AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Device design principles and bioelectronic applications for flexible organic electrochemical transistors

Lin Gao1Mengge Wu1,2Xinge Yu2( )Junsheng Yu1 ( )
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People’s Republic of China
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region of China, People’s Republic of China
Show Author Information

Abstract

Organic electrochemical transistors (OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the flexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work, we summarize the device physics of flexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for flexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of flexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.

References

[1]

White H S, Kittlesen G P and Wrighton M S 1984 Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor J. Am. Chem. Soc. 106 5375–7

[2]

Tan S T M, Keene S, Giovannitti A, Melianas A, Moser M, McCulloch I and Salleo A 2021 Operation mechanism of organic electrochemical transistors as redox chemical transducers J. Mater. Chem. C 9 12148–58

[3]

Rivnay J, Inal S, Salleo A, Owens R M, Berggren M and Malliaras G G 2018 Organic electrochemical transistors Nat. Rev. Mater. 3 17086

[4]

Cucchi M, Weissbach A, Bongartz L M, Kantelberg R, Tseng H, Kleemann H and Leo K 2022 Thermodynamics of organic electrochemical transistors Nat. Commun. 13 4514

[5]

Friedlein J T, McLeod R R and Rivnay J 2018 Device physics of organic electrochemical transistors Org. Electron. 63 398–414

[6]

Zeglio E and Inganäs O 2018 Active materials for organic electrochemical transistors Adv. Mater. 30 1800941

[7]

Li P Y and Lei T 2022 Molecular design strategies for high-performance organic electrochemical transistors J. Polym. Sci. 60 377–92

[8]

Feng K et al 2021 Fused bithiophene imide dimer-based n-type polymers for high-performance organic electrochemical transistors Angew. Chem., Int. Ed. 60 24198–205

[9]

Tan S T M, Giovannitti A, Melianas A, Moser M, Cotts B L, Singh D, McCulloch I and Salleo A 2021 High-gain chemically gated organic electrochemical transistor Adv. Funct. Mater. 31 2010868

[10]

Paudel P R, Tropp J, Kaphle V, Azoulay J D and Lüssem B 2021 Organic electrochemical transistors–from device models to a targeted design of materials J. Mater. Chem. C 9 9761–90

[11]

Huang W, Chen J H, Wang G, Yao Y, Zhuang X M, Pankow R M, Cheng Y H, Marks T J and Facchetti A 2021 Dielectric materials for electrolyte gated transistor applications J. Mater. Chem. C 9 9348–76

[12]

Sun H D, Gerasimov J, Berggren M and Fabiano S 2018 n-Type organic electrochemical transistors: materials and challenges J. Mater. Chem. C 6 11778–84

[13]

Xie M, Liu H F, Wu M G, Chen C, Wen J J, Bai L B, Yu J S and Huang W 2023 Cycling stability of organic electrochemical transistors Org. Electron. 117 106777

[14]

Huang W et al 2023 Vertical organic electrochemical transistors for complementary circuits Nature 613 496–502

[15]

Peng Y J, Gao L, Liu C J, Deng J Y, Xie M, Bai L B, Wang G, Cheng Y H, Huang W and Yu J S 2023 Stretchable organic electrochemical transistors via three-dimensional porous elastic semiconducting films for artificial synaptic applications Nano Res. 16 10206–14

[16]

Liu C J, Deng J Y, Gao L, Cheng J L, Peng Y J, Zeng H J, Huang W, Feng L W and Yu J S 2023 Multilayer porous polymer films for high-performance stretchable organic electrochemical transistors Adv. Electron. Mater. 9 2300119

[17]

Gao L, Liu C J, Peng Y J, Deng J Y, Hou S H, Cheng Y H, Huang W and Yu J S 2022 Ultrasensitive flexible NO2 gas sensors via multilayer porous polymer film Sens. Actuators B 368 132113

[18]

Torricelli F et al 2021 Electrolyte-gated transistors for enhanced performance bioelectronics Nat. Rev. Methods Primers 1 66

[19]

Bai L M, Elósegui C G, Li W Q, Yu P, Fei J J and Mao L Q 2019 Biological applications of organic electrochemical transistors: electrochemical biosensors and electrophysiology recording Front. Chem. 7 313

[20]

Yao Y, Huang W, Chen J H, Liu X X, Bai L B, Chen W, Cheng Y H, Ping J F, Marks T J and Facchetti A 2023 Flexible and stretchable organic electrochemical transistors for physiological sensing devices Adv. Mater. 35 2209906

[21]

Yang A N, Li Y Z, Yang C X, Fu Y, Wang N X, Li L and Yan F 2018 Fabric organic electrochemical transistors for biosensors Adv. Mater. 30 1800051

[22]

Fu Y, Wang N X, Yang A N, Law H K W, Li L and Yan F 2017 Highly sensitive detection of protein biomarkers with organic electrochemical transistors Adv. Mater. 29 1703787

[23]

Guo X, Liu J, Liu F Y, She F, Zheng Q, Tang H, Ma M and Yao S Z 2017 Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors Sens. Actuators B 240 1075–82

[24]

Ling H F, Koutsouras D A, Kazemzadeh S, van de Burgt Y, Yan F and Gkoupidenis P 2020 Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing Appl. Phys. Rev. 7 011307

[25]

Dai S L et al 2022 Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence Matter 5 3375–90

[26]

Lee S K, Cho Y W, Lee J S, Jung Y R, Oh S H, Sun J Y, Kim S B and Joo Y C 2021 Nanofiber channel organic electrochemical transistors for low-power neuromorphic computing and wide-bandwidth sensing platforms Adv. Sci. 8 2001544

[27]

Ji X D, Paulsen B D, Chik G K K, Wu R H, Yin Y Y, Chan P K L and Rivnay J 2021 Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor Nat. Commun. 12 2480

[28]

Cucchi M et al 2021 Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification Sci. Adv. 7 eabh0693

[29]

Gkoupidenis P, Schaefer N, Garlan B and Malliaras G G 2015 Neuromorphic functions in PEDOT:PSS organic electrochemical transistors Adv. Mater. 27 7176–80

[30]

Gkoupidenis P, Schaefer N, Strakosas X, Fairfield J A and Malliaras G G 2015 Synaptic plasticity functions in an organic electrochemical transistor Appl. Phys. Lett. 107 263302

[31]

Rashid R B, Ji X D and Rivnay J 2021 Organic electrochemical transistors in bioelectronic circuits Biosens. Bioelectron. 190 113461

[32]

Ersman P A, Lassnig R, Strandberg J, Tu D Y, Keshmiri V, Forchheimer R, Fabiano S, Gustafsson G and Berggren M 2019 All-printed large-scale integrated circuits based on organic electrochemical transistors Nat. Commun. 10 5053

[33]

Yao Y, Huang W, Chen J H, Wang G, Chen H M, Zhuang X M, Ying Y B, Ping J F, Marks T J and Facchetti A 2021 Flexible complementary circuits operating at sub-0.5 V via hybrid organic–inorganic electrolyte-gated transistors Proc. Natl Acad. Sci. USA 118 e2111790118

[34]

Sun H D, Vagin M, Wang S H, Crispin X, Forchheimer R, Berggren M and Fabiano S 2018 Complementary logic circuits based on high-performance n-type organic electrochemical transistors Adv. Mater. 30 1704916

[35]

Bai J, Liu D Y, Tian X Y and Zhang S M 2022 Tissue-like organic electrochemical transistors J. Mater. Chem. C 10 13303–11

[36]

Khodagholy D et al 2013 High transconductance organic electrochemical transistors Nat. Commun. 4 2133

[37]

Lee W, Kim D, Matsuhisa N, Nagase M, Sekino M, Malliaras G G, Yokota T and Someya T 2017 Transparent, conformable, active multielectrode array using organic electrochemical transistors Proc. Natl Acad. Sci. USA 114 10554–9

[38]

Wu M G et al 2023 Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity Adv. Sci. 10 2370087

[39]

Feng J Y et al 2023 All-polymer fiber organic electrochemical transistor for chronic chemical detection in the brain Adv. Funct. Mater. 33 2214945

[40]

Guo X J et al 2017 Current status and opportunities of organic thin-film transistor technologies IEEE Trans. Electron Dev. 64 1906–21

[41]

Lanzani G 2014 Materials for bioelectronics: organic electronics meets biology Nat. Mater. 13 775–6

[42]

Wang N X, Yang A N, Fu Y, Li Y Z and Yan F 2019 Functionalized organic thin film transistors for biosensing Acc. Chem. Res. 52 277–87

[43]

Pappa A M, Parlak O, Scheiblin G, Mailley P, Salleo A and Owens R M 2018 Organic electronics for point-of-care metabolite monitoring Trends Biotechnol. 36 45–59

[44]

Sekretaryova A N, Eriksson M and Turner A P F 2016 Bioelectrocatalytic systems for health applications Biotechnol. Adv. 34 177–97

[45]

Griggs S, Marks A, Bristow H and McCulloch I 2021 n-type organic semiconducting polymers: stability limitations, design considerations and applications J. Mater. Chem. C 9 8099–128

[46]

Ohayon D, Druet V and Inal S 2023 A guide for the characterization of organic electrochemical transistors and channel materials Chem. Soc. Rev. 52 1001–23

[47]

Marks A, Griggs S, Gasparini N and Moser M 2022 Organic electrochemical transistors: an emerging technology for biosensing Adv. Mater. Interfaces 9 2102039

[48]

Li Y, Cui B B, Zhang S M, Li B X, Li J M, Liu S J and Zhao Q 2022 Ion-selective organic electrochemical transistors: recent progress and challenges Small 18 2107413

[49]

Wang L, Yue X P, Sun Q Z, Zhang L R, Ren G Z, Lu G, Yu H D and Huang W 2022 Flexible organic electrochemical transistors for chemical and biological sensing Nano Res. 15 2433–64

[50]

Wang G R, Hou H Y, Yan Y F, Jagatramka R, Shirsalimian A, Wang Y F, Li B Z, Daly M and Cao C H 2023 Recent advances in the mechanics of 2D materials Int. J. Extrem. Manuf. 5 032002

[51]

Gentile F, Vurro F, Janni M, Manfredi R, Cellini F, Petrozza A, Zappettini A and Coppedè N 2022 A biomimetic, biocompatible OECT sensor for the real-time measurement of concentration and saturation of ions in plant sap Adv. Electron. Mater. 8 2200092

[52]

Li T et al 2022 Biocompatible ionic liquids in high-performing organic electrochemical transistors for ion detection and electrophysiological monitoring ACS Nano 16 12049–60

[53]

Yang A N, Song J J, Liu H, Zhao Z Y, Li L and Yan F 2023 Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart Adv. Funct. Mater. 33 2215037

[54]

Keene S T, Fogarty D, Cooke R, Casadevall C D, Salleo A and Parlak O 2019 Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration Adv. Healthcare Mater. 8 1901321

[55]

Gu X, Yao C L, Liu Y and Hsing I M 2016 16-channel organic electrochemical transistor array for in vitro conduction mapping of cardiac action potential Adv. Healthcare Mater. 5 2345–51

[56]

Han S, Yamamoto S, Polyravas A G and Malliaras G G 2020 Microfabricated ion-selective transistors with fast and super-nernstian response Adv. Mater. 32 2004790

[57]

Lan L Y, Chen J X, Wang Y Z, Li P Y, Yu Y P, Zhu G M, Li Z K, Lei T, Yue W and McCulloch I 2022 Facilely accessible porous conjugated polymers toward high-performance and flexible organic electrochemical transistors Chem. Mater. 34 1666–76

[58]

Wu X H, Surendran A, Moser M, Chen S, Muhammad B T, Maria I P, McCulloch I and Leong W L 2020 Universal spray-deposition process for scalable, high-performance, and stable organic electrochemical transistors ACS Appl. Mater. Interfaces 12 20757–64

[59]

Kong L B, Peng X, Chen Y, Wang P and Xu M 2020 Multi-sensor measurement and data fusion technology for manufacturing process monitoring: a literature review Int. J. Extrem. Manuf. 2 022001

[60]

Shuai C J, Li D S, Yao X, Li X and Gao C D 2023 Additive manufacturing of promising heterostructure for biomedical applications Int. J. Extrem. Manuf. 5 032012

[61]

Wang J F, Suo J, Song Z X, Li W J and Wang Z B 2023 Nanomaterial-based flexible sensors for metaverse and virtual reality applications Int. J. Extrem. Manuf. 5 032013

[62]

Nissa J, Janson P, Simon D T and Berggren M 2021 Expanding the understanding of organic electrochemical transistor function Appl. Phys. Lett. 118 053301

[63]

Thiburce Q, Giovannitti A, McCulloch I and Campbell A J 2019 Nanoscale ion-doped polymer transistors Nano Lett. 19 1712–8

[64]

Rivnay J et al 2015 High-performance transistors for bioelectronics through tuning of channel thickness Sci. Adv. 1 e1400251

[65]

Yaghmazadeh O, Cicoira F, Bernards D A, Yang S Y, Bonnassieux Y and Malliaras G G 2011 Optimization of organic electrochemical transistors for sensor applications J. Polym. Sci. Polym. Phys. 49 34–39

[66]

Bernards D A, Macaya D J, Nikolou M, DeFranco J A, Takamatsu S and Malliaras G G 2008 Enzymatic sensing with organic electrochemical transistors J. Mater. Chem. 18 116–20

[67]

Spyropoulos G D, Gelinas J N and Khodagholy D 2019 Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics Sci. Adv. 5 eaau7378

[68]

Inal S, Rivnay J, Leleux P, Ferro M, Ramuz M, Brendel J C, Schmidt M M, Thelakkat M and Malliaras G G 2014 A high transconductance accumulation mode electrochemical transistor Adv. Mater. 26 7450–5

[69]

Kukhta N A, Marks A and Luscombe C K 2022 Molecular design strategies toward improvement of charge injection and ionic conduction in organic mixed ionic–electronic conductors for organic electrochemical transistors Chem. Rev. 122 4325–55

[70]

Ji J L, Wang H W, Liu R, Jiang X N, Zhang Q, Peng Y B, Sang S B, Sun Q J and Wang Z L 2021 Dual-liquid-gated electrochemical transistor and its neuromorphic behaviors Nano Energy 87 106116

[71]

Ko J, Wu X H, Surendran A, Muhammad B T and Leong W L 2020 Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability ACS Appl. Mater. Interfaces 12 33979–88

[72]

Wang S J et al 2023 An organic electrochemical transistor for multi-modal sensing, memory and processing Nat. Electron. 6 281–91

[73]

Moser M et al 2020 Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability Adv. Mater. 32 2002748

[74]

Hallani R K et al 2021 Regiochemistry-driven organic electrochemical transistor performance enhancement in ethylene glycol-functionalized polythiophenes J. Am. Chem. Soc. 143 11007–18

[75]

Wu H Y et al 2022 Influence of molecular weight on the organic electrochemical transistor performance of ladder-type conjugated polymers Adv. Mater. 34 2106235

[76]

Li P Y, Shi J W, Lei Y Q, Huang Z and Lei T 2022 Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering Nat. Commun. 13 5970

[77]

Yang C Y et al 2022 Low-power/high-gain flexible complementary circuits based on printed organic electrochemical transistors Adv. Electron. Mater. 8 2100907

[78]

Dai Y H et al 2022 Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors Adv. Mater. 34 2201178

[79]

Massetti M et al 2023 Fully 3D-printed organic electrochemical transistors npj Flex. Electron. 7 11

[80]

Cea C, Spyropoulos G D, Jastrzebska-Perfect P, Ferrero J J, Gelinas J N and Khodagholy D 2020 Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology Nat. Mater. 19 679–86

[81]

Zabihipour M, Lassnig R, Strandberg J, Berggren M, Fabiano S, Engquist I and Ersman P A 2020 High yield manufacturing of fully screen-printed organic electrochemical transistors npj Flex. Electron. 4 15

[82]

Chen J H et al 2022 Highly stretchable organic electrochemical transistors with strain-resistant performance Nat. Mater. 21 564–71

[83]

Khodagholy D et al 2013 In vivo recordings of brain activity using organic transistors Nat. Commun. 4 1575

[84]

Nawaz A, Liu Q, Leong W L, Fairfull-Smith K E and Sonar P 2021 Organic electrochemical transistors for in vivo bioelectronics Adv. Mater. 33 2101874

[85]

Bidinger S L, Keene S T, Han S, Plaxco K W, Malliaras G G and Hasan T 2022 Pulsed transistor operation enables miniaturization of electrochemical aptamer-based sensors Sci. Adv. 8 eadd4111

[86]

Tan S T M, Lee G, Denti I, LeCroy G, Rozylowicz K, Marks A, Griggs S, McCulloch I, Giovannitti A and Salleo A 2022 Tuning organic electrochemical transistor threshold voltage using chemically doped polymer gates Adv. Mater. 34 2202359

[87]

Xi X, Wu D Q, Ji W, Zhang S N, Tang W, Su Y Z, Guo X J and Liu R L 2020 Manipulating the sensitivity and selectivity of OECT-based biosensors via the surface engineering of carbon cloth gate electrodes Adv. Funct. Mater. 30 1905361

[88]

Xie K et al 2020 Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo eLife 9 e50345

[89]

Rashid R B, Du W Y, Griggs S, Maria I P, McCulloch I and Rivnay J 2021 Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification Sci. Adv. 7 eabh1055

[90]

Donahue M J, Williamson A, Strakosas X, Friedlein J T, McLeod R R, Gleskova H and Malliaras G G 2018 High-performance vertical organic electrochemical transistors Adv. Mater. 30 1705031

[91]

Lenz J, Del Giudice F, Geisenhof F R, Winterer F and Weitz R T 2019 Vertical, electrolyte-gated organic transistors show continuous operation in the MA cm−2 regime and artificial synaptic behaviour Nat. Nanotechnol. 14 579–85

[92]

Yan Y J, Chen Q Z, Wu X M, Wang X M, Li E L, Ke Y D, Liu Y, Chen H P and Guo T L 2020 High-performance organic electrochemical transistors with nanoscale channel length and their application to artificial synapse ACS Appl. Mater. Interfaces 12 49915–25

[93]

Chen Y P, Meng J, Xu Y M, Li Y G, Zhang Q H, Hou C Y, Sun H D, Wang G and Wang H Z 2021 Integrated ionic-additive assisted wet-spinning of highly conductive and stretchable PEDOT:PSS fiber for fibrous organic electrochemical transistors Adv. Electron. Mater. 7 2100231

[94]

Ferro L M M, Merces L, De Camargo D, S H and Bufon C C B 2021 Ultrahigh-gain organic electrochemical transistor chemosensors based on self-curled nanomembranes Adv. Mater. 33 2101518

[95]

Jo Y J, Kim S Y, Hyun J H, Park B, Choy S, Koirala G R and Kim T I 2022 Fibrillary gelation and dedoping of PEDOT:PSS fibers for interdigitated organic electrochemical transistors and circuits npj Flex. Electron. 6 31

[96]

Yeung S Y, Veronica A, Li Y and Hsing I 2019 High-performance internal ion-gated organic electrochemical transistors for high-frequency bioimpedance analysis Adv. Mater. Technol. 8 2201116

[97]

Cea C, Zhao Z, Wisniewski D, Spyropoulos G D, Polyravas A, Gelinas J N and Khodagholy D 2023 Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics Nat. Mater. 22 1227–35

[98]

Mariani F, Gualandi I, Tessarolo M, Fraboni B and Scavetta E 2018 PEDOT: dye-based, flexible organic electrochemical transistor for highly sensitive pH monitoring ACS Appl. Mater. Interfaces 10 22474–84

[99]

Lin B J et al 2022 Flexible organic integrated electronics for self-powered multiplexed ocular monitoring npj Flex. Electron. 6 77

[100]

Gualandi I, Tonelli D, Mariani F, Scavetta E, Marzocchi M and Fraboni B 2020 Selective detection of dopamine with an all PEDOT:PSS organic electrochemical transistor Sci. Rep. 6 35419

[101]

Koutsouras D, Torricelli F, Gkoupidenis P and Blom P 2021 Efficient gating of organic electrochemical transistors with in-plane gate electrodes Adv. Mater. Technol. 6 2100732

[102]

Chen X D, Rogers J A, Lacour S P, Hu W P and Kim D H 2019 Materials chemistry in flexible electronics Chem. Soc. Rev. 48 1431–3

[103]

Gao W, Ota H, Kiriya D, Takei K and Javey A 2019 Flexible electronics toward wearable sensing Acc. Chem. Res. 52 523–33

[104]

Kalra A, Lowe A and Al-Jumaily A M 2016 Mechanical behaviour of skin: a review J. Mater. Sci. Eng. 5 1000254

[105]

Chen H Y, Wei T R, Zhao K P, Qiu P F, Chen L D, He J and Shi X 2021 Room-temperature plastic inorganic semiconductors for flexible and deformable electronics InfoMat 3 22–35

[106]

Fan X, Nie W Y, Tsai H, Wang N X, Huang H H, Cheng Y J, Wen R J, Ma L J, Yan F and Xia Y G 2019 PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications Adv. Sci. 6 1900813

[107]

Wang W J et al 2022 High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces Nano-Micro Lett. 14 184

[108]

Zhang S M, Hubis E, Tomasello G, Soliveri G, Kumar P and Cicoira F 2017 Patterning of stretchable organic electrochemical transistors Chem. Mater. 29 3126–32

[109]

Zhang S M, Li Y, Tomasello G, Anthonisen M, Li X D, Mazzeo M, Genco A, Grutter P and Cicoira F 2019 Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors Adv. Electron. Mater. 5 1900191

[110]

Flagg L Q, Bischak C G, Onorato J W, Rashid R B, Luscombe C K and Ginger D S 2019 Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors J. Am. Chem. Soc. 141 4345–54

[111]

Schmode P, Savva A, Kahl R, Ohayon D, Meichsner F, Dolynchuk O, Thurn-Albrecht T, Inal S and Thelakkat M 2020 The key role of side chain linkage in structure formation and mixed conduction of ethylene glycol substituted polythiophenes ACS Appl. Mater. Interfaces 12 13029–39

[112]

Chen X X, Marks A, Paulsen B D, Wu R H, Rashid R B, Chen H, Alsufyani M, Rivnay J and McCulloch I 2021 n-type rigid semiconducting polymers bearing oligo(ethylene glycol) side chains for high-performance organic electrochemical transistors Angew. Chem., Int. Ed. 60 9368–73

[113]

Wang Y and Liu Y Q 2023 Insight into conjugated polymers for organic electrochemical transistors Trends Chem. 5 279–94

[114]

Lu K K, Li X M, Sun Q Q, Pang X C, Chen J Z, Minari T, Liu X Y and Song Y L 2021 Solution-processed electronics for artificial synapses Mater. Horiz. 8 447–70

[115]

Zhu M, Li P Y, Li J L and Lei T 2022 Molecular packing and film morphology control in organic electrochemical transistors Mol. Syst. Des. Eng. 7 6–20

[116]

Nightingale J, Pitsalidis C, Pappa A M, Tan E, Stewart K, Owens R M and Kim J S 2020 Small molecule additive for low-power accumulation mode organic electrochemical transistors J. Mater. Chem. C 8 8846–55

[117]

Savva A et al 2019 Solvent engineering for high-performance n-type organic electrochemical transistors Adv. Electron. Mater. 5 1900249

[118]

Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J and Lee K 2014 Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization Adv. Mater. 26 2268–72

[119]

Rivnay J, Inal S, Collins B A, Sessolo M, Stavrinidou E, Strakosas X, Tassone C, Delongchamp D M and Malliaras G G 2016 Structural control of mixed ionic and electronic transport in conducting polymers Nat. Commun. 7 11287

[120]

Giovannitti A, Sbircea D T, Inal S, Nielsen C B, Bandiello E, Hanifi D A, Sessolo M, Malliaras G G, McCulloch I and Rivnay J 2016 Controlling the mode of operation of organic transistors through side-chain engineering Proc. Natl Acad. Sci. USA 113 12017–22

[121]

Wang J B, Lee S, Yokota T and Someya T 2022 Gas-permeable organic electrochemical transistor embedded with a porous solid-state polymer electrolyte as an on-skin active electrode for electrophysiological signal acquisition Adv. Funct. Mater. 32 2200458

[122]

Rajapaksha C P H, Paudel P R, Kodikara P M S G, Dahal D, Dassanayake T M, Kaphle V, Lüssem B and Jákli A 2022 Ionic liquid crystal elastomers-based flexible organic electrochemical transistors: effect of director alignment of the solid electrolyte Appl. Phys. Rev. 9 011415

[123]

Choi J H, Xie W, Gu Y Y, Frisbie C D and Lodge T P 2015 Single ion conducting, polymerized ionic liquid triblock copolymer films: high capacitance electrolyte gates for n-type transistors ACS Appl. Mater. Interfaces 7 7294–302

[124]

Rich S I, Jiang Z, Fukuda K and Someya T 2021 Well-rounded devices: the fabrication of electronics on curved surfaces-a review Mater. Horiz. 8 1926–58

[125]

Kang J, Lim Y W, Lee I, Kim S, Kim K Y, Lee W and Bae B S 2022 Photopatternable poly(dimethylsiloxane) (PDMS) for an intrinsically stretchable organic electrochemical transistor ACS Appl. Mater. Interfaces 14 24840–9

[126]

Liu D Y, Tian X Y, Bai J, Wang Y, Cheng Y X, Ning W J, Chan P K L, Wu K, Sun J Q and Zhang S M 2022 Intrinsically stretchable organic electrochemical transistors with rigid-device-benchmarkable performance Adv. Sci. 9 2203418

[127]

Wang Y D, Zhou Z, Qing X, Zhong W B, Liu Q Z, Wang W W, Li M F, Liu K and Wang D 2016 Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection Anal. Bioanal. Chem. 408 5779–87

[128]

Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A and Fraboni B 2016 Textile organic electrochemical transistors as a platform for wearable biosensors Sci. Rep. 6 33637

[129]

Lee W et al 2018 Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping Sci. Adv. 4 eaau2426

[130]

Marchiori B, Delattre R, Hannah S, Blayac S and Ramuz M 2018 Laser-patterned metallic interconnections for all stretchable organic electrochemical transistors Sci. Rep. 8 8477

[131]

Matsuhisa N et al 2019 High-transconductance stretchable transistors achieved by controlled gold microcrack morphology Adv. Electron. Mater. 5 1900347

[132]

Lerond M, Subramanian A, Skene W G and Cicoira F 2021 Combining electrospinning and electrode printing for the fabrication of stretchable organic electrochemical transistors Front. Phys. 9 708914

[133]

Li Y, Zhang S M, Li X D, Unnava V R N and Cicoira F 2019 Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition Flex. Print. Electron. 4 044004

[134]

Cunin C and Gumyusenge A 2023 Vertical architecture improves performance of transistor family Nature 613 444–5

[135]

Thiburce Q, Melosh N and Salleo A 2022 Wafer-scale microfabrication of flexible organic electrochemical transistors Flex. Print. Electron. 7 034001

[136]

Chen S, Surendran A, Wu X H, Lee S Y, Stephen M and Leong W L 2020 Recent technological advances in fabrication and application of organic electrochemical transistors Adv. Mater. Technol. 5 2000523

[137]

Liu H, Yang A N, Song J J, Wang N X, Lam P, Li Y, Law H K W and Yan F 2021 Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors Sci. Adv. 7 eabg8387

[138]

Fuller E J et al 2019 Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing Science 364 570–4

[139]

Zhong Y Z, Koklu A, Villalva D R, Zhang Y C, Hernandez L H, Moser M, Hallani R K, McCulloch I, Baran D and Inal S 2023 An organic electrochemical transistor integrated photodetector for high quality photoplethysmogram signal acquisition Adv. Funct. Mater. 33 2211479

[140]

Jimbo Y et al 2021 An organic transistor matrix for multipoint intracellular action potential recording Proc. Natl Acad. Sci. USA 118 e2022300118

[141]

Zschieschang U, Klauk H and Borchert J W 2023 High-resolution lithography for high-frequency organic thin-film transistors Adv. Mater. Technol. 8 2201888

[142]

Kwak I C, Lee Y, Kim M J, Choi Y J, Roe D G, Kang M S, Woo H Y and Cho J H 2023 Solid-state homojunction electrochemical transistors and logic gates on plastic Adv. Funct. Mater. 33 2211740

[143]

Lim D U, Jo S B and Cho J H 2023 Monolithic tandem vertical electrochemical transistors for printed multi-valued logic Adv. Mater. 35 2208757

[144]

Fumeaux N and Briand D 2023 Zinc hybrid sintering for printed transient sensors and wireless electronics npj Flex. Electron. 7 14

[145]

Zumeit A, Dahiya A S, Christou A, Shakthivel D and Dahiya R 2021 Direct roll transfer printed silicon nanoribbon arrays based high-performance flexible electronics npj Flex. Electron. 5 18

[146]

Schmatz B, Lang A W and Reynolds J R 2019 Fully printed organic electrochemical transistors from green solvents Adv. Funct. Mater. 29 1905266

[147]

Ersman P A, Lassnig R, Strandberg J and Dyreklev P 2021 Flexible active matrix addressed displays manufactured by screen printing Adv. Electron. Mater. 23 2000771

[148]

Ersman P A et al 2020 Monolithic integration of display driver circuits and displays manufactured by screen printing Flex. Print. Electron. 5 024001

[149]

Granelli R, Alessandri I, Gkoupidenis P, Vassalini I, Kovács-Vajna Z M, Blom P W M and Torricelli F 2022 High-performance bioelectronic circuits integrated on biodegradable and compostable substrates with fully printed mask-less organic electrochemical transistors Small 18 2108077

[150]

Harikesh P C et al 2022 Organic electrochemical neurons and synapses with ion mediated spiking Nat. Commun. 13 901

[151]

AlChamaa W and Khraiche M 2022 High performance fully inkjet-printed organic electrochemical transistor (OECT) biosensor J. Electrochem. Soc. 169 087518

[152]

Li Y Z, Wang N X, Yang A N, Ling H F and Yan F 2019 Biomimicking stretchable organic electrochemical transistor Adv. Electron. Mater. 5 1900566

[153]

Mangoma T N, Yamamoto S, Malliaras G G and Daly R 2022 Hybrid 3D/inkjet-printed organic neuromorphic transistors Adv. Mater. Technol. 7 2000798

[154]

Fan J X, Montemagno C and Gupta M 2019 3D printed high transconductance organic electrochemical transistors on flexible substrates Org. Electron. 73 122–9

[155]

Zhang S M et al 2020 Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics Adv. Funct. Mater. 30 1906016

[156]

Zhou X Z, Zhang L W, Wang Y, Zhao S, Zhou Y, Guo Y R, Wang Y M, Liang J and Chen H W 2023 Aerosol jet printing of multi-dimensional OECT force sensor with high sensitivity and large measuring range Adv. Mater. Technol. 8 2201272

[157]

Makhinia A, Hübscher K, Beni V and Ersman P A 2022 High performance organic electrochemical transistors and logic circuits manufactured via a combination of screen and aerosol jet printing techniques Adv. Mater. Technol. 7 2200153

[158]

Braendlein M, Pappa A M, Ferro M, Lopresti A, Acquaviva C, Mamessier E, Malliaras G G and Owens R M 2017 Lactate detection in tumor cell cultures using organic transistor circuits Adv. Mater. 29 1605744

[159]

Chen S, Surendran A, Wu X H and Leong W L 2020 Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage Adv. Funct. Mater. 30 2006186

[160]

Song J J et al 2023 Perovskite solar cell-gated organic electrochemical transistors for flexible photodetectors with ultrahigh sensitivity and fast response Adv. Mater. 35 2207763

[161]

Wang X C, Meng X, Zhu Y Z, Ling H N, Chen Y H, Li Z K, Hartel M C, Dokmeci M R, Zhang S M and Khademhosseini A 2021 A sub-1-V, microwatt power-consumption iontronic pressure sensor based on organic electrochemical transistors IEEE Electron Device Lett. 42 46–49

[162]

Yan Y J, Wu X M, Chen Q Z, Liu Y Q, Chen H P and Guo T L 2019 High-performance low-voltage flexible photodetector arrays based on all-solid-state organic electrochemical transistors for photosensing and imaging ACS Appl. Mater. Interfaces 11 20214–24

[163]

Deng Y P et al 2022 A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection Proc. Natl Acad. Sci. USA 119 e2208060119

[164]

Ghittorelli M, Lingstedt L, Romele P, Crăciun N I, Kovács-Vajna Z M, Blom P W M and Torricelli F 2018 High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors Nat. Commun. 9 1441

[165]

Pierre A, Doris S E, Lujan R and Street R A 2019 Monolithic integration of ion-selective organic electrochemical transistors with thin film transistors on flexible substrates Adv. Mater. Technol. 4 1800577

[166]

Liu C J, Wu M G, Gao L, Liu H and Yu J S 2022 Nanoporous polymer films based on breath figure method for stretchable chemiresistive NO2 gas sensors Sens. Actuators B 371 132540

[167]

Guo K Y et al 2021 Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors Nat. Biomed. Eng. 5 666–77

[168]

Khodagholy D, Curto V F, Fraser K J, Gurfinkel M, Byrne R, Diamond D, Malliaras G G, Benito-Lopez F and Owens R M 2012 Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing J. Mater. Chem. 22 4440–3

[169]

Koklu A, Wustoni S, Musteata V E, Ohayon D, Moser M, McCulloch I, Nunes S P and Inal S 2021 Microfluidic integrated organic electrochemical transistor with a nanoporous membrane for amyloid-β detection ACS Nano 15 8130–41

[170]

Takemoto A et al 2023 Fully transparent, ultrathin flexible organic electrochemical transistors with additive integration for bioelectronic applications Adv. Sci. 10 2204746

[171]

Strand E J, Palizzi M J, Crichton C A, Renny M N, Bihar E, McLeod R R and Whiting G L 2023 Multimodal operation of printed electrochemical transistors for sensing in controlled environment agriculture Sens. Actuators B 387 133763

[172]

Van De Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Talin A A and Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater. 16 414–8

[173]

Wang X M, Yang H H, Li E L, Cao C B, Zheng W, Chen H P and Li W W 2023 Stretchable transistor-structured artificial synapses for neuromorphic electronics Small 19 2205395

[174]

Keene S T et al 2020 A biohybrid synapse with neurotransmitter-mediated plasticity Nat. Mater. 19 969–73

[175]

Qiu J, Cao J, Liu X S, Chen P, Feng G, Zhang X M, Wang M and Liu Q 2023 A flexible organic electrochemical synaptic transistor with dopamine-mediated plasticity IEEE Electron Device Lett. 44 176–9

[176]

Deng Y P et al 2023 A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity Adv. Funct. Mater. 33 2214139

[177]

Lee H R, Won Y and Oh J H 2022 Neuromorphic bioelectronics based on semiconducting polymers J. Polym. Sci. 60 348–76

[178]

Harikesh P C et al 2023 Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons Nat. Mater. 22 242–8

[179]

Sarkar T, Lieberth K, Pavlou A, Frank T, Mailaender V, McCulloch I, Blom P W M, Torricelli F and Gkoupidenis P 2022 An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing Nat. Electron. 5 774–83

[180]

Yu J R, Gao G Y, Huang J R, Yang X X, Han J, Zhang H, Chen Y H, Zhao C L, Sun Q J and Wang Z L 2021 Contact-electrification-activated artificial afferents at femtojoule energy Nat. Commun. 12 1581

[181]

Kim Y et al 2018 A bioinspired flexible organic artificial afferent nerve Science 360 998–1003

[182]

Seo D G et al 2019 Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics Nano Energy 65 104035

[183]

Chen Y H et al 2019 Piezotronic graphene artificial sensory synapse Adv. Funct. Mater. 29 1900959

[184]

Surendran A, Chen S, Lew J H, Wu X H, Koh T M and Leong W L 2021 Self-powered organic electrochemical transistors with stable, light-intensity independent operation enabled by carbon-based perovskite solar cells Adv. Mater. Technol. 6 2100565

[185]

Wu M, Yao K, Li D, Huang X, Liu Y, Wang L, Song E, Yu J and Yu X 2021 Self-powered skin electronics for energy harvesting and healthcare monitoring Mater. Today Energy 21 100786

[186]

Krauhausen I et al 2021 Organic neuromorphic electronics for sensorimotor integration and learning in robotics Sci. Adv. 7 eabl5068

[187]

Lee Y et al 2018 Stretchable organic optoelectronic sensorimotor synapse Sci. Adv. 4 eaat7387

[188]

Lee Y et al 2023 A low-power stretchable neuromorphic nerve with proprioceptive feedback Nat. Biomed. Eng. 7 511–9

[189]

Liu G C et al 2022 Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors Adv. Funct. Mater. 32 2200959

[190]

Wu C X, Kim T W, Choi H Y, Strukov D B and Yang J J 2017 Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability Nat. Commun. 8 752

[191]

Shim H et al 2019 Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems Sci. Adv. 5 eaax4961

[192]

Shim H et al 2022 Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors Proc. Natl Acad. Sci. USA 119 e2204852119

[193]

Chouhdry H H, Lee D H, Bag A and Lee N E 2023 A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor Nat. Commun. 14 821

[194]

Wang W C et al 2023 Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin Science 380 735–42

[195]

Tang K, Miao W J and Guo S 2021 Crosslinked PEDOT:PSS organic electrochemical transistors on interdigitated electrodes with improved stability ACS Appl. Polym. Mater. 3 1436–44

[196]

Giovannitti A et al 2016 N-type organic electrochemical transistors with stability in water Nat. Commun. 7 13066

[197]

Kim S M et al 2018 Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability Nat. Commun. 9 3858

[198]

Kim J H, Ahmad Z, Kim Y, Kim W, Ahn H, Lee J S and Yoon M H 2020 Decoupling critical parameters in large-range crystallinity-controlled polypyrrole-based high-performance organic electrochemical transistors Chem. Mater. 32 8606–18

[199]

Castillo T C H, Moser M, Cendra C, Nayak P D, Salleo A, McCulloch I and Inal S 2022 Simultaneous performance and stability improvement of a p-type organic electrochemical transistor through additives Chem. Mater. 34 6723–33

[200]

Paterson A F et al 2020 Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability Nat. Commun. 11 3004

[201]

Wu X H, Chen S, Moser M, Moudgil A, Griggs S, Marks A, Li T, McCulloch I and Leong W L 2023 High performing solid-state organic electrochemical transistors enabled by glycolated polythiophene and ion-gel electrolyte with a wide operation temperature range from −50 to 110 °C Adv. Funct. Mater. 33 2209354

[202]

Nguyen-Dang T, Harrison K, Lill A, Dixon A, Lewis E, Vollbrecht J, Hachisu T, Biswas S, Visell Y and Nguyen T Q 2021 Biomaterial-based solid-electrolyte organic electrochemical transistors for electronic and neuromorphic applications Adv. Electron. Mater. 7 2100519

[203]

Abarkan M et al 2022 Vertical organic electrochemical transistors and electronics for low amplitude micro-organ signals Adv. Sci. 9 2105211

[204]

Song J J, Liu H, Zhao Z Y, Lin P and Yan F 2023 Flexible organic transistors for biosensing: devices and applications Adv. Mater. 2300034

[205]

Park S et al 2018 Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics Nature 561 516–21

International Journal of Extreme Manufacturing
Cite this article:
Gao L, Wu M, Yu X, et al. Device design principles and bioelectronic applications for flexible organic electrochemical transistors. International Journal of Extreme Manufacturing, 2024, 6(1): 012005. https://doi.org/10.1088/2631-7990/acfd69

219

Views

1

Downloads

6

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 24 April 2023
Revised: 10 July 2023
Accepted: 25 September 2023
Published: 11 October 2023
© 2023 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return