AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Tribotronics: an emerging field by coupling triboelectricity and semiconductors

Chi Zhang1,2( )Junqing Zhao1,2Zhi Zhang1,2Tianzhao Bu1,2Guoxu Liu1,2Xianpeng Fu1,2
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People’s Republic of China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
Show Author Information

Abstract

Tribotronics is an emerging research field that focuses on the coupling of triboelectricity and semiconductors. In this review, we summarise and explore three branches of tribotronics. Firstly, we introduce the tribovoltaic effect, which involves direct-current power generation through mechanical friction on semiconductor interfaces. This effect offers significant advantages in terms of high power density compared to traditional insulator-based triboelectric nanogenerators. Secondly, we elaborate on triboelectric modulation, which utilises the triboelectric potential on field-effect transistors. This approach enables active mechanosensation and nanoscale tactile perception. Additionally, we present triboelectric management, which aims to improve energy supply efficiency using semiconductor device technology. This strategy provides an effective microenergy solution for sensors and microsystems. For the interactions between triboelectricity and semiconductors, the research of tribotronics has exhibited the electronics of interfacial friction systems, and the triboelectric technology by electronics. This review demonstrates the promising prospects of tribotronics in the development of new functional devices and self-powered microsystems for intelligent manufacturing, robotic sensing, and the industrial Internet of Things.

References

[1]
Evans D 2011 The Internet of Things: How the Next Evolution of the Internet is Changing Everything (CISCO)
[2]

Atzori L, Iera A and Morabito G 2010 The internet of things: a survey Comput. Networks 54 2787–805

[3]

Bonato P 2010 Wearable sensors and systems IEEE Eng. Med.Biol. Mag. 29 25–36

[4]

Kim D H et al 2011 Epidermal electronics Science 333 838–43

[5]

Liu Z, Xu J, Chen D and Shen G Z 2015 Flexible electronics based on inorganic nanowires Chem. Soc. Rev. 44 161–92

[6]

Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature 529 509–14

[7]

Cima M J 2014 Next-generation wearable electronics Nat. Biotechnol. 32 642–3

[8]

Chortos A, Liu J and Bao Z N 2016 Pursuing prosthetic electronic skin Nat. Mater. 15 937–50

[9]

Hittinger E and Jaramillo P 2019 Internet of things: energy boon or bane? Science 364 326–8

[10]

Levin E, Pieraccini R and Eckert W 2000 A stochastic model of human-machine interaction for learning dialog strategies IEEE Trans. Speech Audio Process. 8 11–23

[11]

Schiele A and van der Helm F C T 2006 Kinematic design to improve ergonomics in human machine interaction IEEE Trans. Neural Syst. Rehabil. Eng. 14 456–69

[12]

Wang Z L 2019 Entropy theory of distributed energy for internet of things Nano Energy 58 669–72

[13]

Yang Y and Wang Z L 2021 Emerging nanogenerators: powering the internet of things by high entropy energy iScience 24 102358

[14]

Beeby S P, Torah R N, Tudor M J, Glynne-Jones P, O’Donnell T, Saha C R and Roy S 2007 A micro electromagnetic generator for vibration energy harvesting J. Micromech. Microeng. 17 1257–65

[15]

Saha C R, O’Donnell T, Wang N and McCloskey P 2008 Electromagnetic generator for harvesting energy from human motion Sens. Actuators A 147 248–53

[16]

Zhu D B, Roberts S, Tudor M J and Beeby S P 2010 Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator Sens. Actuators A 158 284–93

[17]

El-Khattam W and Salama M M A 2004 Distributed generation technologies, definitions and benefits Electr. Power Syst. Res. 71 119–28

[18]

Kammen D M and Sunter D A 2016 City-integrated renewable energy for urban sustainability Science 352 922–8

[19]

Erturk A, Hoffmann J and Inman D J 2009 A piezomagnetoelastic structure for broadband vibration energy harvesting Appl. Phys. Lett. 94 254102

[20]

Beeby S P, Tudor M J and White N M 2006 Energy harvesting vibration sources for microsystems applications Meas. Sci. Technol. 17 R175–95

[21]

Chen G R, Li Y Z, Bick M and Chen J 2020 Smart textiles for electricity generation Chem. Rev. 120 3668–720

[22]

Zhao X, Askari H and Chen J 2021 Nanogenerators for smart cities in the era of 5G and internet of things Joule 5 1391–431

[23]

Chen G R, Zhou Y H, Fang Y S, Zhao X, Shen S, Tat T, Nashalian A and Chen J 2021 Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system ACS Nano 15 20582–9

[24]

Zhao X et al 2022 A soft magnetoelastic generator for wind-energy harvesting Adv. Mater. 34 2204238

[25]

Ock I W, Zhao X, Tat T, Xu J and Chen J 2022 Harvesting hydropower via a magnetoelastic generator for sustainable water splitting ACS Nano 16 16816–23

[26]

Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generator Nano Energy 1 328–34

[27]

Wang Z L and Wang A C 2019 On the origin of contact-electrification Mater. Today 30 34–51

[28]

Niu S M and Wang Z L 2015 Theoretical systems of triboelectric nanogenerators Nano Energy 14 161–92

[29]

Liu W B, Xu L, Liu G X, Yang H, Bu T Z, Fu X P, Xu S H, Fang C L and Zhang C 2020 Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy iScience 23 101848

[30]

Zhang R Y and Olin H 2020 Material choices for triboelectric nanogenerators: a critical review EcoMat 2 e12062

[31]

Pang Y K, Li X H, Chen M X, Han C B, Zhang C and Wang Z L 2015 Triboelectric nanogenerators as a self-powered 3D acceleration sensor ACS Appl. Mater. Interfaces 7 19076–82

[32]

Fu J J, Xu G Q, Li C H, Xia X, Guan D, Li J, Huang Z Y and Zi Y L 2020 Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment Adv. Sci. 7 2001757

[33]

Wang J, Wu C S, Dai Y J, Zhao Z H, Wang A, Zhang T J and Wang Z L 2017 Achieving ultrahigh triboelectric charge density for efficient energy harvesting Nat. Commun. 8 88

[34]

Yang H M, Fan F R, Xi Y and Wu W Z 2021 Design and engineering of high-performance triboelectric nanogenerator for ubiquitous unattended devices EcoMat 3 e12093

[35]

Xu L, Bu T Z, Yang X D, Zhang C and Wang Z L 2018 Nano energy ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators Nano Energy 49 625–33

[36]

Luo J J and Wang Z L 2020 Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications EcoMat 2 e12059

[37]

Zhang C, Zhang L M, Tang W, Han C B and Wang Z L 2015 Tribotronic logic circuits and basic operations Adv. Mater. 27 3533–40

[38]

Zhang C, Tang W, Han C B, Fan F R and Wang Z L 2014 Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy Adv. Mater. 26 3580–91

[39]

Xi F B, Pang Y K, Li W, Jiang T, Zhang L M, Guo T, Liu G X, Zhang C and Wang Z L 2017 Universal power management strategy for triboelectric nanogenerator Nano Energy 37 168–76

[40]

Xi F B, Pang Y K, Liu G X, Wang S W, Li W, Zhang C and Wang Z L 2019 Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission Nano Energy 61 1–9

[41]

Liu J, Goswami A, Jiang K R, Khan F, Kim S, McGee R, Li Z, Hu Z, Lee J and Thundat T 2018 Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers Nat. Nanotechnol. 13 112–6

[42]

Lin S S, Shen R J, Yao T Y, Lu Y H, Feng S R, Hao Z Z, Zheng H N, Yan Y F and Li E P 2019 Surface states enhanced dynamic Schottky diode generator with extremely high power density over 1000 w m−2 Adv. Sci. 6 1901925

[43]

Song Y D, Wang N, Fadlallah M M, Tao S X, Yang Y and Wang Z L 2021 Defect states contributed nanoscale contact electrification at ZnO nanowires packed film surfaces Nano Energy 79 105406

[44]

Xu G Q, Guan D, Yin X, Fu J J, Wang J and Zi Y L 2020 A coplanar-electrode direct-current triboelectric nanogenerator with facile fabrication and stable output EcoMat 2 e12037

[45]

Zhao Z H, Zhou L L, Li S X, Liu D, Li Y H, Gao Y K, Liu Y B, Dai Y J, Wang J and Wang Z L 2021 Selection rules of triboelectric materials for direct-current triboelectric nanogenerator Nat. Commun. 12 4686

[46]

Zhang Z, Jiang D D, Zhao J Q, Liu G X, Bu T Z, Zhang C and Wang Z L 2020 Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators Adv. Energy Mater. 10 1903713

[47]

Liu J, Cheikh M I, Bao R M, Peng H H, Liu F F, Li Z, Jiang K R, Chen J and Thundat T 2019 Tribo-tunneling DC generator with carbon aerogel/silicon multi-nanocontacts Adv. Electron. Mater. 5 1900464

[48]

Lu Y H, Hao Z Z, Feng S R, Shen R J, Yan Y F and Lin S S 2019 Direct-current generator based on dynamic PN junctions with the designed voltage output iScience 22 58–69

[49]

Blok H 1963 The flash temperature concept Wear 6 483–94

[50]

Sutter G and Ranc N 2010 Flash temperature measurement during dry friction process at high sliding speed Wear 268 1237–42

[51]

Kalin M 2004 Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review Mater. Sci. Eng. A 374 390–7

[52]

Abdel-Aal H A 1997 A remark on the flash temperature theory Int. Commun. Heat Mass Transfer 24 241–50

[53]

Sharov V A, Alekseev P A, Borodin B R, Dunaevskiy M S, Reznik R R and Cirlin G E 2019 InP/Si heterostructure for high-current hybrid triboelectric/photovoltaic generation ACS Appl. Energy Mater. 2 4395–401

[54]

Xu R, Zhang Q, Wang J Y, Liu D, Wang J and Wang Z L 2019 Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor Nano Energy 66 104185

[55]

Zhang Z, Wang Z Z, Chen Y K, Feng Y, Dong S C, Zhou H, Wang Z L and Zhang C 2022 Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation Adv. Mater. 34 2200146

[56]

Yuan H, Xiao Z X, Wan J X, Xiang Y, Dai G Z, Li H J and Yang J L 2022 A rolling-mode Al/CsPbBr3 Schottky junction direct-current triboelectric nanogenerator for harvesting mechanical and solar energy Adv. Energy Mater. 12 2200550

[57]

Yang R Z, Benner M, Guo Z P, Zhou C and Liu J 2021 High-performance flexible Schottky DC generator via metal/conducting polymer sliding contacts Adv. Funct. Mater. 31 2103132

[58]

Huang X Y, Xiang X J, Nie J H, Peng D L, Yang F W, Wu Z H, Jiang H Y, Xu Z P and Zheng Q S 2021 Microscale Schottky superlubric generator with high direct-current density and ultralong life Nat. Commun. 12 2268

[59]

Lu L Y et al 2021 Polarized water driven dynamic pn junction-based direct-current generator Research 2021 7505638

[60]

Wang Z Z, Zhang Z, Chen Y K, Gong L K, Dong S C, Zhou H, Lin Y, Lv Y, Liu G X and Zhang C 2022 Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect Energy Environ. Sci. 15 2366–73

[61]

You Z et al 2022 High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction Nano Energy 91 106667

[62]

Chen J, He P, Huang T, Zhang D H, Wang G, Yang S W, Xie X M and Ding G Q 2021 Boosting carrier transfer at flexible Schottky junctions with moisture: a strategy for high-performance wearable direct-current nanogenerators Nano Energy 90 106593

[63]

Qiao W Y, Zhao Z H, Zhou L L, Liu D, Li S X, Yang P Y, Li X Y, Liu J Q, Wang J and Wang Z L 2022 Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication Adv. Funct. Mater. 32 2208544

[64]

Luo X X, Liu L D, Wang Y C, Li J Y, Berbille A, Zhu L P and Wang Z L 2022 Tribovoltaic nanogenerators based on MXene-silicon heterojunctions for highly stable self-powered speed, displacement, tension, oscillation angle, and vibration sensors Adv. Funct. Mater. 32 2113149

[65]

Zhao J Q, Guo H, Pang Y K, Xi F B, Yang Z W, Liu G X, Guo T, Dong G F, Zhang C and Wang Z L 2017 Flexible organic tribotronic transistor for pressure and magnetic sensing ACS Nano 11 11566–73

[66]

Bu T Z, Xu L, Yang Z W, Yang X, Liu G X, Cao Y Z, Zhang C and Wang Z L 2020 Nanoscale triboelectrification gated transistor Nat. Commun. 11 1054

[67]

Zhao J Q, Bu T Z, Zhang X H, Pang Y K, Li W J, Zhang Z, Liu G X, Wang Z L and Zhang C 2020 Intrinsically stretchable organic-tribotronic-transistor for tactile sensing Research 2020 1398903

[68]

Li J, Zhang C, Duan L, Zhang L M, Wang L D, Dong G F and Wang Z L 2016 Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system Adv. Mater. 28 106–10

[69]

Cao Y Z, Bu T Z, Fang C L, Zhang C, Huang X D and Zhang C 2020 High-resolution monolithic integrated tribotronic InGaZnO thin-film transistor array for tactile detection Adv. Funct. Mater. 30 2002613

[70]

Yang Z W, Pang Y K, Zhang L M, Lu C X, Chen J, Zhou T, Zhang C and Wang Z L 2016 Tribotronic transistor array as an active tactile sensing system ACS Nano 10 10912–20

[71]

Pang Y K, Li J, Zhou T, Yang Z W, Luo J J, Zhang L M, Dong G F, Zhang C and Wang Z L 2017 Flexible transparent tribotronic transistor for active modulation of conventional electronics Nano Energy 31 533–40

[72]

Zhang L M, Yang Z W, Pang Y K, Zhou T, Zhang C and Wang Z L 2017 Tribotronic triggers and sequential logic circuits Nano Res. 10 3534–42

[73]

Zhou T, Yang Z W, Pang Y K, Xu L, Zhang C and Wang Z L 2017 Tribotronic tuning diode for active analog signal modulation ACS Nano 11 882–8

[74]

Zi Y L, Niu S M, Wang J, Wen Z, Tang W and Wang Z L 2015 Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators Nat. Commun. 6 8376

[75]

Fu J J, Xia X, Xu G Q, Li X Y and Zi Y L 2019 On the maximal output energy density of nanogenerators ACS Nano 13 13257–63

[76]

Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y and Wang Z L 2016 Effective energy storage from a triboelectric nanogenerator Nat. Commun. 7 10987

[77]

Zhang H M, Marty F, Xia X, Zi Y L, Bourouina T, Galayko D and Basset P 2020 Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters Nat. Commun. 11 3221

[78]

Song Y, Wang H B, Cheng X L, Li G K, Chen X X, Chen H T, Miao L M, Zhang X S and Zhang H X 2019 High-efficiency self-charging smart bracelet for portable electronics Nano Energy 55 29–36

[79]

Graham S A, Chandrarathna S C, Patnam H, Manchi P, Lee J W and Yu J S 2021 Harsh environment-tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home Nano Energy 80 105547

[80]

Niu S M, Wang X F, Yi F, Zhou Y S and Wang Z L 2015 A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics Nat. Commun. 6 8975

[81]

Liu G X, Xu S H, Liu Y Y, Gao Y Y, Tong T, Qi Y C and Zhang C 2020 Flexible drug release device powered by triboelectric nanogenerator Adv. Funct. Mater. 30 1909886

[82]

Xu F et al 2021 Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics Nano Energy 88 106247

[83]

Zhang X H, Zhao J Q, Fu X P, Lin Y, Qi Y C, Zhou H and Zhang C 2022 Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators Nano Energy 98 107209

[84]

Fu X P, Xu S H, Gao Y Y, Zhang X H, Liu G X, Zhou H, Lv Y, Zhang C and Wang Z L 2021 Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification ACS Energy Lett. 6 2343–50

[85]

Fu J J, Xu G Q, Wu H, Li C Y and Zi Y L 2022 Liquid-interfaces-based triboelectric nanogenerator: an emerging power generation method from liquid-energy nexus Adv. Energy Sustain. Res. 3 2200051

[86]

Wang L L, Song Y X, Xu W H, Li W B, Jin Y K, Gao S W, Yang S Y, Wu C Y, Wang S and Wang Z K 2021 Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator EcoMat 3 e12116

[87]

Xu C Q, Fu X P, Li C Y, Liu G X, Gao Y Y, Qi Y C, Bu T Z, Chen Y F, Wang Z L and Zhang C 2022 Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification Microsyst. Nanoeng. 8 30

[88]

Liang X, Jiang T, Liu G X, Feng Y W, Zhang C and Wang Z L 2020 Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy Energy Environ. Sci. 13 277–85

[89]

Zhang C, Tang W, Zhang L M, Han C B and Wang Z L 2014 Contact electrification field-effect transistor ACS Nano 8 8702–9

International Journal of Extreme Manufacturing
Article number: 042002
Cite this article:
Zhang C, Zhao J, Zhang Z, et al. Tribotronics: an emerging field by coupling triboelectricity and semiconductors. International Journal of Extreme Manufacturing, 2023, 5(4): 042002. https://doi.org/10.1088/2631-7990/ace669

212

Views

22

Downloads

17

Crossref

19

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 30 January 2023
Revised: 19 April 2023
Accepted: 11 July 2023
Published: 26 July 2023
© 2023 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return