PDF (669.6 KB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Perspective | Open Access

Material manufacturing from atomic layer

School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People’s Republic of China
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, People’s Republic of China
Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec J3X 1P7, Canada
Show Author Information

Abstract

Atomic scale engineering of materials and interfaces has become increasingly important in material manufacturing. Atomic layer deposition (ALD) is a technology that can offer many unique properties to achieve atomic-scale material manufacturing controllability. Herein, we discuss this ALD technology for its applications, attributes, technology status and challenges. We envision that the ALD technology will continue making significant contributions to various industries and technologies in the coming years.

References

[1]

Lemme M C, Akinwande D, Huyghebaert C and Stampfer C 2022 2D materials for future heterogeneous electronics Nat. Commun. 13 1392

[2]
Maxey K et al 2022 300 mm MOCVD 2D CMOS materials for more (than) moore scaling Proc. 2022 IEEE Symp. on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE) pp 419–20
[3]

Mitchell S and Pérez-Ramírez J 2020 Single atom catalysis: a decade of stunning progress and the promise for a bright future Nat. Commun. 11 4302

[4]

George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31

[5]

Wang X W 2021 Atomic layer deposition of iron, cobalt, and nickel chalcogenides: progress and outlook Chem. Mater. 33 6251–68

[6]

Meng X B, Wang X W, Geng D S, Ozgit-Akgun C, Schneider N and Elam J W 2017 Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology Mater. Horiz. 4 133–54

[7]

Chen R, Li Y C, Cai J M, Cao K and Lee H B R 2020 Atomic level deposition to extend Moore’s law and beyond Int. J. Extrem. Manuf. 2 022002

[8]

Zhang J M, Li Y C, Cao K and Chen R 2022 Advances in atomic layer deposition Nanomanuf. Metrol. 5 191–208

[9]

Huang H B et al 2017 20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24% Sol. Energy Mater. Sol. Cells 161 14–30

[10]

Cheng H, Huang Z G, Zhang L J, Liu Y, Song X M, Tong R, Zhong S H, Shi L X, Kong X Y and Shen W Z 2022 21.16%-efficiency p-type TOPCon solar cell with ALD-Al2O3/MoOx/Ag as a hole-selective passivating contact Sol. Energy 247 171–6

[11]

Kim H, Chavan V D, Aziz J, Ko B, Lee J S, Rho J, Dongale T D, Choi K K and Kim D K 2022 Effect of ALD processes on physical and electrical properties of HfO2 dielectrics for the surface passivation of a CMOS image sensor application IEEE Access 10 68724–30

[12]

Hu Q M, Wu C X, Dong Z, Zhang G X, Ma Z H, Wang X H, Sun S H and Xu J Q 2022 Direct confirmation of confinement effects by NiO confined in helical SnO2 nanocoils and its application in sensors J. Mater. Chem. A 10 2786–94

[13]

Wa Q B, Xiong W, Zhao R, He Z Y, Chen Y and Wang X W 2019 Nanoscale Ni(OH)x films on carbon cloth prepared by atomic layer deposition and electrochemical activation for glucose sensing ACS Appl. Nano Mater. 2 4427–34

[14]

Zhao R et al 2021 Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells Nanoscale Adv. 3 2305–15

[15]

Zhang J, Zhang G X, Chen Z S, Dai H L, Hu Q M, Liao S J and Sun S H 2020 Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries Energy Storage Mater. 26 513–33

[16]

Yu F, Du L, Zhang G X, Su F M, Wang W C and Sun S H 2020 Electrode engineering by atomic layer deposition for sodium-ion batteries: from traditional to advanced batteries Adv. Funct. Mater. 30 1906890

[17]

Cheng N C, Shao Y Y, Liu J and Sun X L 2016 Electrocatalysts by atomic layer deposition for fuel cell applications Nano Energy 29 220–42

[18]

Xiong W, Guo Z, Li H, Zhao R and Wang X W 2017 Rational bottom-up engineering of electrocatalysts by atomic layer deposition: a case study of FexCo1–xSy-based catalysts for electrochemical hydrogen evolution ACS Energy Lett. 2 2778–85

[19]

Chen Z S, Zhang G X, Prakash J, Zheng Y and Sun S H 2019 Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide Adv. Energy Mater. 9 1900889

[20]

Meng X B, Yang X Q and Sun X L 2012 Emerging applications of atomic layer deposition for lithium-ion battery studies Adv. Mater. 24 3589–615

[21]

Sun Q, Lau K C, Geng D S and Meng X B 2018 Atomic and molecular layer deposition for superior lithium-sulfur batteries: strategies, performance, and mechanisms Batter. Supercaps 1 41–68

[22]

Su Y T, Cui S H, Zhuo Z Q, Yang W L, Wang X W and Pan F 2015 Enhancing the high-voltage cycling performance of LiNi0.5Mn0.3Co0.2O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3 ACS Appl. Mater. Interfaces 7 25105–12

[23]

Li J W, Xiang J R, Yi G, Tang Y T, Shao H C, Liu X, Shan B and Chen R 2022 Reduction of surface residual lithium compounds for single-crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 atomic layer deposition and post-annealing Coatings 12 84

[24]

Skoog S A, Elam J W and Narayan R J 2013 Atomic layer deposition: medical and biological applications Int. Mater. Rev. 58 113–29

[25]

Narayan R J, Monteiro-Riviere N A, Brigmon R L, Pellin M J and Elam J W 2009 Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: medical applications JOM 61 12–16

[26]

Li J X, Chai G D and Wang X W 2023 Atomic layer deposition of thin films: from a chemistry perspective Int. J. Extrem. Manuf. 5 032003

[27]

Zhao R, Guo Z and Wang X W 2018 Surface chemistry during atomic-layer deposition of nickel sulfide from nickel amidinate and H2S J. Phys. Chem. C 122 21514–20

[28]

Zhao R, Xiao S, Yang S H and Wang X W 2019 Surface thermolytic behavior of nickel amidinate and its implication on the atomic layer deposition of nickel compounds Chem. Mater. 31 5172–80

[29]

Wang X W, Dong L, Zhang J Y, Liu Y Q, Ye P D and Gordon R G 2013 Heteroepitaxy of La2O3 and La2–xYxO3 on GaAs (111)A by atomic layer deposition: achieving low interface trap density Nano Lett. 13 594–9

[30]

Cao K, Cai J M and Chen R 2020 Inherently selective atomic layer deposition and applications Chem. Mater. 32 2195–207

[31]

Cao K, Cai J M, Liu X and Chen R 2018 Review article: Catalysts design and synthesis via selective atomic layer deposition J. Vac. Sci. Technol. A 36 010801

[32]

Miikkulainen V, Leskelä M, Ritala M and Puurunen R L 2013 Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends J. Appl. Phys. 113 021301

[33]

Li J Y, Zhang Y Q, Wang J L, Yang H, Zhou X L, Chan M S, Wang X W, Lu L and Zhang S D 2022 High-performance self-aligned top-gate amorphous InGaZnO TFTs with 4 nm-thick atomic-layer-deposited AlOx insulator IEEE Electron Device Lett. 43 729–32

[34]

Muñoz-Rojas D, Maindron T, Esteve A, Piallat F, Kools J C S and Decams J M 2019 Speeding up the unique assets of atomic layer deposition Mater. Today Chem. 12 96–120

[35]

Zhao R, Gao Y H, Guo Z, Su Y T and Wang X W 2017 Interface energy alignment of atomic-layer-deposited VOx on pentacene: an in situ photoelectron spectroscopy investigation ACS Appl. Mater. Interfaces 9 1885–90

[36]

Zhu J H, Zhao R, Shi J M, Wa Q B, Zhang M and Wang X W 2021 Metal exchange and diffusion during atomic layer deposition of cobalt and nickel sulfides Chem. Mater. 33 9403–12

[37]

Li H, Zhao R, Zhu J H, Guo Z, Xiong W and Wang X W 2020 Organosulfur precursor for atomic layer deposition of high-quality metal sulfide films Chem. Mater. 32 8885–94

[38]

Li Z S, Xiang J R, Liu X, Li X B, Li L J, Shan B and Chen R 2022 A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy Int. J. Extrem. Manuf. 4 025101

[39]

Xiong W, Guo Q, Guo Z, Li H, Zhao R, Chen Q, Liu Z W and Wang X W 2018 Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution J. Mater. Chem. A 6 4297–303

[40]

Gao Y H, Shao Y D, Yan L J, Li H, Su Y T, Meng H and Wang X W 2016 Metal/organic interfaces: efficient charge injection in organic field-effect transistors enabled by low-temperature atomic layer deposition of ultrathin VOx interlayer (Adv. Funct. Mater. 25/2016) Adv. Funct. Mater. 26 4615

[41]

Zhou B Z, Liu M J, Wen Y W, Li Y and Chen R 2020 Atomic layer deposition for quantum dots based devices Opto-Electron. Adv. 3 190043

[42]

Jiang C C, Cao K, Zhou B Z, Wen Y W, Shan B and Chen R 2020 Atomic scale composite oxides infiltration to quantum dot photodetector with ultralow dark current ACS Appl. Electron. Mater. 2 155–62

International Journal of Extreme Manufacturing
Article number: 043001
Cite this article:
Wang X, Chen R, Sun S. Material manufacturing from atomic layer. International Journal of Extreme Manufacturing, 2023, 5(4): 043001. https://doi.org/10.1088/2631-7990/acf3b8
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return