AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles

Xiao LiuYu SuRong Chen ( )
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037, Luoyu Road, Wuhan, Hubei, People’s Republic of China
Show Author Information

Abstract

Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalytic and energy materials are essential as the significant portions in the key technologies of eco-friendly vehicles, such as the exhaust emission control system, power lithium ion battery and hydrogen fuel cell. Precise synthesis and surface modification of the functional materials and electrodes are required to satisfy the efficient surface and interface catalysis, as well as rapid electron/ion transport. Atomic layer deposition (ALD), an atomic and close-to-atomic scale manufacturing method, shows unique characteristics of precise thickness control, uniformity and conformality for film deposition, which has emerged as an important technique to design and engineer advanced catalytic and energy materials. This review has summarized recent process of ALD on the controllable preparation and modification of metal and oxide catalysts, as well as lithium ion battery and fuel cell electrodes. The enhanced catalytic and electrochemical performances are discussed with the unique nanostructures prepared by ALD. Recent works on ALD reactors for mass production are highlighted. The challenges involved in the research and development of ALD on the future practical applications are presented, including precursor and deposition process investigation, practical device performance evaluation, large-scale and efficient production, etc.

References

[1]

Datye A K and Votsmeier M 2021 Opportunities and challenges in the development of advanced materials for emission control catalysts Nat. Mater. 20 1049–59

[2]

Du J Y, Ouyang M G and Chen J F 2017 Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality Energy 120 584–96

[3]

Wagner F T, Lakshmanan B and Mathias M F 2010 Electrochemistry and the future of the automobile J. Phys. Chem. Lett. 1 2204–19

[4]

Luo Y, Wu Y H, Li B, Mo T D, Li Y, Feng S P, Qu J K and Chu P K 2021 Development and application of fuel cells in the automobile industry J. Energy Storage 42 103124

[5]

Wang J Y, Wang H L and Fan Y 2018 Techno-economic challenges of fuel cell commercialization Engineering 4 352–60

[6]

Beniya A and Higashi S 2019 Towards dense single-atom catalysts for future automotive applications Nat. Catal. 2 590–602

[7]

Zubi G, Dufo-López R, Carvalho M and Pasaoglu G 2018 The lithium-ion battery: state of the art and future perspectives Renew. Sustain. Energy Rev. 89 292–308

[8]

Zeng X Q, Li M, El-Hady D A, Alshitari W, Al-Bogami A S, Lu J and Amine K 2019 Commercialization of lithium battery technologies for electric vehicles Adv. Energy Mater. 9 1900161

[9]

Debe M K 2012 Electrocatalyst approaches and challenges for automotive fuel cells Nature 486 43–51

[10]

Yoshida T and Kojima K 2015 Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society Electrochem. Soc. Interface 24 45–49

[11]

Nie L et al 2017 Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation Science 358 1419–23

[12]

Liu L C and Corma A 2018 Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles Chem. Rev. 118 4981–5079

[13]

Ren X F, Wang Y R, Liu A M, Zhang Z H, Lv Q Y and Liu B H 2020 Current progress and performance improvement of Pt/C catalysts for fuel cells J. Mater. Chem. A 8 24284–306

[14]

Wang X X, Swihart M T and Wu G 2019 Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation Nat. Catal. 2 578–89

[15]

Lambert C K 2019 Current state of the art and future needs for automotive exhaust catalysis Nat. Catal. 2 554–7

[16]

Feng X N, Ren D S, He X M and Ouyang M G 2020 Mitigating thermal runaway of lithium-ion batteries Joule 4 743–70

[17]

Ding Y, Mu D B, Wu B R, Wang R, Zhao Z K and Wu F 2017 Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles Appl. Energy 195 586–99

[18]

Kodama K, Nagai T, Kuwaki A, Jinnouchi R and Morimoto Y 2021 Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles Nat. Nanotechnol. 16 140–7

[19]

Stamenkovic V R, Strmcnik D, Lopes P P and Markovic N M 2017 Energy and fuels from electrochemical interfaces Nat. Mater. 16 57–69

[20]

Zhang J M, Li Y C, Cao K and Chen R 2022 Advances in atomic layer deposition Nanomanuf. Metrol. 5 191–208

[21]
Suntola T and Antson J 1977 Method for producingcompound thin films U. S. Patent. No. 4, 058, 430
[22]

George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31

[23]

Johnson R W, Hultqvist A and Bent S F 2014 A brief review of atomic layer deposition: from fundamentals to applications Mater. Today 17 236–46

[24]

Chen R, Li Y C, Cai J M, Cao K and Lee H B R 2020 Atomic level deposition to extend Moore's law and beyond Int. J. Extreme Manuf. 2 022002

[25]

Gray J M, Houlton J P, Gertsch J C, Brown J J, Rogers C T, George S M and Bright V M 2014 Hemispherical micro-resonators from atomic layer deposition J. Micromech. Microeng. 24 125028

[26]

Ives R L, Oldham C J, Daubert J S, Gremaud A P, Collins G, Marsden D, Bui T, Fusco M A, Mitsdarffer B and Parsons G N 2018 Corrosion mitigation coatings for RF sources and components IEEE Trans. Electron Devices 65 2385–92

[27]

Lin Y C, Chung V P J, Santhanam S, Mukherjee T and Fedder G K 2020 Sidewall metallization on CMOS MEMS by platinum ALD patterning J. Microelectromech. Syst. 29 978–83

[28]

Wooding J P, Li Y, Kalaitzidou K and Losego M D 2020 Engineering the interfacial chemistry and mechanical properties of cellulose-reinforced epoxy composites using atomic layer deposition (ALD) Cellulose 27 6275–85

[29]

Rodríguez R E, Lee T H, Chen Y X, Kazyak E, Huang C, Cho T H, LePage W S, Thouless M D, Banu M and Dasgupta N P 2021 Electrically conductive kevlar fibers and polymer-matrix composites enabled by atomic layer deposition ACS Appl. Polym. Mater. 3 5959–68

[30]

Mousa M B M, Oldham C J and Parsons G N 2015 Precise nanoscale surface modification and coating of macroscale objects: open-environment in loco atomic layer deposition on an automobile ACS Appl. Mater. Interfaces 7 19523–9

[31]

Niu W B, Zhang L L, Wang Y P and Zhang S F 2019 Multicolored one-dimensional photonic crystal coatings with excellent mechanical robustness, strong substrate adhesion, and liquid and particle impalement resistance J. Mater. Chem. C 7 3463–70

[32]

Gupta B, Hossain A, Riaz A, Sharma A, Zhang D D, Tan H H, Jagadish C, Catchpole K, Hoex B and Karuturi S 2022 Recent advances in materials design using atomic layer deposition for energy applications Adv. Funct. Mater. 32 2109105

[33]

Gandla D and Tan D Q 2019 Progress report on atomic layer deposition toward hybrid nanocomposite electrodes for next generation supercapacitors Adv. Mater. Interfaces 6 1900678

[34]

Zhao Z, Huang G S, Kong Y, Cui J Z, Solovev A A, Li X F and Mei Y F 2022 Atomic layer deposition for electrochemical energy: from design to industrialization Electrochem. Energy Rev. 5 31

[35]

Li Z D, Su J J and Wang X D 2021 Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices Carbon 179 299–326

[36]

Liu H Z, Zhang G H, Zheng X, Chen F J and Duan H G 2020 Emerging miniaturized energy storage devices for microsystem applications: from design to integration Int. J. Extreme Manuf. 2 042001

[37]

Lv Z S, Li W L, Wei J Q, Ho F, Cao J and Chen X D 2023 Autonomous chemistry enabling environment-adaptive electrochemical energy storage devices CCS Chem. 5 11–29

[38]
Chen R, Shan B, Liu X and Cao K 2020 Catalysts via atomic layer deposition Recent Advances in Nanoparticle Catalysis ed P W N M Van Leeuwen and C Claver (Cham: Springer) pp 69–105
[39]

Li Z S, Li J W, Liu X and Chen R 2021 Progress in enhanced fluidization process for particle coating via atomic layer deposition Chem. Eng. Process. Process Intensif. 159 108234

[40]

Longrie D, Deduytsche D and Detavernier C 2014 Reactor concepts for atomic layer deposition on agitated particles: a review J. Vac. Sci. Technol. A 32 010802

[41]

Adhikari S, Selvaraj S and Kim D H 2018 Progress in powder coating technology using atomic layer deposition Adv. Mater. Interfaces 5 1800581

[42]

Didden A P, Middelkoop J, Besling W F A, Nanu D E and van de Krol R 2014 Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles Rev. Sci. Instrum. 85 013905

[43]

Onn T M, Küngas R, Fornasiero P, Huang K and Gorte R J 2018 Atomic layer deposition on porous materials: problems with conventional approaches to catalyst and fuel cell electrode preparation Inorganics 6 34

[44]

Weimer A W 2019 Particle atomic layer deposition J. Nanopart. Res. 21 9

[45]

Van Bui H, Grillo F and van Ommen J R 2017 Atomic and molecular layer deposition: off the beaten track Chem. Commun. 53 45–71

[46]

Hu Y Y, Lu J and Feng H 2021 Surface modification and functionalization of powder materials by atomic layer deposition: a review RSC Adv. 11 11918–42

[47]

Parsons G N, Elam J W, George S M, Haukka S, Jeon H, Kessels W M M, Leskelä M, Poodt P, Ritala M and Rossnagel S M 2013 History of atomic layer deposition and its relationship with the American Vacuum Society J. Vac. Sci. Technol. A 31 050818

[48]

O'Neill B J, Jackson D H K, Lee J, Canlas C, Stair P C, Marshall C L, Elam J W, Kuech T F, Dumesic J A and Huber G W 2015 Catalyst design with atomic layer deposition ACS Catal. 5 1804–25

[49]

Cao K, Cai J M, Liu X and Chen R 2018 Review Article: catalysts design and synthesis via selective atomic layer deposition J. Vac. Sci. Technol. A 36 010801

[50]

Jung Y S, Cavanagh A S, Gedvilas L, Widjonarko N E, Scott I D, Lee S H, Kim G H, George S M and Dillon A C 2012 Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes Adv. Energy Mater. 2 1022–7

[51]

Elam J W, Dasgupta N P and Prinz F B 2011 ALD for clean energy conversion, utilization, and storage MRS Bull. 36 899–906

[52]

Lee M J et al 2022 Powder coatings via atomic layer deposition for batteries: a review Chem. Mater. 34 3539–87

[53]

Wang C L, Gu X K, Yan H, Lin Y, Li J J, Liu D D, Li W X and Lu J L 2017 Water-mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst ACS Catal. 7 887–91

[54]

Ye X X, Wang H W, Lin Y, Liu X Y, Cao L N, Gu J and Lu J L 2019 Insight of the stability and activity of platinum single atoms on ceria Nano Res. 12 1401–9

[55]

Liu X, Jia S F, Yang M, Tang Y T, Wen Y W, Chu S Q, Wang J B, Shan B and Chen R 2020 Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation Nat. Commun. 11 4240

[56]

Hoang S, Lu X X, Tang W X, Wang S B, Du S C, Nam C Y, Ding Y, Vinluan III R D, Zheng J and Gao P X 2019 High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs Catal. Today 320 2–10

[57]

Tang W X, Lu X X, Liu F Y, Du S C, Weng J F, Hoang S, Wang S B, Nam C Y and Gao P X 2019 Ceria-based nanoflake arrays integrated on 3D cordierite honeycombs for efficient low-temperature diesel oxidation catalyst Appl. Catal. B 245 623–34

[58]

Li J H, Liang X H, King D M, Jiang Y B and Weimer A W 2010 Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition Appl. Catal. B 97 220–6

[59]

Enterkin J A, Setthapun W, Elam J W, Christensen S T, Rabuffetti F A, Marks L D, Stair P C, Poeppelmeier K R and Marshall C L 2011 Propane oxidation over Pt/SrTiO3 nanocuboids ACS Catal. 1 629–35

[60]

Chen B R et al 2018 Morphology and CO oxidation activity of Pd nanoparticles on SrTiO3 nanopolyhedra ACS Catal. 8 4751–60

[61]

Liu X, Tang Y T, Shen M Q, Li W, Chu S Q, Shan B and Chen R 2018 Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition Chem. Sci. 9 2469–73

[62]

Zuo Y Q et al 2022 Synthesis of a spatially confined, highly durable, and fully exposed Pd cluster catalyst via sequential site-selective atomic layer deposition ACS Appl. Mater. Interfaces 14 14466–73

[63]

Onn T M, Zhang S Y, Arroyo-Ramirez L, Xia Y, Wang C, Pan X Q, Graham G W and Gorte R J 2017 High-surface-area ceria prepared by ALD on Al2O3 support Appl. Catal. B 201 430–7

[64]

Mao X Y, Foucher A, Stach E A and Gorte R J 2019 A study of support effects for CH4 and CO oxidation over Pd catalysts on ALD-modified Al2O3 Catal. Lett. 149 905–15

[65]

Onn T M, Dai S, Chen J Y, Pan X Q, Graham G W and Gorte R J 2017 High-surface area ceria-zirconia films prepared by atomic layer deposition Catal. Lett. 147 1464–70

[66]

Mao X Y, Foucher A C, Montini T, Stach E A, Fornasiero P and Gorte R J 2020 Epitaxial and strong support interactions between Pt and LaFeO3 films stabilize Pt dispersion J. Am. Chem. Soc. 142 10373–82

[67]

Lin C, Foucher A C, Ji Y C, Curran C D, Stach E A, McIntosh S and Gorte R J 2019 "Intelligent" Pt catalysts studied on high-surface-area CaTiO3 films ACS Catal. 9 7318–27

[68]

Mao X Y, Foucher A C, Stach E A and Gorte R J 2019 "Intelligent" Pt catalysts based on thin LaCoO3 films prepared by atomic layer deposition Inorganics 7 113

[69]

Onn T M, Monai M, Dai S, Fonda E, Montini T, Pan X Q, Graham G W, Fornasiero P and Gorte R J 2018 Smart Pd catalyst with improved thermal stability supported on high-surface-area LaFeO3 prepared by atomic layer deposition J. Am. Chem. Soc. 140 4841–8

[70]

Duan H M, You R, Xu S T, Li Z R, Qian K, Cao T, Huang W X and Bao X H 2019 Pentacoordinated Al3+-stabilized active Pd structures on Al2O3-coated palladium catalysts for methane combustion Angew. Chem. Int. Ed. 58 12043–8

[71]

Cui W H, Li S D, Wang D D, Deng Y Z and Chen Y F 2019 High reactivity and sintering resistance of CH4 oxidation over modified Pd/Al2O3 Catal. Commun. 119 86–90

[72]

Liang X H, Li J H, Yu M, McMurray C N, Falconer J L and Weimer A W 2011 Stabilization of supported metal nanoparticles using an ultrathin porous shell ACS Catal. 1 1162–5

[73]

Onn T M, Zhang S Y, Arroyo-Ramirez L, Chung Y C, Graham G W, Pan X Q and Gorte R J 2015 Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2 ACS Catal. 5 5696–701

[74]

Onn T M, Arroyo-Ramirez L, Monai M, Oh T S, Talati M, Fornasiero P, Gorte R J and Khader M M 2016 Modification of Pd/CeO2 catalyst by atomic layer deposition of ZrO2 Appl. Catal. B 197 280–5

[75]

Lee S, Lin C, Kim S, Mao X Y, Kim T, Kim S J, Gorte R J and Jung W 2021 Manganese oxide overlayers promote CO oxidation on Pt ACS Catal. 11 13935–46

[76]

Liu X, Zhu Q Q, Lang Y, Cao K, Chu S Q, Shan B and Chen R 2017 Oxide-nanotrap-anchored platinum nanoparticles with high activity and sintering resistance by area-selective atomic layer deposition Angew. Chem. Int. Ed. 56 1648–52

[77]

Cao K, Shi L, Gong M, Cai J M, Liu X, Chu S Q, Lang Y, Shan B and Chen R 2017 Nanofence stabilized platinum nanoparticles catalyst via facet-selective atomic layer deposition Small 13 1700648

[78]

Cai J M, Zhang J, Cao K, Gong M, Lang Y, Liu X, Chu S Q, Shan B and Chen R 2018 Selective passivation of Pt nanoparticles with enhanced sintering resistance and activity toward CO oxidation via atomic layer deposition ACS Appl. Nano Mater. 1 522–30

[79]

Wang X F, Jin B T, Jin Y, Wu T P, Ma L and Liang X H 2020 Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions ACS Appl. Nano Mater. 3 2867–74

[80]

Han S W, Kim D H, Jeong M G, Park K J and Kim Y D 2016 CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature Chem. Eng. J. 283 992–8

[81]

Jackson D H K, Schwartz M M, Ngo C, Facteau D, Pylypenko S, Marshall C L and Dameron A A 2019 Hydrocarbon catalyzed-selective catalytic reduction catalysts using core-shell atomic layer deposited CeO2 and ZrO2 J. Vac. Sci. Technol. A 37 020919

[82]

Shen J and Hess C 2020 High surface area VOx/TiO2/SBA-15 model catalysts for ammonia SCR prepared by atomic layer deposition Catalysts 10 1386

[83]

Sun L W, Li K, Zhang Z S, Hu X F, Tian H Y, Zhang Y B and Yang X G 2019 MnO2-Graphene-oxide-scroll-TiO2 composite catalyst for low-temperature NH3-SCR of NO with good steam and SO2 resistance obtained by low-temperature carbon-coating and selective atomic layer deposition Catal. Sci. Technol. 9 1602–8

[84]

Tian H Y, Ping Y, Zhang Y B, Zhang Z S, Sun L W, Liu P, Zhu J J and Yang X G 2021 Atomic layer deposition of silica to improve the high-temperature hydrothermal stability of Cu-SSZ-13 for NH3 SCR of NOx J. Hazard. Mater. 416 126194

[85]

Qi X R, Han L P, Deng J, Lan T W, Wang F L, Shi L Y and Zhang D S 2022 SO2-tolerant catalytic reduction of NOx via tailoring electron transfer between surface iron sulfate and subsurface ceria Environ. Sci. Technol. 56 5840–8

[86]

Ivanova T V, Toivonen J, Maydannik P S, Kääriäinen T, Sillanpää M, Homola T and Cameron D C 2016 Atomic layer deposition of cerium oxide for potential use in diesel soot combustion J. Vac. Sci. Technol. A 34 031506

[87]

Ivanova T V, Homola T, Bryukvin A and Cameron D C 2018 Catalytic performance of Ag2O and Ag doped CeO2 prepared by atomic layer deposition for diesel soot oxidation Coatings 8 237

[88]

Mackus A J M, Weber M J, Thissen N F W, Garcia-Alonso D, Vervuurt R H J, Assali S, Bol A A, Verheijen M A and Kessels W M M 2016 Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation Nanotechnology 27 034001

[89]

Gould T D, Lubers A M, Corpuz A R, Weimer A W, Falconer J L and Medlin J W 2015 Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition ACS Catal. 5 1344–52

[90]

Yan H et al 2017 Bottom-up precise synthesis of stable platinum dimers on graphene Nat. Commun. 8 1070

[91]

Lu J L 2022 Atomic lego catalysts synthesized by atomic layer deposition Acc. Mater. Res. 3 358–68

[92]

Li X et al 2022 Functional CeOx nanoglues for robust atomically dispersed catalysts Nature 611 284–8

[93]

Xie S H et al 2022 Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation J. Am. Chem. Soc. 144 21255–66

[94]

Lu Y B, Zhang Z H, Lin F, Wang H M and Wang Y 2020 Single-atom automobile exhaust catalysts ChemNanoMat 6 1659–82

[95]

Jones J et al 2016 Thermally stable single-atom platinum-on-ceria catalysts via atom trapping Science 353 150–4

[96]

Yan D X, Chen J and Jia H P 2020 Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst Angew. Chem. Int. Ed. 59 13562–7

[97]

Jeong H, Kwon O, Kim B S, Bae J, Shin S, Kim H E, Kim J and Lee H 2020 Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts Nat. Catal. 3 368–75

[98]

Kim C H, Qi G S, Dahlberg K and Li W 2010 Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust Science 327 1624–7

[99]

Wang W C et al 2012 Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust Science 337 832–5

[100]

Chen Z Z, Liu X, Cho K, Chen R and Shan B 2015 Density functional theory study of the oxygen chemistry and NO oxidation mechanism on low-index surfaces of SmMn2O5 mullite ACS Catal. 5 4913–26

[101]

Liu X, Yang J Q, Shen G R, Shen M Q, Zhao Y K, Cho K, Shan B and Chen R 2019 Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity Nanoscale 11 8150–9

[102]

Mao X Y, Lin C, Graham G W and Gorte R J 2020 A perspective on thin-film perovskites as supports for metal catalysts ACS Catal. 10 8840–9

[103]

Lin C, Foucher A C, Ji Y C, Stach E A and Gorte R J 2020 Investigation of Rh-titanate (ATiO3) interactions on high-surface-area perovskite thin films prepared by atomic layer deposition J. Mater. Chem. A 8 16973–84

[104]

Lu J L, Liu B, Greeley J P, Feng Z X, Libera J A, Lei Y, Bedzyk M J, Stair P C and Elam J W 2012 Porous alumina protective coatings on palladium nanoparticles by self-poisoned atomic layer deposition Chem. Mater. 24 2047–55

[105]

Lu J L, Fu B S, Kung M C, Xiao G M, Elam J W, Kung H H and Stair P C 2012 Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition Science 335 1205–8

[106]

Lu J L and Stair P C 2010 Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles Angew. Chem. Int. Ed. 49 2547–51

[107]

Canlas C P, Lu J L, Ray N A, Grosso-Giordano N A, Lee S, Elam J W, Winans R E, Van Duyne R P, Stair P C and Notestein J M 2012 Shape-selective sieving layers on an oxide catalyst surface Nat. Chem. 4 1030–6

[108]

Piernavieja-Hermida M, Lu Z, White A, Low K B, Wu T P, Elam J W, Wu Z L and Lei Y 2016 Towards ALD thin film stabilized single-atom Pd1 catalysts Nanoscale 8 15348–56

[109]

Zhang S F et al 2022 Surface isolation of single metal complexes or clusters by a coating sieving layer via atomic layer deposition Cell Rep. Phys. Sci. 3 100787

[110]

Wen Y W, Cai J M, Zhang J, Yang J Q, Shi L, Cao K, Chen R and Shan B 2019 Edge-selective growth of MCp2 (M = Fe, Co, and Ni) precursors on Pt nanoparticles in atomic layer deposition: a combined theoretical and experimental study Chem. Mater. 31 101–11

[111]

Yang J Q, Cao K, Hu Q, Wen Y W, Liu X, Chen R and Shan B 2020 Unravelling the selective growth mechanism of AlOx with dimethylaluminum isopropoxide as a precursor in atomic layer deposition: a combined theoretical and experimental study J. Mater. Chem. A 8 4308–17

[112]

Cai J M, Merkx M J M, Lan Y X, Jing Y, Cao K, Wen Y W, Kessels W M M, Mackus A J M and Chen R 2021 Dependence of inherent selective atomic layer deposition of FeOx on Pt nanoparticles on the coreactant and temperature J. Vac. Sci. Technol. A 39 012404

[113]

Gao Z and Qin Y 2017 Design and properties of confined nanocatalysts by atomic layer deposition Acc. Chem. Res. 50 2309–16

[114]

Xu D et al 2017 Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics Catal. Sci. Technol. 7 1342–50

[115]

Gao Z, Dong M, Wang G Z, Sheng P, Wu Z W, Yang H M, Zhang B, Wang G F, Wang J G and Qin Y 2015 Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions Angew. Chem. Int. Ed. 54 9006–10

[116]

Wang M H, Gao Z, Zhang B, Yang H M, Qiao Y, Chen S, Ge H B, Zhang J K and Qin Y 2016 Ultrathin coating of confined Pt nanocatalysts by atomic layer deposition for enhanced catalytic performance in hydrogenation reactions Chem. Eur. J. 22 8438–43

[117]

Gao Y, Park J and Liang X H 2018 Synergic titanium nitride coating and titanium doping by atomic layer deposition for stable- and high-performance Li-Ion battery J. Electrochem. Soc. 165 A3871–7

[118]

Lee D S H, Im W B and Liang X H 2019 High density conductive LiFePO4 cathode with enhanced high-rate and high temperature performance Mater. Chem. Phys. 232 367–73

[119]

Jin Y, Yu H, He X Q and Liang X H 2022 Stabilizing the interface of all-solid-state electrolytes against cathode electrodes by atomic layer deposition ACS Appl. Energy Mater. 5 760–9

[120]

Shi Y, Zhang M H, Qian D N and Meng Y S 2016 Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material Electrochim. Acta 203 154–61

[121]

Zhao L N, Chen G R, Weng Y H, Yan T T, Shi L Y, An Z X and Zhang D S 2020 Precise Al2O3 coating on LiNi0.5Co0.2Mn0.3O2 by atomic layer deposition restrains the shuttle effect of transition metals in Li-ion capacitors Chem. Eng. J. 401 126138

[122]

Ahn J, Jang E K, Yoon S, Lee S J, Sung S J, Kim D H and Cho K Y 2019 Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries Appl. Surf. Sci. 484 701–9

[123]

Kong J Z, Wang S S, Tai G A, Zhu L, Wang L G, Zhai H F, Wu D, Li A D and Li H 2016 Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating J. Alloys Compd. 657 593–600

[124]

Kong J Z, Ren C, Tai G A, Zhang X, Li A D, Wu D, Li H and Zhou F 2014 Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material J. Power Sources 266 433–9

[125]

Neudeck S, Mazilkin A, Reitz C, Hartmann P, Janek J and Brezesinski T 2019 Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries Sci. Rep. 9 5328

[126]

Wang X, Cai J Y, Liu Y Q, Han X X, Ren T, Li J L, Liu Y Z and Meng X B 2021 Atomic-scale constituting stable interface for improved LiNi0.6Mn0.2Co0.2O2 cathodes of lithium-ion batteries Nanotechnology 32 115401

[127]

Kong J Z, Chen Y, Cao Y Q, Wang Q Z, Li A D, Li H and Zhou F 2019 Enhanced electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating J. Alloys Compd. 799 89–98

[128]

Li J W, Xiang J R, Yi G, Tang Y T, Shao H C, Liu X, Shan B and Chen R 2022 Reduction of surface residual lithium compounds for single-crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 atomic layer deposition and post-annealing Coatings 12 84

[129]

Qin C C, Cao J L, Chen J, Dai G L, Wu T F, Chen Y B, Tang Y F, Li A D and Chen Y F 2016 Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating Dalton Trans. 45 9669–75

[130]

Mohanty D et al 2016 Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries Sci. Rep. 6 26532

[131]

Zhu W C, Huang X, Liu T T, Xie Z Q, Wang Y, Tian K, Bu L M, Wang H B, Gao L J and Zhao J Q 2019 Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges Coatings 9 92

[132]

Shi Y, Xing Y J, Kim K, Yu T, Lipson A L, Dameron A and Connell J G 2021 Communication-reduction of DC resistance of Ni-rich lithium transition metal oxide cathode by atomic layer deposition J. Electrochem. Soc. 168 040501

[133]

Tesfamhret Y, Younesi R and Berg E J 2022 Influence of Al2O3 coatings on HF induced transition metal dissolution from lithium-ion cathodes J. Electrochem. Soc. 169 010530

[134]

Liu Y, Liu W B, Zhu M Y, Li Y, Li W X, Zheng F, Shen L Y, Dang M Y and Zhang J J 2021 Coating ultra-thin TiN layer onto LiNi0.8Co0.1Mn0.1O2 cathode material by atomic layer deposition for high-performance lithium-ion batteries J. Alloys Compd. 888 161594

[135]

Xie J et al 2017 Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling ACS Nano 11 7019–27

[136]

Akella S H, Taragin S, Wang Y, Aviv H, Kozen A C, Zysler M, Wang L L, Sharon D, Lee S B and Noked M 2021 Improvement of the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 via atomic layer deposition of lithium-rich zirconium phosphate coatings ACS Appl. Mater. Interfaces 13 61733–41

[137]

Xiao X C, Ahn D, Liu Z Y, Kim J H and Lu P 2013 Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries Electrochem. Commun. 32 31–34

[138]

Kim J W, Kim D H, Oh D Y, Lee H, Kim J H, Lee J H and Jung Y S 2015 Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries J. Power Sources 274 1254–62

[139]

Lee B Y, Krajewski M, Huang M K, Hasin P and Lin J Y 2021 Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature J. Solid State Electrochem. 25 2665–74

[140]

Xiao B W et al 2017 Nanoscale manipulation of spinel lithium nickel manganese oxide surface by multisite Ti occupation as high-performance cathode Adv. Mater. 29 1703764

[141]

Østli E R, Ebadi M, Tesfamhret Y, Mahmoodinia M, Lacey M J, Brandell D, Svensson A M, Selbach S M and Wagner N P 2022 On the durability of protective titania coatings on high-voltage spinel cathodes ChemSusChem 15 e202200324

[142]

Patel R L, Palaparty S A and Liang X H 2017 Ultrathin conductive CeO2 coating for significant improvement in electrochemical performance of LiMn1.5Ni0.5O4 cathode materials J. Electrochem. Soc. 164 A6236–43

[143]

Gao Y, He X Q, Ma L, Wu T P, Park J and Liang X H 2020 Understanding cation doping achieved by atomic layer deposition for high-performance Li-Ion batteries Electrochim. Acta 340 135951

[144]

Park J S, Meng X B, Elam J W, Hao S Q, Wolverton C, Kim C and Cabana J 2014 Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries Chem. Mater. 26 3128–34

[145]

Tiurin O, Solomatin N, Auinat M and Ein-Eli Y 2020 Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material J. Power Sources 448 227373

[146]

Deng S X et al 2017 New insight into atomic-scale engineering of electrode surface for long-life and safe high voltage lithium ion cathodes Nano Energy 38 19–27

[147]

Deng S X et al 2019 Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes Nano Energy 65 103988

[148]

Liu J, Banis M N, Sun Q, Lushington A, Li R Y, Sham T K and Sun X L 2014 Rational design of atomic-layer-deposited LiFePO4 as a high-performance cathode for lithium-ion batteries Adv. Mater. 26 6472–7

[149]

Gao H, Cai J Y, Xu G L, Li L X, Ren Y, Meng X B, Amine K and Chen Z H 2019 Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode Chem. Mater. 31 2723–30

[150]

Qureshi Z A, Tariq H A, Shakoor R A, Kahraman R and AlQaradawi S 2022 Impact of coatings on the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials: a focused review Ceram. Int. 48 7374–92

[151]

Gao Y, Yu H, Sandineni P, He X Q, Choudhury A, Park J and Liang X H 2021 Fe doping in LiMn1.5Ni0.5O4 by atomic layer deposition followed by annealing: depths and occupation sites J. Phys. Chem. C 125 7560–7

[152]

Zhang H, Yang Y, Ren D S, Wang L and He X M 2021 Graphite as anode materials: fundamental mechanism, recent progress and advances Energy Storage Mater. 36 147–70

[153]

Jung Y S, Cavanagh A S, Riley L A, Kang S H, Dillon A C, Groner M D, George S M and Lee S H 2010 Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries Adv. Mater. 22 2172–6

[154]

Wang H Y and Wang F M 2013 Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode J. Power Sources 233 1–5

[155]

Jung Y S, Lu P, Cavanagh A S, Ban C M, Kim G H, Lee S H, George S M, Harris S J and Dillon A C 2013 Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries Adv. Energy Mater. 3 213–9

[156]

Zou F, Nallan H C, Dolocan A, Xie Q, Li J Y, Coffey B M, Ekerdt J G and Manthiram A 2021 Long-life LiNi0.5Mn1.5O4/graphite lithium-ion cells with an artificial graphite-electrolyte interface Energy Storage Mater. 43 499–508

[157]

Li Y, Sun Y J, Xu G J, Lu Y, Zhang S, Xue L G, Jur J S and Zhang X W 2014 Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating J. Mater. Chem. A 2 11417–25

[158]

Ren J G, Wu Q H, Hong G, Zhang W J, Wu H M, Amine K, Yang J B and Lee S T 2013 Silicon-graphene composite anodes for high-energy lithium batteries Energy Technol. 1 77–84

[159]

Xiong S, Qian X F, Zhong Z X and Wang Y 2022 Atomic layer deposition for membrane modification, functionalization and preparation: a review J. Membrane Sci. 658 120740

[160]

Wang F F, Ke X Y, Shen K, Zhu L and Yuan C 2022 A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries Adv. Mater. Technol. 7 2100772

[161]

Wang X R and Yushin G 2015 Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors Energy Environ. Sci. 8 1889–904

[162]

Chen H, Lin Q, Xu Q, Yang Y, Shao Z P and Wang Y 2014 Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries J. Membrane Sci. 458 217–24

[163]

Shen X et al 2018 Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries Appl. Surf. Sci. 441 165–73

[164]

Wang W, Yuan Y, Wang J L, Zhang Y, Liao C, Mu X W, Sheng H B, Kan Y C, Song L and Hu Y 2019 Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDF-HFP separator ACS Appl. Energy Mater. 2 4167–74

[165]

Chao C-H et al 2021 Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries J. Power Sources 482 228896

[166]

Liu C, Wang C C, Kei C C, Hsueh Y C and Perng T P 2009 Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells Small 5 1535–8

[167]

Hsueh Y C, Wang C C, Kei C C, Lin Y H, Liu C and Perng T P 2012 Fabrication of catalyst by atomic layer deposition for high specific power density proton exchange membrane fuel cells J. Catal. 294 63–68

[168]

Shu T, Liao S J, Hsieh C T, Roy A K, Liu Y Y, Tzou D Y and Chen W Y 2012 Fabrication of platinum electrocatalysts on carbon nanotubes using atomic layer deposition for proton exchange membrane fuel cells Electrochim. Acta 75 101–7

[169]

Hsieh C T, Liu Y Y, Tzou D Y and Chen W Y 2012 Atomic layer deposition of platinum nanocatalysts onto three-dimensional carbon nanotube/graphene hybrid J. Phys. Chem. C 116 26735–43

[170]

Lee W J, Bera S, Shin H C, Hong W P, Oh S J, Wan Z X and Kwon S H 2019 Uniform and size-controlled synthesis of Pt nanoparticle catalyst by fluidized bed reactor atomic layer deposition for PEMFCs Adv. Mater. Interfaces 6 1901210

[171]

Lee W J, Bera S, Kim C M, Koh E K, Hong W P, Oh S J, Cho E and Kwon S H 2020 Synthesis of highly dispersed Pt nanoparticles into carbon supports by fluidized bed reactor atomic layer deposition to boost PEMFC performance NPG Asia Mater. 12 40

[172]

Gan J, Zhang J K, Zhang B Y, Chen W Y, Niu D F, Qin Y, Duan X Z and Zhou X G 2020 Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition J. Energy Chem. 45 59–66

[173]

Xu S C et al 2018 Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition Nat. Catal. 624 624–30

[174]

Liu H Y, Song Y J, Li S S, Li J, Liu Y, Jiang Y B and Guo X W 2016 Synthesis of core/shell structured Pd3Au@Pt/C with enhanced electrocatalytic activity by regioselective atomic layer deposition combined with a wet chemical method RSC Adv. 6 66712–20

[175]

Zhang L et al 2019 Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity ACS Catal. 9 9350–8

[176]

Song Z X et al 2020 Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction Small 16 2003096

[177]

Cheng N C, Banis M N, Liu J, Riese A, Mu S C, Li R Y, Sham T K and Sun X L 2015 Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts Energy Environ. Sci. 8 1450–5

[178]

Saha S, Rodas J A C, Tan S and Li D M 2018 Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells J. Power Sources 378 742–9

[179]

Liu Y R, Hsueh Y C and Perng T P 2017 Fabrication of TiN inverse opal structure and Pt nanoparticles by atomic layer deposition for proton exchange membrane fuel cell Int. J. Hydrog. Energy 42 10175–83

[180]

Tang X L, Zhang S H, Yu J, Lü C X, Chi Y Q, Sun J W, Song Y, Yuan D, Ma Z L and Zhang L X 2020 Preparation of platinum catalysts on porous titanium nitride supports by atomic layer deposition and their catalytic performance for oxygen reduction reaction Acta Phys.-Chim. Sin. 36 1906070

[181]

Du Q, Wu J B and Yang H 2014 Pt@Nb-TiO2 catalyst membranes fabricated by electrospinning and atomic layer deposition ACS Catal. 4 144–51

[182]

He C, Wang X F, Sankarasubramanian S, Yadav A, Bhattacharyya K, Liang X H and Ramani V 2020 Highly durable and active Pt/Sb-doped SnO2 oxygen reduction reaction electrocatalysts produced by atomic layer deposition ACS Appl. Energy Mater. 3 5774–83

[183]

Chen J W, Li Z J, Chen Y H, Zhang J, Luo Y, Wang G and Wang R L 2020 An enhanced activity of Pt/CeO2/CNT triple junction interface catalyst prepared by atomic layer deposition for oxygen reduction reaction Chem. Phys. Lett. 755 137793

[184]

Cheng N C, Shao Y Y, Liu J and Sun X L 2016 Electrocatalysts by atomic layer deposition for fuel cell applications Nano Energy 29 220–42

[185]

Yang H M, Chen Y and Qin Y 2020 Application of atomic layer deposition in fabricating high-efficiency electrocatalysts Chin. J. Catal. 41 227–41

[186]

King J S, Wittstock A, Biener J, Kucheyev S O, Wang Y M, Baumann T F, Giri S K, Hamza A V, Baeumer M and Bent S F 2008 Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels Nano Lett. 8 2405–9

[187]

Lubers A M, Muhich C L, Anderson K M and Weimer A W 2015 Mechanistic studies for depositing highly dispersed Pt nanoparticles on carbon by use of trimethyl(methylcyclopentadienyl)platinum(IV) reactions with O2 and H2 J. Nanopart. Res. 17 179

[188]

Wang Y J, Fang B Z, Li H, Bi X T and Wang H J 2016 Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells Prog. Mater. Sci. 82 445–98

[189]

Sinniah J D, Wong W Y, Loh K S, Yunus R M and Timmiati S N 2022 Perspectives on carbon-alternative materials as Pt catalyst supports for a durable oxygen reduction reaction in proton exchange membrane fuel cells J. Power Sources 534 231422

[190]

Hsu I J, Hansgen D A, McCandless B E, Willis B G and Chen J G 2011 Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction J. Phys. Chem. C 115 3709–15

[191]

Saha S, Martin B, Leonard B and Li D M 2016 Probing synergetic effects between platinum nanoparticles deposited via atomic layer deposition and a molybdenum carbide nanotube support through surface characterization and device performance J. Mater. Chem. A 4 9253–65

[192]

Chen Y G, Wang J J, Meng X B, Zhong Y, Li R Y, Sun X L, Ye S Y and Knights S 2011 Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells Int. J. Hydrog. Energy 36 11085–92

[193]

Lu Q Z, Wang Z L, Tang Y T, Huang C J, Zhang A M, Liu F, Liu X, Shan B and Chen R 2022 Well-controlled Pt-CeO2-nitrogen doped carbon triple-junction catalysts with enhanced activity and durability for the oxygen reduction reaction Sustain. Energy Fuels 6 2989–95

[194]

Xu S C et al 2021 Direct integration of strained-Pt catalysts into proton-exchange-membrane fuel cells with atomic layer deposition Adv. Mater. 33 2007885

[195]

Sairanen E, Figueiredo M C, Karinen R, Santasalo-Aarnio A, Jiang H, Sainio J, Kallio T and Lehtonen J 2014 Atomic layer deposition in the preparation of Bi-metallic, platinum-based catalysts for fuel cell applications Appl. Catal. B 148–149 11–21

[196]

Lee W J, Bera S, Woo H J, Hong W, Park J Y, Oh S J and Kwon S H 2022 Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen reduction activity and stability Chem. Eng. J. 442 136123

[197]

Zhang L et al 2022 Single atom surface engineering: a new strategy to boost electrochemical activities of Pt catalysts Nano Energy 93 106813

[198]

Kim Y et al 2022 Improving intrinsic oxygen reduction activity and stability: atomic layer deposition preparation of platinum-titanium alloy catalysts Appl. Catal. B 300 120741

[199]

Dull S M, Vinogradova O, Xu S C, Koshy D M, Vullum P E, Torgersen J, Kirsch S, Viswanathan V, Jaramillo T F and Prinz F B 2022 Alloyed Pt-Zn oxygen reduction catalysts for proton exchange membrane fuel cells ACS Appl. Energy Mater. 5 8282–91

[200]

Huang C J, Liu H, Tang Y T, Lu Q Z, Chu S Q, Liu X, Shan B and Chen R 2023 Constructing uniform sub-3 nm PtZn intermetallic nanocrystals via atomic layer deposition for fuel cell oxygen reduction Appl. Catal. B 320 121986

[201]

Lim J, Shim J W, Kim D J, Park J S, Koo J and Shim J H 2021 Improvement of fuel cell catalyst performance through zirconia protective layer coating by atomic layer deposition J. Power Sources 498 229923

[202]

Zhang L et al 2019 Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance Nano Energy 60 111–8

[203]

Liu Q, Ranocchiari M and van Bokhoven J A 2022 Catalyst overcoating engineering towards high-performance electrocatalysis Chem. Soc. Rev. 51 188–236

[204]

Chung S, Choun M, Jeong B, Lee J and Lee J 2016 Atomic layer deposition of ultrathin layered TiO2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells J. Energy Chem. 25 258–64

[205]

McNeary W W, Linico A E, Ngo C, van Rooij S, Haussener S, Maguire M E, Pylypenko S and Weimer A W 2018 Atomic layer deposition of TiO2 for stabilization of Pt nanoparticle oxygen reduction reaction catalysts J. Appl. Electrochem. 48 973–84

[206]

Lee W J, Bera S, Woo H, Kim H G, Baek J H, Hong W, Park J Y, Oh S J and Kwon S H 2022 In situ engineering of a metal oxide protective layer into Pt/carbon fuel-cell catalysts by atomic layer deposition Chem. Mater. 34 5949–59

[207]

Liu H, Lu Q Z, Gao Y X, Huang C J, Zhang A M, Liu F, Xu H H, Liu X, Shan B and Chen R 2023 Nitrogen doped titania stabilized Pt/C catalyst via selective atomic layer deposition for fuel cell oxygen reduction Chem. Eng. J. 463 142405

[208]

Marichy C, Ercolano G, Caputo G, Willinger M G, Jones D, Rozière J, Pinna N and Cavaliere S 2016 ALD SnO2 protective decoration enhances the durability of a Pt based electrocatalyst J. Mater. Chem. A 4 969–75

[209]

McNeary W W, Zaccarine S F, Lai A, Linico A E, Pylypenko S and Weimer A W 2019 Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment Appl. Catal. B 254 587–93

[210]

Cheng N C, Banis M N, Liu J, Riese A, Li X, Li R Y, Ye S Y, Knights S and Sun X L 2015 Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction Adv. Mater. 27 277–81

[211]

Song Z X, Wang B Q, Cheng N C, Yang L J, Banham D, Li R Y, Ye S Y and Sun X L 2017 Atomic layer deposited tantalum oxide to anchor Pt/C for a highly stable catalyst in PEMFCs J. Mater. Chem. A 5 9760–7

[212]

Hussain S, Erikson H, Kongi N, Tarre A, Ritslaid P, Rähn M, Matisen L, Merisalu M, Sammelselg V and Tammeveski K 2018 Pt nanoparticles sputter-deposited on TiO2/MWCNT composites prepared by atomic layer deposition: improved electrocatalytic activity towards the oxygen reduction reaction and durability in acid media Int. J. Hydrog. Energy 43 4967–77

[213]

Hussain S, Erikson H, Kongi N, Tarre A, Ritslaid P, Kook M, Rähn M, Merisalu M, Sammelselg V and Tammeveski K 2019 Improved ORR activity and long-term durability of Pt nanoparticles deposited on TiO2-decorated multiwall carbon nanotubes J. Electrochem. Soc. 166 F1284–91

[214]

Song Z X et al 2018 Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition Nano Energy 53 716–25

[215]

Sabarirajan D C, George T Y, Vlahakis J, White R D and Zenyuk I V 2019 Atomic layer deposition of Pt nanoelectrode array for polymer electrolyte fuel cells J. Electrochem. Soc. 166 F3081–8

[216]

Atwa M, Li X A, Wang Z X, Dull S, Xu S C, Tong X, Tang R, Nishihara H, Prinzceg F and Birss V 2021 Scalable nanoporous carbon films allow line-of-sight 3D atomic layer deposition of Pt: towards a new generation catalyst layer for PEM fuel cells Mater. Horiz. 8 2451–62

[217]

Dull S M et al 2021 Bottom-Up fabrication of oxygen reduction electrodes with atomic layer deposition for high-power-density PEMFCs Cell Rep. Phys. Sci. 2 100297

[218]

Shu T, Dang D, Xu D W, Chen R, Liao S J, Hsieh C T, Su A, Song H Y and Du L 2015 High-performance MEA prepared by direct deposition of platinum on the gas diffusion layer using an atomic layer deposition technique Electrochim. Acta 177 168–73

[219]

Song Z X et al 2019 Ultralow loading and high-performing Pt catalyst for a polymer electrolyte membrane fuel cell anode achieved by atomic layer deposition ACS Catal. 9 5365–74

[220]

Lubers A M, McNeary W W, Ludlow D J, Drake A W, Faust M, Maguire M E, Kodas M U, Seipenbusch M and Weimer A W 2017 Proton exchange membrane fuel cell flooding caused by residual functional groups after platinum atomic layer deposition Electrochim. Acta 237 192–8

[221]

McNeary W W, Linico A E and Weimer A W 2020 Water management implications for ALD-modified polymer electrolyte membrane fuel cell catalysts J. Nanopart. Res. 22 185

[222]

Choun M, Chung S, Jeon H, Uhm S and Lee J 2012 Atomic-layer-deposited TiO2 on cathode gas diffusion layer for low humidity operation in hydrogen fuel cells Electrochem. Commun. 24 108–11

[223]

Lim I S, Kang B, Park J Y and Kim M S 2021 Performance improvement of polymer electrolyte membrane fuel cell by gas diffusion layer with atomic-layer-deposited HfO2 on microporous layer Energy Convers. Manage. 236 114070

[224]

Toikkanen O, Nisula M, Pohjalainen E, Hietala S, Havansi H, Ruotsalainen J, Halttunen S, Karppinen M and Kallio T 2015 Al2O3 coating grown on Nafion membranes by atomic layer deposition J. Membrane Sci. 495 101–9

[225]

Libera J A, Elam J W and Pellin M J 2008 Conformal ZnO coatings on high surface area silica gel using atomic layer deposition Thin Solid Films 516 6158–66

[226]

Strempel V E, d'Alnoncourt R N, Driess M and Rosowski F 2017 Atomic layer deposition on porous powders with in situ gravimetric monitoring in a modular fixed bed reactor setup Rev. Sci. Instrum. 88 074102

[227]

Voigt P, Haimi E, Lahtinen J, Cheah Y W, Mäkelä E, Viinikainen T and Puurunen R L 2019 Nickel supported on mesoporous zirconium oxide by atomic layer deposition: initial fixed-bed reactor study Top. Catal. 62 611–20

[228]

Hakim L F, Blackson J, George S M and Weimer A W 2005 Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor Chem. Vap. Depos. 11 420–5

[229]

McCormick J A, Cloutier B L, Weimer A W and George S M 2007 Rotary reactor for atomic layer deposition on large quantities of nanoparticles J. Vac. Sci. Technol. A 25 67–74

[230]

Park S W, Kim J W, Choi H J and Shim J H 2014 Vibration atomic layer deposition for conformal nanoparticle coating J. Vac. Sci. Technol. A 32 01A115

[231]

Lu Z, Yanguas-Gil A, Kang D, Darapaneni P, Mane A U, Marshall C L and Elam J W 2022 Scalable synthesis of supported catalysts using fluidized bed atomic layer deposition J. Vac. Sci. Technol. A 40 042404

[232]

Coile M W, Young M J, Libera J A, Mane A U and Elam J W 2020 High-capacity rotary drum for atomic layer deposition onto powders and small mechanical parts in a hot-walled viscous flow reactor J. Vac. Sci. Technol. A 38 052403

[233]

Li J G, Hui L F, Zhang W L, Lu J, Yang Y J and Feng H 2021 Scalable production of ultra small TiO2 nano crystal/activated carbon composites by atomic layer deposition for efficient removal of organic pollutants Adv. Powder Technol. 32 728–39

[234]

Lee W J, Kwon O, Huang R J, Lin C, Gorte R J and Vohs J M 2022 Flexible atomic layer deposition system for coating porous materials J. Vac. Sci. Technol. A 40 032401

[235]

Duan C L, Liu X, Shan B and Chen R 2015 Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition Rev. Sci. Instrum. 86 075101

[236]

Li Z S, Xiang J R, Liu X, Li X B, Li L J, Shan B and Chen R 2022 A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy Int. J. Extreme Manuf. 4 025101

[237]

van Ommen J R, Kooijman D, de Niet M, Talebi M and Goulas A 2015 Continuous production of nanostructured particles using spatial atomic layer deposition J. Vac. Sci. Technol. A 33 021513

[238]

Hartig J, Howard H C, Stelmach T J and Weimer A W 2021 DEM modeling of fine powder convection in a continuous vibrating bed reactor Powder Technol. 386 209–20

[239]

Poodt P, Cameron D C, Dickey E, George S M, Kuznetsov V, Parsons G N, Roozeboom F, Sundaram G and Vermeer A 2012 Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition J. Vac. Sci. Technol. A 30 010802

[240]

Muñoz-Rojas D, Maindron T, Esteve A, Piallat F, Kools J C S and Decams J M 2019 Speeding up the unique assets of atomic layer deposition Mater. Today Chem. 12 96–120

[241]

Sharma K, Routkevitch D, Varaksa N and George S M 2016 Spatial atomic layer deposition on flexible porous substrates: znO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes J. Vac. Sci. Technol. A 34 01A146

[242]

Yersak A S, Sharma K, Wallas J M, Dameron A A, Li X, Yang Y, Hurst K E, Ban C, Tenent R C and George S M 2018 Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes J. Vac. Sci. Technol. A 36 01A123

International Journal of Extreme Manufacturing
Pages 022005-022005
Cite this article:
Liu X, Su Y, Chen R. Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles. International Journal of Extreme Manufacturing, 2023, 5(2): 022005. https://doi.org/10.1088/2631-7990/acc6a7

366

Views

10

Downloads

10

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 16 November 2022
Revised: 31 January 2023
Accepted: 22 March 2023
Published: 11 April 2023
© 2023 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return