnol. 6 226–31

[281]

Meisner J S, Kamenetska M, Krikorian M, Steigerwald M L, Venkataraman L and Nuckolls C 2011 A single-molecule potentiometer Nano Lett. 11 1575–9

[282]

Wu C, Bates D, Sangtarash S, Ferri N, Thomas A, Higgins S J, Robertson C M, Nichols R J, Sadeghi H and Vezzoli A 2020 Folding a single-molecule junction Nano Lett. 20 7980–6

[283]

Su T A, Li H, Steigerwald M L, Venkataraman L and Nuckolls C 2015 Stereoelectronic switching in single-molecule junctions Nat. Chem. 7 215–20

[284]

Franco I, George C B, Solomon G C, Schatz G C and Ratner M A 2011 Mechanically activated molecular switch through single-molecule pulling J. Am. Chem. Soc. 133 2242–9

[285]

Walkey M C et al 2019 Chemically and mechanically controlled single-molecule switches using spiropyrans ACS Appl. Mat. Interfaces 11 36886–94

[286]

Bruot C, Hihath J and Tao N 2012 Mechanically controlled molecular orbital alignment in single molecule junctions Nat. Nanotechnol. 7 35–40

[287]

Li Y, Haworth N L, Xiang L, Ciampi S, Coote M L and Tao N 2017 Mechanical stretching-induced electron-transfer reactions and conductance switching in single molecules J. Am. Chem. Soc. 139 14699–706

[288]

Stefani D, Weiland K J, Skripnik M, Hsu C, Perrin M L, Mayor M, Pauly F and van der Zant H S J 2018 Large conductance variations in a mechanosensitive single-molecule junction Nano Lett. 18 5981–8

[289]

Camarasa-Gómez M, Hernangómez-Pérez D, Inkpen M S, Lovat G, Fung E D, Roy X, Venkataraman L and Evers F 2020 Mechanically tunable quantum interference in ferrocene-based single-molecule junctions Nano Lett. 20 6381–6

[290]

Tang C et al 2020 Electric-field-induced connectivity switching in single-molecule junctions iScience 23 100770

[291]

Meng L et al 2019 Side-group chemical gating via reversible optical and electric control in a single molecule transistor Nat. Commun. 10 1450

[292]

Alemani M, Peters M V, Hecht S, Rieder K-H, Moresco F and Grill L 2006 Electric field-induced isomerization of azobenzene by STM J. Am. Chem. Soc. 128 14446–7

[293]

Li H B, Tebikachew B E, Wiberg C, Moth-Poulsen K and Hihath J 2020 A memristive element based on an electrically controlled single-molecule reaction Angew. Chem., Int. Ed. 59 11641–6

[294]

Godlewski S, Kawai H, Kolmer M, Zuzak R, Echavarren A M, Joachim C, Szymonski M and Saeys M 2016 Single-molecule rotational switch on a dangling bond dimer bearing ACS Nano 10 8499–507

[295]

Zhang L et al 2018 Electrochemical and electrostatic cleavage of alkoxyamines J. Am. Chem. Soc. 140 766–74

[296]

Xin N et al 2021 Tunable symmetry-breaking-induced dual functions in stable and photoswitched single-molecule junctions J. Am. Chem. Soc. 143 20811–7

[297]

Fahad H M, Hu C and Hussain M M 2015 Simulation study of a 3D device integrating FinFET and UTBFET IEEE Trans. Electron Devices 62 83–87

[298]

Yadav C, Kushwaha P, Khandelwal S, Duarte J P, Chauhan Y S and Hu C 2014 Modeling of GaN-based normally-off FinFET IEEE Electron Device Lett. 35 612–4

[299]

Lee B-H, Hur J, Kang M-H, Bang T, Ahn D-C, Lee D, Kim K-H and Choi Y-K 2016 A vertically integrated junctionless nanowire transistor Nano Lett. 16 1840–7

[300]

Lee B-H, Kang M-H, Ahn D-C, Park J-Y, Bang T, Jeon S-B, Hur J, Lee D and Choi Y-K 2015 Vertically integrated multiple nanowire field effect transistor Nano Lett. 15 8056–61

[301]

Gaudenzi R, de Bruijckere J, Reta D, Moreira I D P R, Rovira C, Veciana J, van der Zant H S J and Burzurí E 2017 Redox-induced gating of the exchange interactions in a single organic diradical ACS Nano 11 5879–83

[302]

Hofmeister C, Härtle R, Rubio-Pons Ó, Coto P B, Sobolewski A L and Thoss M 2014 Switching the conductance of a molecular junction using a proton transfer reaction J. Mol. Model. 20 2163

[303]

Weckbecker D, Coto P B and Thoss M 2021 Molecular transistor controlled through proton transfer J. Phys. Chem. Lett. 12 413–7

[304]

Zhang J, Kuznetsov A M, Medvedev I G, Chi Q, Albrecht T, Jensen P S and Ulstrup J 2008 Single-molecule electron transfer in electrochemical environments Chem. Rev. 108 2737–91

[305]

Lovat G, Choi B, Paley D W, Steigerwald M L, Venkataraman L and Roy X 2017 Room-temperature current blockade in atomically defined single-cluster junctions Nat. Nanotechnol. 12 1050–4

[306]

Xin N, Li X, Jia C, Gong Y, Li M, Wang S, Zhang G, Yang J and Guo X 2018 Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating Angew. Chem., Int. Ed. 57 14026–31

[307]

Sanvito S 2011 Molecular spintronics Chem. Soc. Rev. 40 3336–55

[308]

Naaman R and Waldeck D H 2015 Spintronics and chirality: spin selectivity in electron transport through chiral molecules Annu. Rev. Phys. Chem. 66 263–81

[309]

Senthil Kumar K and Ruben M 2017 Emerging trends in spin crossover (SCO) based functional materials and devices Coord. Chem. Rev. 346 176–205

[310]

Brooke R J, Jin C, Szumski D S, Nichols R J, Mao B-W, Thygesen K S and Schwarzacher W 2015 Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface Nano Lett. 15 275–80

[311]

Li J, Wu Q, Xu W, Wang H-C, Zhang H, Chen Y, Tang Y, Hou S, Lambert C J and Hong W 2021 Room-temperature single-molecule conductance switch via confined coordination-induced spin-state manipulation CCS Chem. 1744–52

[312]

Naaman R and Waldeck D H 2012 Chiral-induced spin selectivity effect J. Phys. Chem. Lett. 3 2178–87

[313]

Suda M, Thathong Y, Promarak V, Kojima H, Nakamura M, Shiraogawa T, Ehara M and Yamamoto H M 2019 Light-driven molecular switch for reconfigurable spin filters Nat. Commun. 10 2455

[314]

Zou D, Zhao W, Cui B, Li D and Liu D 2018 Adsorption of gas molecules on a manganese phthalocyanine molecular device and its possibility as a gas sensor Phys. Chem. Chem. Phys. 20 2048–56

[315]

Huang X et al 2019 Electric field–induced selective catalysis of single-molecule reaction Sci. Adv. 5 eaaw3072

[316]

Moreno-Pineda E, Klyatskaya S, Du P, Damjanović M, Taran G, Wernsdorfer W and Ruben M 2018 Observation of cooperative electronic quantum tunneling: increasing accessible nuclear states in a molecular qudit Inorg. Chem. 57 9873–9

[317]

Wernsdorfer W and Ruben M 2019 Synthetic Hilbert space engineering of molecular qudits: isotopologue chemistry Adv. Mater. 31 1806687

[318]

Winkelmann C B, Roch N, Wernsdorfer W, Bouchiat V and Balestro F 2009 Superconductivity in a single-C60 transistor Nat. Phys. 5 876–9

[319]

Goswami S et al 2020 Charge disproportionate molecular redox for discrete memristive and memcapacitive switching Nat. Nanotechnol. 15 380–9

[320]

Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M and Wernsdorfer W 2014 Electrically driven nuclear spin resonance in single-molecule magnets Science 344 1135–8

International Journal of Extreme Manufacturing
Pages 022003-022003
Cite this article:
Zhao Y, Liu W, Zhao J, et al. The fabrication, characterization and functionalization in molecular electronics. International Journal of Extreme Manufacturing, 2022, 4(2): 022003. https://doi.org/10.1088/2631-7990/ac5f78

487

Views

7

Downloads

35

Crossref

31

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 11 November 2021
Revised: 04 January 2022
Accepted: 21 March 2022
Published: 08 June 2022
© 2022 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return