AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Atomic layer deposition to heterostructures for application in gas sensors

Hongyin Pan1,3Lihao Zhou1,3Wei Zheng1Xianghong Liu1Jun Zhang1 ( )Nicola Pinna2
College of Physics, Qingdao University, Qingdao 266071, People’s Republic of China
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany

3 Contributed equally to this work.

Show Author Information

Abstract

Atomic layer deposition (ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semiconductor (MOS) heterostructures for gas sensing applications in which at least one of the preparation steps is carried out by ALD. In particular, three types of MOS-based heterostructures synthesized by ALD are discussed, including ALD of metal catalysts on MOS, ALD of metal oxides on MOS and MOS core–shell (C–S) heterostructures. The gas sensing performances of these heterostructures are carefully analyzed and discussed. Finally, the further developments required and the challenges faced by ALD for the synthesis of MOS gas sensing materials are discussed.

References

[1]

Lei G L, Lou C M, Liu X H, Xie J Y, Li Z S, Zheng W and Zhang J 2021 Thin films of tungsten oxide materials for advanced gas sensors Sens. Actuators B 341 129996

[2]

Qu F D, Yuan Y and Yang M H 2017 Programmed synthesis of Sn3N4 nanoparticles via a soft chemistry approach with urea: application for ethanol vapor sensing Chem. Mater. 29 969–74

[3]

Cheng Z X, Qi W L, Pang C H, Thomas T, Wu T, Liu S Q and Yang M H 2021 Recent advances in transition metal nitride-based materials for photocatalytic applications Adv. Funct. Mater. 31 2100553

[4]

Raza M H, Movlaee K, Leonardi S G, Barsan N, Neri G and Pinna N 2020 Gas sensing of NiO–SCCNT core-shell heterostructures: optimization by radial modulation of the hole-accumulation layer Adv. Funct. Mater. 30 1906874

[5]

Raza M H, Movlaee K, Wu Y L, El-Refaei S M, Karg M, Leonardi S G, Neri G and Pinna N 2019 Tuning the NiO thin film morphology on carbon nanotubes by atomic layer deposition for enzyme-free glucose sensing ChemElectroChem 6 383–92

[6]

Yuan Y, Wang J C, Adimi S, Shen H J, Thomas T, Ma R G, Attfield J P and Yang M H 2020 Zirconium nitride catalysts surpass platinum for oxygen reduction Nat. Mater. 19 282–6

[7]

Fan X X, Xu Y J, Ma C Y and He W M 2021 In-situ growth of Co3O4 nanoparticles based on electrospray for an acetone gas sensor J. Alloys Compd. 854 157234

[8]

Chen X X, Shen Y B, Zhou P F, Zhao S K, Zhong X X, Li T T, Han C, Wei D Z and Meng D 2019 NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization Sens. Actuators B 280 151–61

[9]

Ren Y, Zou Y D, Liu Y, Zhou X R, Ma J H, Zhao D Y, Wei G F, Ai Y J, Xi S B and Deng Y H 2020 Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires Nat. Mater. 19 203–11

[10]

Li Q C, Chen D, Miao J M, Lin S J, Yu Z X, Cui D X, Yang Z and Chen X P 2021 Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application Sens. Actuators B 326 128952

[11]

Shendage S S, Patil V L, Vanalakar S A, Patil S P, Harale N S, Bhosale J L, Kim J H and Patil P S 2017 Sensitive and selective NO2 gas sensor based on WO3 nanoplates Sens. Actuators B 240 426–33

[12]

Wang S R, Yang J D, Zhang H X, Wang Y S, Gao X L, Wang L W and Zhu Z Y 2015 One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor Sens. Actuators B 207 83–89

[13]

Lou C M, Lei G L, Liu X H, Xie J Y, Li Z S, Zheng W, Goel N, Kumar M and Zhang J 2022 Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors Coord. Chem. Rev. 452 214280

[14]

Yu Q et al 2022 Bimetallic MOFs-derived core-shell structured mesoporous Sn-doped NiO for conductometric ppb-level xylene gas sensors Sens. Actuators B 372 132620

[15]

Gong H M, Zhao C H and Wang F 2018 On-chip growth of SnO2/ZnO core-shell nanosheet arrays for ethanol detection IEEE Electron Device Lett. 39 1065–8

[16]

Pan H Y, Li Z S, Lou C M, Lei G L, Xie J Y, Zheng W, Liu X H and Zhang J 2022 Anchoring Fe2O3 nanosheets on NiO nanoprisms to regulate the electronic properties for improved n-butanol detection Sens. Actuators B 354 131223

[17]

George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31

[18]

Ritala M, Leskelä M, Dekker J P, Mutsaers C, Soininen P J and Skarp J 1999 Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition Chem. Vapor Depos. 5 7–9

[19]

Suntola T 1992 Atomic layer epitaxy Thin Solid Films 216 84–89

[20]

George S M, Ott A W and Klaus J W 1996 Surface chemistry for atomic layer growth J. Phys. Chem. 100 13121–31

[21]

Xu Y S, Zheng L L, Yang C, Zheng W, Liu X H and Zhang J 2020 Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection Sens. Actuators B 310 127846

[22]

Sysoev V V, Button B K, Wepsiec K, Dmitriev S and Kolmakov A 2006 Toward the nanoscopic ”electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors Nano Lett. 6 1584–8

[23]

Mai L et al 2020 From precursor chemistry to gas sensors: plasma-enhanced atomic layer deposition process engineering for zinc oxide layers from a nonpyrophoric zinc precursor for gas barrier and sensor applications Small 16 1907506

[24]

Liu B, Alamri M, Walsh M, Doolin J L, Berrie C L and Wu J Z 2020 Development of an ALD-Pt@SWCNT/graphene 3D nanohybrid architecture for hydrogen sensing ACS Appl. Mater. Interfaces 12 53115–24

[25]

Weber M, Graniel O, Balme S, Miele P and Bechelany M 2019 On the use of MOFs and ALD layers as nanomembranes for the enhancement of gas sensors selectivity Nanomaterials 9 1552

[26]

Li Z S, Lou C M, Lei G L, Lu G C, Pan H Y, Liu X H and Zhang J 2022 Atomic layer deposition of Rh/ZnO nanostructures for anti-humidity detection of trimethylamine Sens. Actuators B 355 131347

[27]

Duy L T, Kang H, Shin H C, Han S, Singh R and Seo H 2021 Multifunctional nanohybrid of alumina and indium oxide prepared using the atomic layer deposition technique ACS Appl. Mater. Interfaces 13 59115–25

[28]

Song Y G, Baek I H, Yim J G, Eom T, Chung T M, Lee C H, Hwang C S, Kang C Y and Kim S K 2022 Cross-linked structure of self-aligned p-type SnS nanoplates for highly sensitive NO2 detection at room temperature J. Mater. Chem. A 10 4711–9

[29]

Xu Y S, Zheng W, Liu X H, Zhang L Q, Zheng L L, Yang C, Pinna N and Zhang J 2020 Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection Mater. Horiz. 7 1519–27

[30]

Hu Q M, Ma Z H, Yang J, Gao T G, Wu Y, Dong Z, Li X Y, Zeng W, Zhao S C and Xu J Q 2021 Ultrathin PANI-decorated, highly purified and well dispersed array cncs for highly sensitive HCHO sensors Chemosensors 9 276

[31]

Lei G L, Pan H Y, Mei H S, Liu X H, Lu G C, Lou C M, Li Z S and Zhang J 2022 Emerging single atom catalysts in gas sensors Chem. Soc. Rev. 51 7260–80

[32]

Fonseca J and Lu J L 2021 Single-atom catalysts designed and prepared by the atomic layer deposition technique ACS Catal. 11 7018–59

[33]

Pinna N and Knez M 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley) (https://doi.org/10.1002/9783527639915)

[34]

Marichy C, Bechelany M and Pinna N 2012 Atomic layer deposition of nanostructured materials for energy and environmental applications Adv. Mater. 24 1017–32

[35]

Johnson R W, Hultqvist A and Bent S F 2014 A brief review of atomic layer deposition: from fundamentals to applications Mater. Today 17 236–46

[36]

Leskelä M and Ritala M 2003 Atomic layer deposition chemistry: recent developments and future challenges Angew. Chem., Int. Ed. 42 5548–54

[37]

Cremers V, Puurunen R L and Dendooven J 2019 Conformality in atomic layer deposition: current status overview of analysis and modelling Appl. Phys. Rev. 6 021302

[38]

Chalker P R 2016 Photochemical atomic layer deposition and etching Surf. Coat. Technol. 291 258–63

[39]

Poodt P, Knaapen N, Illiberi A, Roozeboom F and van Asten A 2012 Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics J. Vac. Sci. Technol. A 30 01A142

[40]

Hong T, Kim K, Choi S H, Lee S H, Han K L, Lim J H and Park J S 2022 Structural, optical, and electrical properties of InOx thin films deposited by plasma-enhanced atomic layer deposition for flexible device applications ACS Appl. Electron. Mater. 4 3010–7

[41]

Oviroh P O, Akbarzadeh R, Pan D Q, Coetzee R A M and Jen T C 2019 New development of atomic layer deposition: processes, methods and applications Sci. Technol. Adv. Mater. 20 465–96

[42]

Parsons G N, George S M and Knez M 2011 Progress and future directions for atomic layer deposition and ALD-based chemistry MRS Bull. 36 865–71

[43]

Ali K, Choi K H and Muhammad N M 2014 Roll‐to‐roll atmospheric atomic layer deposition of Al2O3 thin films on PET substrates Chem. Vapor Depos. 20 380–7

[44]

Walker J M, Akbar S A and Morris P A 2019 Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review Sens. Actuators B 286 624–40

[45]

Wang J, Yin Z G, Hermerschmidt F, List-Kratochvil E J W and Pinna N 2021 Impact of different intermediate layers on the morphology and crystallinity of TiO2 grown on carbon nanotubes by atomic layer deposition Adv. Mater. Interfaces 8 2100759

[46]

Gai L, Lai R, Dong X, Wu X, Luan Q, Wang J, Lin H, Ding W, Wu G and Xie W 2022 Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions Rare Met. 41 1818–42

[47]

Xu S P, Xu Y, Zhao H P, Xu R and Lei Y 2018 Sensitive gas-sensing by creating adsorption active sites: coating an SnO2 layer on triangle arrays ACS Appl. Mater. Interfaces 10 29092–9

[48]

Li Z J et al 2019 Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature Mater. Horiz. 6 470–506

[49]

Lou C M, Wang K, Mei H S, Xie J Y, Zheng W, Liu X H and Zhang J 2021 ZnO nanoarrays via a thermal decomposition–deposition method for sensitive and selective NO2 detection CrystEngComm 23 3654–63

[50]

Bai J L, Luo Y B, An B X, Wang Q, Cheng X, Li J P, Pan X J, Zhou J Y, Wang Y R and Xie E Q 2020 Ni/Au bimetal decorated In2O3 nanotubes for ultra-sensitive ethanol detection Sens. Actuators B 311 127938

[51]

Kim J H, Lee J H, Kim J Y, Mirzaei A, Kim H W and Kim S S 2019 Enhancement of CO and NO2 sensing in n–SnO2–p–Cu2O core-shell nanofibers by shell optimization J. Hazards Mater. 376 68–82

[52]

Han C H, Li X W, Shao C L, Li X H, Ma J G, Zhang X T and Liu Y C 2019 Composition-controllable p–CuO/n–ZnO hollow nanofibers for high-performance H2S detection Sens. Actuators B 285 495–503

[53]

Hu Q M, Wu C X, Dong Z, Zhang G X, Ma Z H, Wang X H, Sun S H and Xu J Q 2022 Direct confirmation of confinement effects by NiO confined in helical SnO2 nanocoils and its application in sensors J. Mater. Chem. A 10 2786–94

[54]

Lu G C, Liu X H, Zheng W, Xie J Y, Li Z S, Lou C M, Lei G L and Zhang J 2022 UV-activated single-layer WSe2 for highly sensitive NO2 detection Rare Met. 41 1520–8

[55]

Xu Y S, Xie J Y, Zhang Y F, Tian F H, Yang C, Zheng W, Liu X H, Zhang J and Pinna N 2021 Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature J. Hazards Mater. 411 125120

[56]

Kim H J and Lee J H 2014 Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview Sens. Actuators B 192 607–27

[57]

Hong Y, Kim C H, Shin J, Kim K Y, Kim J S, Hwang C S and Lee J H 2016 Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate Sens. Actuators B 232 653–9

[58]

Lin Y H, Hsueh Y C, Lee P S, Wang C C, Wu J M, Perng T P and Shih H C 2011 Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum J. Mater. Chem. 21 10552–8

[59]

Abe H, Kimura Y, Ma T, Tadaki D, Hirano-Iwata A and Niwano M 2020 Response characteristics of a highly sensitive gas sensor using a titanium oxide nanotube film decorated with platinum nanoparticles Sens. Actuators B 321 128525

[60]

Zhou T and Zhang T 2021 Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for chemiresistive gas sensors Small Method 5 2100515

[61]

Miller D R, Akbar S A and Morris P A 2014 Nanoscale metal oxide-based heterojunctions for gas sensing: a review Sens. Actuators B 204 250–72

[62]

Zheng L L, Xie J Y, Liu X H, Yang C, Zheng W and Zhang J 2020 Unveiling the electronic interaction in ZnO/PtO/Pt nanoarrays for catalytic detection of triethylamine with ultrahigh sensitivity ACS Appl. Mater. Interfaces 12 46267–76

[63]

Darmadi I, Nugroho F A A and Langhammer C 2020 High-performance nanostructured palladium-based hydrogen sensors-current limitations and strategies for their mitigation ACS Sens. 5 3306–27

[64]

Favier F, Walter E C, Zach M P, Benter T and Penner R M 2001 Hydrogen sensors and switches from electrodeposited palladium mesowire arrays Science 293 2227–31

[65]

Jo M S, Kim K H, Choi K W, Lee J S, Yoo J Y, Kim S H, Jin H, Seo M H and Yoon J B 2022 Wireless and linear hydrogen detection up to 4% with high sensitivity through phase-transition-inhibited Pd nanowires ACS Nano 16 11957–67

[66]

Lei G L, Lou C M, Li Z S, Xie J Y, Lu G C, Pan H Y, Mei H S, Liu X H and Zhang J 2022 Heterogeneous Co3O4/AgO nanorods for conductometric triethylamine sensing at 90 ℃ Sens. Actuators B 351 131005

[67]

Liu C, Wang B Q, Liu T, Sun P, Gao Y, Liu F M and Lu G Y 2016 Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures Sens. Actuators B 235 294–301

[68]

Al-Hashem M, Akbar S and Morris P 2019 Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review Sens. Actuators B 301 126845

[69]

Romanov R I, Kozodaev M G, Lebedinskii Y Y, Perevalov T V, Slavich A S, Hwang C S and Markeev A M 2020 Radical-enhanced atomic layer deposition of a tungsten oxide film with the tunable oxygen vacancy concentration J. Phys. Chem. C 124 18156–64

[70]

Park K and Lee J S 2016 Reliable resistive switching memory based on oxygen-vacancy-controlled bilayer structures RSC Adv. 6 21736–41

[71]

Martínez-Puente M A, Horley P, Aguirre-Tostado F S, López-Medina J, Borbón-Nuñez H A, Tiznado H, Susarrey-Arce A and Martínez-Guerra E 2022 ALD and PEALD deposition of HfO2 and its effects on the nature of oxygen vacancies Mater. Sci. Eng. B 285 115964

[72]

Bae G, Kim M, Lee A, Ji S, Jang M, Yim S, Song W, Lee S S, Yoon D H and An K S 2022 Nanometric lamination of zinc oxide nanofilms with gold nanoparticles for self-perceived periodontal disease sensors Composites B 230 109490

[73]

Choi K I, Hwang S J, Dai Z F, Chan Kang Y and Lee J H 2014 Rh-catalyzed WO3 with anomalous humidity dependence of gas sensing characteristics RSC Adv. 4 53130–6

[74]

Chinh N D, Hien T T, Do Van L, Hieu N M, Quang N D, Lee S M, Kim C and Kim D 2019 Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration Sens. Actuators B 281 262–72

[75]

Xu Y S, Lou C M, Zheng L L, Zheng W, Liu X H, Kumar M and Zhang J 2020 Highly sensitive and selective detection of acetone based on platinum sensitized porous tungsten oxide nanospheres Sens. Actuators B 307 127616

[76]

Weber M, Kim J H, Lee J H, Kim J Y, Iatsunskyi I, Coy E, Drobek M, Julbe A, Bechelany M and Kim S S 2018 High-performance nanowire hydrogen sensors by exploiting the synergistic effect of Pd nanoparticles and metal-organic framework membranes ACS Appl. Mater. Interfaces 10 34765–73

[77]

Kim J H, Mirzaei A, Kim H W and Kim S S 2017 Extremely sensitive and selective sub-ppm CO detection by the synergistic effect of Au nanoparticles and core-shell nanowires Sens. Actuators B 249 177–88

[78]

Weber M, Kim J Y, Lee J H, Kim J H, Iatsunskyi I, Coy E, Miele P, Bechelany M and Kim S S 2019 Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires J. Mater. Chem. A 7 8107–16

[79]

Kondalkar V V, Duy L T, Seo H and Lee K 2019 Nanohybrids of Pt-functionalized Al2O3/ZnO core shell nanorods for high -performance MEMS-based acetylene gas sensor ACS Appl. Mater. Interfaces 11 25891–900

[80]

Lupan O et al 2018 Ultra-thin TiO2 films by atomic layer deposition and surface functionalization with Au nanodots for sensing applications Mater. Sci. Semicond. Process. 87 44–53

[81]

Ko W C, Kim K M, Kwon Y J, Choi H, Park J K and Jeong Y K 2020 ALD-assisted synthesis of V2O5 nanoislands on SnO2 nanowires for improving NO2 sensing performance Appl. Surf. Sci. 509 144821

[82]

Lou C M, Pan H Y, Mei H S, Lu G C, Liu X H and Zhang J 2022 Low coordination states in Co3O4/NiOx heterostructures by atomic layer deposition for enhanced gas detection Chem. Eng. J. 448 137641

[83]

Xie J Y, Liu X H, Jing S L, Pang C, Liu Q S and Zhang J 2021 Chemical and electronic modulation via atomic layer deposition of NiO on porous In2O3 films to boost NO2 detection ACS Appl. Mater. Interfaces 13 39621–32

[84]

Lou C M, Huang Q X, Li Z S, Lei G L, Liu X H and Zhang J 2021 Fe2O3-sensitized SnO2 nanosheets via atomic layer deposition for sensitive formaldehyde detection Sens. Actuators B 345 130429

[85]

Yuan K P, Zhu L Y, Yang J H, Hang C Z, Tao J J, Ma H P, Jiang A Q, Zhang D W and Lu H L 2020 Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing J. Colloid Interface Sci. 568 81–88

[86]

Kei C C, Wang C C and Perng T P 2021 Modulation of wall thickness of Al-doped ZnO nanotubes by nanolamination of atomic layer deposition for oxygen sensing J. Am. Ceram. Soc. 104 4938–45

[87]

Kim J H, Katoch A and Kim S S 2016 Optimum shell thickness and underlying sensing mechanism in p-n CuO–ZnO core-shell nanowires Sens. Actuators B 222 249–56

[88]

Raza M H, Kaur N, Comini E and Pinna N 2021 SnO2–SiO2 1D core-shell nanowires heterostructures for selective hydrogen sensing Adv. Mater. Interfaces 8 2100939

[89]

Kim J H, Mirzaei A, Bang J H, Kim H W and Kim S S 2021 Achievement of self-heated sensing of hazardous gases by WS2 (core)–SnO2 (shell) nanosheets J. Hazards Mater. 412 125196

[90]

Xue X T, Zhu L Y, Yuan K P, Zeng C, Li X X, Ma H P, Lu H L and Zhang D W 2020 ZnO branched p–CuxO @n–ZnO heterojunction nanowires for improving acetone gas sensing performance Sens. Actuators B 324 128729

[91]

Kim J H, Mirzaei A, Kim H W and Kim S S 2020 Variation of shell thickness in ZnO–SnO2 core-shell nanowires for optimizing sensing behaviors to CO, C6H6, and C7H8 gases Sens. Actuators B 302 127150

[92]

Raza M H, Di Chio R, Movlaee K, Amsalem P, Koch N, Barsan N, Neri G and Pinna N 2022 Role of heterojunctions of core-shell heterostructures in gas sensing ACS Appl. Mater. Interfaces 14 22041–52

[93]

Wei Z H, Akbari M K, Hai Z Y, Ramachandran R K, Detavernier C, Verpoort F, Kats E, Xu H Y, Hu J and Zhuiykov S 2019 Ultra-thin sub-10 nm Ga2O3–WO3 heterostructures developed by atomic layer deposition for sensitive and selective C2H5OH detection on ppm level Sens. Actuators B 287 147–56

[94]

Mirzaei A, Park S, Kheel H, Sun G J, Lee S and Lee C 2016 ZnO-capped nanorod gas sensors Ceram. Int. 42 6187–97

[95]

Zhao C H, Bai J L, Gong H M, Liu S and Wang F 2018 Tailorable morphology of core-shell nanofibers with surface wrinkles for enhanced gas-sensing properties ACS Appl. Nano Mater. 1 6357–67

[96]

Raza M H, Kaur N, Comini E and Pinna N 2020 Toward optimized radial modulation of the space-charge region in one-dimensional SnO2–NiO core-shell nanowires for hydrogen sensing ACS Appl. Mater. Interfaces 12 4594–606

[97]

Byoun Y, Jin C and Choi S W 2020 Strategy for sensitive and selective NO2 detection at low temperatures utilizing p-type TeO2 nanowire-based sensors by formation of discrete n-type ZnO nanoclusters Ceram. Int. 46 19365–74

[98]

Bakos L P et al 2020 Photocatalytic and gas sensitive multiwalled carbon nanotube/TiO2–ZnO and ZnO–TiO2 composites prepared by atomic layer deposition Nanomaterials 10 252

[99]

Yang F, Zhu J Y, Zou X S, Pang X, Yang R Z, Chen S F, Fang Y, Shao T, Luo X and Zhang L 2018 Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance Ceram. Int. 44 1078–85

[100]

Wang L L, Jiang K and Shen G Z 2021 Wearable, implantable, and interventional medical devices based on smart electronic skins Adv. Mater. Technol. 6 2100107

[101]

Gao W, Ota H, Kiriya D, Takei K and Javey A 2019 Flexible electronics toward wearable sensing Acc. Chem. Res. 52 523–33

International Journal of Extreme Manufacturing
Pages 022008-022008
Cite this article:
Pan H, Zhou L, Zheng W, et al. Atomic layer deposition to heterostructures for application in gas sensors. International Journal of Extreme Manufacturing, 2023, 5(2): 022008. https://doi.org/10.1088/2631-7990/acc76d

273

Views

4

Downloads

18

Crossref

16

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 15 November 2022
Revised: 15 December 2022
Accepted: 23 March 2023
Published: 24 April 2023
© 2023 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return