Microwave absorption in radar stealth technology is faced with challenges in terms of its effectiveness in low-frequency regions. Herein, we report a new laser-based method for producing an ultrawideband metamaterial-based microwave absorber with a highly uniform sheet resistance and negative magnetic permeability at resonant frequencies, which results in a wide bandwidth in the L- to S-band. Control of the electrical sheet resistance uniformity has been achieved with less than 5% deviation at 400 Ω sq−1 and 6% deviation at 120 Ω sq−1, resulting in a microwave absorption coefficient between 97.2% and 97.7% within a 1.56–18.3 GHz bandwidth for incident angles of 0°–40°, and there is no need for providing energy or an electrical power source during the operation. Porous N- and S-doped turbostratic graphene 2D patterns with embedded magnetic nanoparticles were produced simultaneously on a polyethylene terephthalate substrate via laser direct writing. The proposed low-frequency, wideband, wide-incident-angle, and high-electromagnetic-absorption microwave absorber can potentially be used in aviation, electromagnetic interference (EMI) suppression, and 5G applications.
Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Perfect metamaterial absorber Phys. Rev. Lett. 100 207402
Xie Y B, Ye S R, Reyes C, Sithikong P, Popa B-I, Wiley B J and Cummer S A 2017 Microwave metamaterials made by fused deposition 3D printing of a highly conductive copper-based filament Appl. Phys. Lett. 110 181903
Yoo M, Kim H K, Kim S, Tentzeris M and Lim S 2015 Silver nanoparticle-based inkjet-printed metamaterial absorber on flexible paper IEEE Antennas Wirel. Propag. Lett. 14 1718–21
Momeni-Nasab M, Bidoki S M, Hadizadeh M and Movahhedi M 2020 Ink-jet printed metamaterial microwave absorber using reactive inks AEU-Int. J. Electron. Commun. 123 153259
Torrisi F et al 2012 Inkjet-printed graphene electronics ACS Nano 6 2992–3006
Gao Y H, Shi W, Wang W C, Leng Y P and Zhao Y P 2014 Inkjet printing patterns of highly conductive pristine graphene on flexible substrates Ind. Eng. Chem. Res. 53 16777–84
Ji A, Chen Y M, Wang X Y and Xu C Y 2018 Inkjet printed flexible electronics on paper substrate with reduced graphene oxide/carbon black ink J. Mater. Sci., Mater. Electron. 29 13032–42
Kao H-L, Cho C-L, Chang L-C, Chen C-B, Chung W-H and Tsai Y-C 2020 A fully inkjet-printed strain sensor based on carbon nanotubes Coatings 10 792
Tran T S, Dutta N K and Choudhury N R 2018 Graphene inks for printed flexible electronics: graphene dispersions, ink formulations, printing techniques and applications Adv. Colloid Interface Sci. 261 41–61
Jabari E, Ahmed F, Liravi F, Secor E B, Lin L W and Toyserkani E 2019 2D printing of graphene: a review 2D Mater. 6 042004
Huang X J, Leng T, Georgiou T, Abraham J, Raveendran Nair R, Novoselov K S and Hu Z R 2018 Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing Sci. Rep. 8 43
Fang Y X, Pan K W, Leng T, Ouslimani H H, Novoselov K S and Hu Z R 2021 Controlling graphene sheet resistance for broadband printable and flexible artificial magnetic conductor-based microwave radar absorber applications IEEE Trans. Antennas Propag. 69 8503–11
Arapov K, Jaakkola K, Ermolov V, Bex G, Rubingh E, Haque S, Sandberg H, Abbel R, de With G and Friedrich H 2016 Graphene screen-printed radio-frequency identification devices on flexible substrates Phys. Status Solidi 10 812–8
Pan K W, Fan Y Y, Leng T, Li J S, Xin Z Y, Zhang J W, Hao L, Gallop J, Novoselov K S and Hu Z R 2018 Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications Nat. Commun. 9 5197
Parate K, Pola C C, Rangnekar S V, Mendivelso-Perez D L, Smith E A, Hersam M C, Gomes C L and Claussen J C 2020 Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring 2D Mater. 7 034002
Jia Z R, Lan D, Lin K J, Qin M, Kou K C, Wu G L and Wu H J 2018 Progress in low-frequency microwave absorbing materials J. Mater. Sci., Mater. Electron. 29 17122–36
Wang B L, Wu Q, Fu Y G and Liu T 2021 A review on carbon/magnetic metal composites for microwave absorption J. Mater. Sci. Technol. 86 91–109
Rill M S, Plet C, Thiel M, Staude I, Von Freymann G, Linden S and Wegener M 2008 Photonic metamaterials by direct laser writing and silver chemical vapour deposition Nat. Mater. 7 543–6
Charipar N A, Charipar K M, Kim H, Kirleis M A, Auyeung R C Y, Smith A T, Mathews S A and Piqué A 2013 Laser processing of 2D and 3D metamaterial structures Proc. SPIE 8607 67–73
Mathews S A, Mirotznik M, Good B L and Piqué A 2007 Rapid prototyping of frequency selective surfaces by laser direct-write Proc. SPIE 6458 167–80
Komlenok M S, Lebedev S P, Komandin G A, Piqué A and Konov V I 2018 Fabrication and electrodynamic properties of all-carbon terahertz planar metamaterials by laser direct-write Laser Phys. Lett. 15 036201
Huang Y H, Zeng L, Liu C G, Zeng D S, Liu Z, Liu X Q, Zhong X L, Guo W and Li L 2018 Laser direct writing of heteroatom (N and S)-doped graphene from a polybenzimidazole ink donor on polyethylene terephthalate polymer and glass substrates Small 14 1803143
Bai S, Zhou W P, Tao C, Oakes K D and Hu A M 2014 Laser-processed nanostructures of metallic substrates for surface-enhanced Raman spectroscopy Curr. Nanosci. 10 486–96
Zhou W P, Bridges D, Li R Z, Bai S, Ma Y, Hou T X and Hu A M 2016 Recent progress of laser micro-and nano manufacturing Sci. Lett. J. 5 228
Zacharatos F, Iliadis N, Kanakis J, Bakopoulos P, Avramopoulos H and Zergioti I 2016 Laser direct writing of 40 GHz RF components on flexible substrates Opt. Laser Technol. 79 108–14
Peng P, Hu A and Zhou Y 2012 Laser sintering of silver nanoparticle thin films: microstructure and optical properties Appl. Phys. A 108 685–91
Liu W, Chen Q, Huang Y H, Wang D, Li L and Liu Z 2022 In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability Carbon 190 245–54
Sha Y, Peng Y D, Huang K, Li L and Liu Z 2022 3D binder-free integrated electrodes prepared by phase separation and laser induction (PSLI) method for oxygen electrocatalysis and zinc–air battery Adv. Energy Mater. 12 2200906
Ehrensberger K, Schmalle H W, Oswald H R and Reller A 1999 Thermochemical reactivity of transition metal acetates and of a novel DMSO solvate of iron(Ⅱ) acetate in molecular hydrogen J. Therm. Anal. Calorim. 57 139–49
Nornikman H, Malek M F B A, Ahmed M, Wee F H, Soh P J, Al-Hadi A A, Ghani S A, Hasnain A and Taib M N 2011 Setup and results of pyramidal microwave absorbers using rice husks Prog. Electromagn. Res. 111 141–61
Magill E and Wheeler H 1966 Wide-angle impedance matching of a planar array antenna by a dielectric sheet IEEE Trans. Antennas Propag. 14 49–53
Paparazzo E 1987 XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3 J. Electron Spectrosc. Relat. Phenom. 43 97–112
Dey A, Zubko M, Kusz J, Reddy V R and Bhattacharjee A 2020 Effect of reaction protocol on the nature and size of iron oxide nano particles obtained through solventless synthesis using iron(Ⅱ)acetate: structural, magnetic and morphological studies SN Appl. Sci. 2 193
Huang Y H, Sepioni M, Whitehead D, Liu Z, Guo W, Zhong X L, Gu H and Li L 2020 Rapid growth of large area graphene on glass from olive oil by laser irradiation Nanotechnology 31 245601
Lin Z, Ye X H, Han J P, Chen Q, Fan P X, Zhang H J, Xie D, Zhu H W and Zhong M L 2015 Precise control of the number of layers of graphene by picosecond laser thinning Sci. Rep. 5 11662
Chae S et al 2020 Anomalous restoration of sp2 hybridization in graphene functionalization Nanoscale 12 13351–9
Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nat. Nanotechnol. 5 722–6
Mir S H, Yadav V K and Singh J K 2020 Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective ACS Omega 5 14203–11
Tian Z S, Li J T, Zhu G Y, Lu J F, Wang Y Y, Shi Z L and Xu C X 2016 Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets Phys. Chem. Chem. Phys. 18 1125–30
Griffiths D J 2005 Introduction to Electrodynamics (Trenton, NJ: American Association of Physics Teachers)
Bhattacharyya S, Ghosh S and Srivastava K V 2014 Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber AIP Adv. 4 097127
Wang L N, Jia X L, Li Y F, Yang F, Zhang L Q, Liu L P, Ren X and Yang H T 2014 Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles J. Mater. Chem. A 2 14940–6
Pan K W, Leng T, Song J, Ji C Y, Zhang J W, Li J S, Novoselov K S and Hu Z R 2020 Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption Carbon 160 307–16
El Assal A, Breiss H, Benzerga R, Sharaiha A, Jrad A and Harmouch A 2020 Toward an ultra-wideband hybrid metamaterial based microwave absorber Micromachines 11 930
Cao Z, Yao G J, Zha D C, Zhao Y, Wu Y, Miao L, Bie S W and Jiang J J 2022 Impedance well effect from circuit analysis and new design concepts for ultrabroadband passive absorber IEEE Trans. Antennas Propag. 70 9942–6
de Araújo J B O, Siqueira G L, Kemptner E, Weber M, Junqueira C and Mosso M M 2020 An ultrathin and ultrawideband metamaterial absorber and an equivalent-circuit parameter retrieval method IEEE Trans. Antennas Propag. 68 3739–46
Kundu D, Mohan A and Chakrabarty A 2016 Single-layer wideband microwave absorber using array of crossed dipoles IEEE Antennas Wirel. Propag. Lett. 15 1589–92
Shang Y P, Shen Z X and Xiao S Q 2013 On the design of single-layer circuit analog absorber using double-square-loop array IEEE Trans. Antennas Propag. 61 6022–9
Li S J, Gao J, Cao X Y, Li W Q, Zhang Z and Zhang D 2014 Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances J. Appl. Phys. 116 043710
Olszewska-Placha M, Salski B, Janczak D, Bajurko P R, Gwarek W and Jakubowska M 2015 A broadband absorber with a resistive pattern made of ink with graphene nano-platelets IEEE Trans. Antennas Propag. 63 565–72
Wei J F et al 2019 Flexible design and realization of wideband microwave absorber with double-layered resistor loaded FSS J. Phys. D: Appl. Phys. 52 185101
Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T and Wu J 2018 An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water J. Appl. Phys. 123 225106
Huang X J, Hu Z R and Liu P G 2014 Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction AIP Adv. 4 117103
He Z D, Wu L W, Liu Y, Lu Y, Wang F Q, Shao W, Fu S H and Tong G X 2020 Ultrawide bandwidth and large-angle electromagnetic wave absorption based on triple-nested helix metamaterial absorbers J. Appl. Phys. 127 174901
Yoo M and Lim S 2014 Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer IEEE Trans. Antennas Propag. 62 2652–8
Cao Z W, Li H R, Wu Y, Yao G J, Zhao Y, Huang Z, Guo S, Miao L and Jiang J J 2022 Backend-balanced-impedance concept for reverse design of ultra-wideband absorber IEEE Trans. Antennas Propag. 70 11217–22
Luo G Q, Yu W L, Yu Y F, Zhang X H and Shen Z X 2020 A three-dimensional design of ultra-wideband microwave absorbers IEEE Trans. Microw Theory Tech. 68 4206–15
Sambhav S, Ghosh J and Singh A K 2021 Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings IEEE Trans. Electromagn. Compat. 63 1333–40
Kalraiya S, Chaudhary R K and Abdalla M A 2019 Design and analysis of polarization independent conformal wideband metamaterial absorber using resistor loaded sector shaped resonators J. Appl. Phys. 125 134904
Zhao Y F, Li S Y, Jiang Y Y, Gu C Q, Liu L L and Li Z 2021 An ultra-wideband and wide-angle optically transparent flexible microwave metamaterial absorber J. Appl. Phys. 54 275101
Zheng Y L, Chen K, Jiang T, Zhao J M and Feng Y J 2019 Multi-octave microwave absorption via conformal metamaterial absorber with optical transparency J. Phys. D: Appl. Phys. 52 335101
Yao Z X, Xiao S Q, Jiang Z G, Yan L and Wang B-Z 2020 On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS IEEE Antennas Wirel. Propag. Lett. 19 591–5