AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Preparation of MXene-based hybrids and their application in neuromorphic devices

Zhuohao Xiao1,2Xiaodong Xiao1Ling Bing Kong3( )Hongbo Dong2Xiuying Li1Bin He3Shuangchen Ruan3Jianpang Zhai3Kun Zhou4Qin Huang5Liang Chu6 ( )
School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, Jiangxi, People’s Republic of China
School of Mechanical and Vehicle Engineering, Linyi University, Linyi 276000, Shandong, People’s Republic of China
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, People’s Republic of China
School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Ningbo Institute of Materials Engineering and Technology, Chinese Academy of Science, Ningbo 315201, Zhejiang, People’s Republic of China
Institute of Carbon Neutrality and New Energy & School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, People’s Republic of China
Show Author Information

Abstract

The traditional von Neumann computing architecture has relatively-low information processing speed and high power consumption, making it difficult to meet the computing needs of artificial intelligence (AI). Neuromorphic computing systems, with massively parallel computing capability and low power consumption, have been considered as an ideal option for data storage and AI computing in the future. Memristor, as the fourth basic electronic component besides resistance, capacitance and inductance, is one of the most competitive candidates for neuromorphic computing systems benefiting from the simple structure, continuously adjustable conductivity state, ultra-low power consumption, high switching speed and compatibility with existing CMOS technology. The memristors with applying MXene-based hybrids have attracted significant attention in recent years. Here, we introduce the latest progress in the synthesis of MXene-based hybrids and summarize their potential applications in memristor devices and neuromorphological intelligence. We explore the development trend of memristors constructed by combining MXenes with other functional materials and emphatically discuss the potential mechanism of MXenes-based memristor devices. Finally, the future prospects and directions of MXene-based memristors are briefly described.

References

[1]

Furber S 2016 Large-scale neuromorphic computing systems J. Neural Eng. 13 051001

[2]

Kim C-H et al 2019 Emerging memory technologies for neuromorphic computing Nanotechnology 30 032001

[3]

Marković D, Mizrahi A, Querlioz D and Grollier J 2020 Physics for neuromorphic computing Nat. Rev. Phys. 2 499–510

[4]

Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–83

[5]

Burr G W et al 2017 Neuromorphic computing using non-volatile memory Adv. Phys. X 2 89–124

[6]

Pi S, Li C, Jiang H, Xia W W, Xin H L, Yang J J and Xia Q F 2019 Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension Nat. Nanotechnol. 14 35–39

[7]

Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H 2020 Fully hardware-implemented memristor convolutional neural network Nature 577 641–6

[8]

Saxena V 2021 Neuromorphic computing: from devices to integrated circuits J. Vac. Sci. Technol. B 39 010801

[9]

Qi X X, Yin W L, Jin S, Zhou A G, He X D, Song G P, Zheng Y T and Bai Y L 2022 Density-functional-theory predictions of mechanical behaviour and thermal properties as well as experimental hardness of the Ga-bilayer Mo2Ga2C J. Adv. Ceram. 11 273–82

[10]

Li Q Y, Tao Q Y, Chen Y, Kong L G, Shu Z W, Duan H G, Liao L and Liu Y 2021 Low voltage and robust InSe memristor using van der Waals electrodes integration Int. J. Extrem. Manuf. 3 045103

[11]

Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S, Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extrem. Manuf. 5 042010

[12]

Gong Y, Xing X C, Wang Y, Lv Z Y, Zhou Y and Han S-T 2021 Emerging MXenes for functional memories Small Sci. 1 2100006

[13]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnol. 6 147–50

[14]

Chhowalla M, Shin H S, Eda G, Li L-J, Loh K P and Zhang H 2013 The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. 5 263–75

[15]

Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C and Liu Z 2021 2D material based synaptic devices for neuromorphic computing Adv. Funct. Mater. 31 2005443

[16]

Lyu G Y, Liang F, Qiu D Y, Gu H H, Wu S B, Wang X H and Zhang H J 2023 Research progress in preparation of two-dimensional Tin+1CnTx-MXenes and their ceramic matrix composites J. Ceram. 44 28–37

[17]

Wei Y N, Tang X, Shang J, Ju L and Kou L Z 2020 Two-dimensional functional materials: from properties to potential applications Int. J. Smart Nano Mater. 11 247–64

[18]

Wang X M, Xie W G and Xu J-B 2014 Graphene based non-volatile memory devices Adv. Mater. 26 5496–503

[19]

Fu X et al 2023 Graphene/MoS2−xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing Light Sci. Appl. 12 39

[20]

Park E et al 2022 A pentagonal 2D layered PdSe2-based synaptic device with a graphene floating gate J. Mater. Chem. C 10 16536–45

[21]

Yin H F, Zhang P Z, Jin W, Di B Y, Wu H, Zhang G J, Zhang W F and Chang H X 2023 Fe3GaTe2/MoSe2 ferromagnet/semiconductor 2D van der Waals heterojunction for room-temperature spin-valve devices CrystEngComm 25 1339–46

[22]

Yan W L, Xiao Z H, Li X Y, Wu X and Kong L B 2021 Chinese ink-facilitated fabrication of paper-based composites as electrodes for supercapacitors Int. J. Smart Nano Mater. 12 351–74

[23]

Wang M et al 2018 Robust memristors based on layered two-dimensional materials Nat. Electron. 1 130–6

[24]

Liu Y, Huang Y and Duan X F 2019 Van der Waals integration before and beyond two-dimensional materials Nature 567 323–33

[25]

Bose S, Mukherjee S, Jana S, Srivastava S K and Ray S K 2023 One-pot liquid-phase synthesis of MoS2-WS2 van der waals heterostructures for broadband photodetection Nanotechnology 34 125704

[26]

Yan Z H, Chen Q, Luo L J, Li J B and Chen Y J 2022 Fabrication and electrochemical performances of CoSe2/Ti3C2Tx composites J. Ceram. 43 1037–45

[27]

Zeng X J, Ding J Q, Zhang Z L, Zhang X Y and Sun L L 2022 Controllable synthesis of CoMoOx nanostructures for high energy density asymmetric supercapacitors J. Ceram. 43 1007–14

[28]

Xue H L, Gao W S, Gao J W, Schneider G F, Wang C and Fu W Y 2023 Radiofrequency sensing systems based on emerging two-dimensional materials and devices Int. J. Extrem. Manuf. 5 032010

[29]

Ling S T, Zhang C, Ma C L, Li Y and Zhang Q C 2023 Emerging MXene-based memristors for in-memory, neuromorphic computing, and logic operation Adv. Funct. Mater. 33 2208320

[30]

Ju J H et al 2021 Two-dimensional MXene synapse for brain-inspired neuromorphic computing Small 17 2102595

[31]

Patel H N M, Hemanth N R, Gosai J, Mohili R, Solanki A, Roy M, Fang B Z and Chaudhari N K 2022 MXenes: promising 2D memristor materials for neuromorphic computing components Trends Chem. 4 835–49

[32]

Wang K Y, Chen J S and Yan X B 2021 MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications Nano Energy 79 105453

[33]

Barsoum M W 2000 The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates Prog. Solid State Chem. 28 201–81

[34]

Sun Z M, Music D, Ahuja R, Li S and Schneider J M 2004 Bonding and classification of nanolayered ternary carbides Phys. Rev. B 70 092102

[35]

Xiao Z H, Xiao X D, Kong L B, Dong H B, Li X Y, Sun X Y, He B, Ruan S C and Zhai J P 2023 MXenes and MXene-based composites for energy conversion and storage applications J. Materiomics 9 1067–112

[36]

Emmerlich J, Music D, Eklund P, Wilhelmsson O, Jansson U, Schneider J M, Högberg H and Hultman L 2007 Thermal stability of Ti3SiC2 thin films Acta Mater. 55 1479–88

[37]

Sun Z M 2011 Progress in research and development on MAX phases: a family of layered ternary compounds Int. Mater. Rev. 56 143–66

[38]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y and Barsoum M W 2011 Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 Adv. Mater. 23 4248–53

[39]
Barsoum M W 2013 MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Wiley-VCH Verlag GmbH & Co.)
[40]

Anasori B, Halim J, Lu J, Voigt C A, Hultman L and Barsoum M W 2015 Mo2TiAlC2: a new ordered layered ternary carbide Scr. Mater. 101 5–7

[41]

Zhang H B, Zhou Y C, Bao Y W, Li M S and Wang J Y 2006 Intermediate phases in synthesis of Ti3SiC2 and Ti3Si(Al)C2 solid solutions from elemental powders J. Eur. Ceram. Soc. 26 2373–80

[42]

Barsoum M W, El-Raghy T and Ali M 2000 Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5 Metall. Mater. Trans. A 31 1857–65

[43]

Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 25th anniversary article: mXenes: a new family of two-dimensional materials Adv. Mater. 26 992–1005

[44]

Lei J-C, Zhang X and Zhou Z 2015 Recent advances in MXene: preparation, properties, and applications Front. Phys. 10 276–86

[45]

Xiao Y, Hwang J-Y and Sun Y-K 2016 Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage J. Mater. Chem. A 4 10379–93

[46]

Kumar P, Abuhimd H, Wahyudi W, Li M L, Ming J and Li L-J 2016 Review—two-dimensional layered materials for energy storage applications ECS J. Solid State Sci. Technol. 5 Q3021–5

[47]

Ng V M H, Huang H, Zhou K, Lee P S, Que W X, Xu J Z and Kong L B 2017 Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications J. Mater. Chem. A 5 3039–68

[48]

Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M W and Gogotsi Y 2013 Intercalation and delamination of layered carbides and carbonitrides Nat. Commun. 4 1716

[49]

Wei Y, Zhang P, Soomro R A, Zhu Q Z and Xu B 2021 Advances in the synthesis of 2D MXenes Adv. Mater. 33 2103148

[50]

Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S and Gogotsi Y 2017 Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) Chem. Mater. 29 7633–44

[51]

Yang J, Naguib M, Ghidiu M, Pan L-M, Gu J, Nanda J, Halim J, Gogotsi Y, Barsoum M W and Zhou Y 2016 Two-dimensional Nb-based M4C3 solid solutions (MXenes) J. Am. Ceram. Soc. 99 660–6

[52]

Naguib M, Unocic R R, Armstrong B L and Nanda J 2015 Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes" Dalton Trans. 44 9353–8

[53]

Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X-L, Cheng H-M and Ren W C 2015 Large-area high-quality 2D ultrathin Mo2C superconducting crystals Nat. Mater. 14 1135–41

[54]

Jeon J, Jang S K, Jeon S M, Yoo G, Jang Y H, Park J-H and Lee S 2015 Layer-controlled CVD growth of large-area two-dimensional MoS2 films Nanoscale 7 1688–95

[55]

Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh P L, Zhao M Q, Shenoy V B, Barsoum M W and Gogotsi Y 2016 Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale 8 11385–91

[56]

Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M and Feng X L 2018 Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system Angew. Chem., Int. Ed. 57 15491–5

[57]

Li T et al 2018 Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment Angew. Chem., Int. Ed. 57 6115–9

[58]

Li M et al 2019 Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated Max phases and MXenes J. Am. Chem. Soc. 141 4730–7

[59]

Li Y B et al 2020 A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte Nat. Mater. 19 894–9

[60]

Ashraf I, Ahmad S, Nazir F, Dastan D, Shi Z C, Garmestani H and Iqbal M 2022 Hydrothermal synthesis and water splitting application of d-Ti3C2 MXene/V2O5 hybrid nanostructures as an efficient bifunctional catalyst Int. J. Hydrog. Energy 47 27383–96

[61]

Wang D, Zhou C K, Filatov A S, Cho W, Lagunas F, Wang M Z, Vaikuntanathan S, Liu C, Klie R F and Talapin D V 2023 Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes Science 379 1242–7

[62]

Ding H M et al 2023 Chemical scissor-mediated structural editing of layered transition metal carbides Science 379 1130–5

[63]

Mei J, Liao T, Kou L Z and Sun Z Q 2017 Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries Adv. Mater. 29 1700176

[64]

Pomerantseva E and Gogotsi Y 2017 Two-dimensional heterostructures for energy storage Nat. Energy 2 17089

[65]

Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y and Sinitskii A 2016 Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes Adv. Electron. Mater. 2 1600255

[66]

Halim J et al 2014 Transparent conductive two-dimensional titanium carbide epitaxial thin films Chem. Mater. 26 2374–81

[67]

Wang L B, Zhang H, Wang B, Shen C J, Zhang C X, Hu Q K, Zhou A G and Liu B Z 2016 Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process Electron. Mater. Lett. 12 702–10

[68]

Ghidiu M, Lukatskaya M R, Zhao M-Q, Gogotsi Y and Barsoum M W 2014 Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance Nature 516 78–81

[69]

Li H Y, Hou Y, Wang F X, Lohe M R, Zhuang X D, Niu L and Feng X L 2017 Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene Adv. Energy Mater. 7 1601847

[70]

Sang X H, Xie Y, Lin M W, Alhabeb M, Van Aken K L, Gogotsi Y, Kent P R C, Xiao K and Unocic R R 2016 Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene ACS Nano 10 9193–2000

[71]

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y and Barsoum M W 2012 Two-dimensional transition metal carbides ACS Nano 6 1322–31

[72]

Alhabeb M, Maleski K, Mathis T S, Sarycheva A, Hatter C B, Uzun S, Levitt A and Gogotsi Y 2018 Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene) Angew. Chem., Int. Ed. 57 5444–8

[73]

Kajiyama S, Szabova L, Iinuma H, Sugahara A, Gotoh K, Sodeyama K, Tateyama Y, Okubo M and Yamada A 2017 Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination Adv. Energy Mater. 7 1601873

[74]

Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L and Song L X 2017 Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2 Mater. Des. 114 161–6

[75]

Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y and Barsoum M W 2016 Ion-exchange and cation solvation reactions in Ti3C2 MXene Chem. Mater. 28 3507–14

[76]

Halim J et al 2016 Synthesis and characterization of 2D molybdenum carbide (MXene) Adv. Funct. Mater. 26 3118–27

[77]

Xie X H, Xue Y, Li L, Chen S G, Nie Y, Ding W and Wei Z D 2014 Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system Nanoscale 6 11035–40

[78]

Li G N, Tan L, Zhang Y M, Wu B H and Li L 2017 Highly efficiently delaminated single-layered MXene nanosheets with large lateral size Langmuir 33 9000–6

[79]

Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M and Green M J 2017 Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution J. Mater. Chem. A 5 21663–8

[80]

Pang S-Y, Wong Y-T, Yuan S G, Liu Y, Tsang M-K, Yang Z B, Huang H T, Wong W-T and Hao J H 2019 Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials J. Am. Chem. Soc. 141 9610–6

[81]

Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L H, Haines B, May S J, Billinge S J L and Gogotsi Y 2017 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes) Nanoscale 9 17722–30

[82]

Shi H H, Zhang P P, Liu Z C, Park S, Lohe M R, Wu Y P, Nia A S, Yang S and Feng X L 2021 Ambient-stable two-dimensional Titanium Carbide (MXene) enabled by iodine etching Angew. Chem., Int. Ed. 60 8689–93

[83]

Mei J, Ayoko G A, Hu C F, Bell J M and Sun Z Q 2020 Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage Sustain. Mater. Technol. 25 e00156

[84]

Mei J, Ayoko G A, Hu C F and Sun Z Q 2020 Thermal reduction of sulfur-containing MAX phase for MXene production Chem. Eng. J. 395 125111

[85]

Zada S et al 2020 Algae extraction controllable delamination of Vanadium Carbide nanosheets with enhanced near-infrared photothermal performance Angew. Chem., Int. Ed. 59 6601–6

[86]

Wang X F, Shen X, Gao Y R, Wang Z X, Yu R C and Chen L Q 2015 Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X J. Am. Chem. Soc. 137 2715–21

[87]

Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y and Barsoum M W 2013 New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries J. Am. Chem. Soc. 135 15966–9

[88]

Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan L M, Zhang B, Yang J, Gogotsi Y, Billinge S J L and Barsoum M W 2014 Synthesis and characterization of two-dimensional Nb4C3 (MXene) Chem. Commun. 50 9517–20

[89]

Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y and Barsoum M W 2015 Two-dimensional, ordered, double transition metals carbides (MXenes) ACS Nano 9 9507–16

[90]

Ran J R, Gao G P, Li F-T, Ma T-Y, Du A J and Qiao S-Z 2017 Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production Nat. Commun. 8 13907

[91]

Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao X D, Wang Y, Dou H, Zhang X G and Yamauchi Y 2017 Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials Nat. Commun. 8 15717

[92]

Xu B Z, Zhu M S, Zhang W C, Zhen X, Pei Z X, Xue Q, Zhi C Y and Shi P 2016 Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity Adv. Mater. 28 3333–9

[93]

Wu M, He Y, Wang L B, Xia Q X and Zhou A G 2020 Synthesis and electrochemical properties of V2C MXene by etching in opened/closed environments J. Adv. Ceram. 9 749–58

[94]

Mashtalir O, Naguib M, Dyatkin B, Gogotsi Y and Barsoum M W 2013 Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid Mater. Chem. Phys. 139 147–52

[95]

Boota M, Anasori B, Voigt C, Zhao M-Q, Barsoum M W and Gogotsi Y 2016 Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene) Adv. Mater. 28 1517–22

[96]

Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W and Gogotsi Y 2016 Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties Adv. Electron. Mater. 2 1600050

[97]

Liu F F, Zhou A G, Chen J F, Jia J, Zhou W J, Wang L B and Hu Q K 2017 Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties Appl. Surf. Sci. 416 781–9

[98]

Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W and Gogotsi Y 2013 Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide Science 341 1502–5

[99]

Sun W-J, Zhao Y-Y, Cheng X-F, He J-H and Lu J-M 2020 Surface functionalization of single-layered Ti3C2Tx MXene and its application in multilevel resistive memory ACS Appl. Mater. Interfaces 12 9865–71

[100]

Lin H and Tiwari S 2007 A novel dual-polarity nonvolatile memory IEEE Electron Device Lett. 28 412–5

[101]

Gambino J P and Colgan E G 1998 Silicides and ohmic contacts Mater. Chem. Phys. 52 99–146

[102]

Kim S K, Kim J Y, Choi S-Y, Lee J Y and Jeong H Y 2015 Direct observation of conducting nanofilaments in graphene-oxide-resistive switching memory Adv. Funct. Mater. 25 6710–5

[103]

Khot A C, Dongale T D, Park J H, Kesavan A V and Kim T G 2021 Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications ACS Appl. Mater. Interfaces 13 5216–27

[104]

Lian X J, Shi Y L, Li S Y, Ding B X, Hua C F and Wang L 2022 Applications of MXene-based memristors in neuromorphic intelligence applications Contemp. Phys. 63 87–105

[105]

Lin H-T, Pei Z W and Chan Y-J 2007 Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device IEEE Electron Device Lett. 28 569–71

[106]

Yu R J, Zhang X H, Gao C S, Li E L, Yan Y J, Hu Y Y, Chen H P, Guo T L and Wang R 2022 Low-voltage solution-processed artificial optoelectronic hybrid-integrated neuron based on 2D MXene for multi-task spiking neural network Nano Energy 99 107418

[107]

Wang Y et al 2021 Emulation of multiple-functional synapses using V2C memristors with coexistence of resistive and threshold switching Mater. Sci. Semicond. Proc. 135 106123

[108]

Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101–8

[109]

Zhao B, Xiao M and Zhou Y N 2019 Synaptic learning behavior of a TiO2 nanowire memristor Nanotechnology 30 425202

[110]

Wang L, Wen J, Jiang Y, Ou Q F, Yu L, Xiong B-S, Yang B X, Zhang C and Tong Y 2020 Electrical conduction characteristic of a 2D MXene device with Cu/Cr2C/TiN structure based on density functional theory Materials 13 3671

[111]

Fatima S, Hakim M W, Akinwande D and Rizwan S 2022 Self-generated double transition-metal carbide MXene/graphene oxide trilayered memristors for flexible electronics Mater. Today Phys. 26 100730

[112]

Wang Y Q et al 2019 Manipulation of the electrical behaviors of Cu/MXene/SiO2/W memristor Appl. Phys. Express 12 106504

[113]

Shuck C E, Sarycheva A, Anayee M, Levitt A, Zhu Y Z, Uzun S, Balitskiy V, Zahorodna V, Gogotsi O and Gogotsi Y 2020 Scalable synthesis of Ti3C2TX MXene Adv. Energy Mater. 22 1901241

[114]

Melianas A, Kang M-A, VahidMohammadi A, Quill T J, Tian W Q, Gogotsi Y, Salleo A and Hamedi M M 2022 High-speed ionic synaptic memory based on 2D titanium carbide MXene Adv. Funct. Mater. 32 2109970

[115]

Lu J Y, Zhang Y, Tao Y J, Wang B B, Cheng W H, Jie G X, Song L and Hu Y 2021 Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance J. Colloid Interface Sci. 588 164–74

[116]

Lian X J, Shen X Y, Fu J K, Gao Z X, Wan X, Liu X Y, Hu E T, Xu J G and Tong Y 2020 Electrical properties and biological synaptic simulation of Ag/MXene/SiO2/Pt RRAM devices Electronics 9 2098

[117]

Zhou K W, Li Y, Zhuang S J, Ren J, Tang F, Mu J L and Wang P 2022 A novel electrochemical sensor based on CuO-CeO2/MXene nanocomposite for quantitative and continuous detection of H2O2 J. Electroanal. Chem. 921 116655

[118]

Chen X T et al 2021 First-principles calculation and experimental investigation of a three-atoms-type MXene V2C and its effects on memristive devices IEEE Trans. Nanotechnol. 20 512–6

[119]

Chen Y H et al 2019 Realization of artificial neuron using MXene bi-directional threshold switching memristors IEEE Electron Device Lett. 40 1686–9

[120]
Shen Z J, Zhao C, Liu Y N, Yang L and Zhao C Z 2021 Artificial synaptic behavior and Its improvement of RRAM device with stacked solution-processed MXene layers Proc. 2021 18th Int. SoC Design Conf. (IEEE) pp 187–8
[121]

Yan X B et al 2019 A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse Small 15 1900107

[122]

Lian X J, Shen X Y, Zhang M C, Xu J G, Gao F, Wan X, Hu E T, Guo Y F, Zhao J and Tong Y 2019 Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor Appl. Phys. Lett. 115 063501

[123]

Wan X, Xu W, Zhang M C, He N, Lian X J, Hu E T, Xu J G and Tong Y 2020 Unsupervised learning implemented by Ti3C2-MXene-based memristive neuromorphic system ACS Appl. Electron. Mater. 2 3497–501

[124]

Lyu B Z, Choi Y, Jing H Y, Qian C, Kang H, Lee S and Cho J H 2020 2D MXene–TiO2 core–shell nanosheets as a data-storage medium in memory devices Adv. Mater. 32 1907633

[125]

Guo L C et al 2021 Stacked two-dimensional MXene composites for an energy-efficient memory and digital comparator ACS Appl. Mater. Interfaces 13 39595–605

[126]

He N et al 2021 V2C-Based memristor for applications of Low power electronic synapse IEEE Electron Device Lett. 42 319–22

[127]

Wang Y et al 2021 MXene-ZnO memristor for multimodal in-sensor computing Adv. Funct. Mater. 31 2100144

[128]

Wen Z and Wu D 2019 Ferroelectric tunnel junctions: modulations on the potential barrier Adv. Mater. 32 1904123

[129]

Gabel M and Gu Y 2021 Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor Adv. Funct. Mater. 31 2009999

[130]

Chen A P et al 2020 Couplings of polarization with interfacial deep trap and Schottky interface controlled ferroelectric memristive switching Adv. Funct. Mater. 30 2000664

[131]

Wang L, Yang C H, Wen J, Gai S and Peng Y X 2015 Overview of emerging memristor families from resistive memristor to spintronic memristor J. Mater. Sci., Mater. Electron. 26 4618–28

[132]

Sun K X, Chen J S and Yan X B 2021 The future of memristors: materials engineering and neural networks Adv. Funct. Mater. 31 2006773

[133]

Zhang M C et al 2022 Towards an universal artificial synapse using MXene-PZT based ferroelectric memristor Ceram. Int. 48 16263–72

[134]

Saha S, Adepu V, Gohel K, Sahatiya P and Dan S S 2022 Demonstration of a 2D SnS/MXene nanohybrid asymmetric memristor IEEE Trans. Electron Dev. 69 5921–7

[135]

Bertelli M, Díaz Fattorini A, De Simone S, Calvi S, Plebani R, Mussi V, Arciprete F, Calarco R and Longo M 2022 Structural and electrical properties of annealed Ge2Sb2Te5 films grown on flexible polyimide Nanomaterials 12 2001

[136]

Wang Q, Niu G, Wang R B, Luo R, Ye Z-G, Bi J S, Li X, Song Z T, Ren W and Song S N 2022 Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses J. Materiomics 8 382–91

[137]

Xiao S X, Xie X D, Wen S P, Zeng Z G, Huang T W and Jiang J H 2018 GST-memristor-based online learning neural networks Neurocomputing 272 677–82

[138]
Smagulova K, Adam K, Krestinskaya O and James A P 2018 Design of cmos-memristor circuits for LSTM architecture Proc. 2018 IEEE Int. Conf. on Electron Devices and Solid State Circuits (IEEE) pp 1–2
[139]
Abzhanova T, Dolzhikova I and James A P 2018 Implementation of true random number generator based on double-scroll attractor circuit with GST memristor emulator Proc. 2018 Int. Conf. on Computing and Network Communications (IEEE) pp 95–102
[140]

Wang Q, Sun H J, Zhang J J, Xu X H and Miao X S 2012 Electrode materials for Ge2Sb2Te5-based memristors J. Electron. Mater. 41 3417–22

[141]

Lian X-J, Fu J-K, Gao Z-X, Gu S-P and Wang L 2023 High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors Chin. Phys. B 32 017304

[142]

Wei H H, Yu H Y, Gong J D, Ma M X, Han H, Ni Y, Zhang S and Xu W T 2021 Redox MXene artificial synapse with bidirectional plasticity and hypersensitive responsibility Adv. Funct. Mater. 31 2007232

[143]

Yang L L, Chen W J, Huang J H, Tang X, Yang R L, Zhang H, Tang Z K and Gui X C 2021 Resistance switching and failure behavior of the MoOx/Mo2C heterostructure ACS Appl. Mater. Interfaces 13 41857–65

[144]

Gu C et al 2019 Facile synthesis of Ti3C2Tx–poly(vinylpyrrolidone) nanocomposites for nonvolatile memory devices with low switching voltage ACS Appl. Mater. Interfaces 11 38061–7

[145]

Mao H W et al 2020 MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices Adv. Electron. Mater. 6 1900493

[146]

Ding G L, Zeng K L, Zhou K, Li Z X, Zhou Y, Zhai Y B, Zhou L, Chen X L and Han S-T 2019 Configurable multi-state non-volatile memory behaviors in Ti3C2 nanosheets Nanoscale 11 7102–10

[147]

Zhang M C et al 2019 Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device Ceram. Int. 45 19467–72

[148]

Zhou K et al 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extrem. Manuf. 5 042006

[149]

Zhao T S, Zhao C, Xu W Y, Liu Y N, Gao H, Mitrovic I Z, Lim E G, Yang L and Zhao C Z 2021 Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate Adv. Funct. Mater. 31 2106000

International Journal of Extreme Manufacturing
Article number: 022006
Cite this article:
Xiao Z, Xiao X, Kong LB, et al. Preparation of MXene-based hybrids and their application in neuromorphic devices. International Journal of Extreme Manufacturing, 2024, 6(2): 022006. https://doi.org/10.1088/2631-7990/ad1573

156

Views

7

Downloads

6

Crossref

5

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 12 July 2023
Revised: 10 September 2023
Accepted: 13 December 2023
Published: 12 January 2024
© 2024 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return