AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing

Wen Zhou ( )Xueyang ShenXiaolong YangJiangjing WangWei Zhang ( )
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Show Author Information

Abstract

In the past decade, there has been tremendous progress in integrating chalcogenide phase-change materials (PCMs) on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications. In particular, these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits (PICs) on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line. Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs, which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process. In this article, we present an overview of recent advances in waveguide integrated PCM memory cells, functional devices, and neuromorphic systems, with an emphasis on fabrication and integration processes to attain state-of-the-art device performance. After a short overview of PCM based photonic devices, we discuss the materials properties of the functional layer as well as the progress on the light guiding layer, namely, the silicon and germanium waveguide platforms. Next, we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires, silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation. Finally, the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed. These systems consist of arrays of PCM memory elements for associative learning, matrix-vector multiplication, and pattern recognition. With large-scale integration, the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth, high speed, and energy-efficient operation in running machine learning algorithms.

References

[1]

Hao Y et al 2021 Recent progress of integrated circuits and optoelectronic chips Sci. China Inf. Sci. 64 201401

[2]

Jalali B and Fathpour S 2006 Silicon photonics J. Lightwave Technol. 24 4600–15

[3]

Soref R 2006 The past, present, and future of silicon photonics IEEE J. Sel. Top. Quantum Electron. 12 1678–87

[4]

Thomson D et al 2016 Roadmap on silicon photonics J. Opt. 18 073003

[5]

Dong P 2016 Silicon photonic integrated circuits for wavelength-division multiplexing applications IEEE J. Sel. Top. Quantum Electron. 22 6100609

[6]

Xu X Y, Han W W, Tan M X, Sun Y, Li Y, Wu J Y, Morandotti R, Mitchell A, Xu K and Moss D J 2023 Neuromorphic computing based on wavelength-division multiplexing IEEE J. Sel. Top. Quantum Electron. 29 7400112

[7]

Rahim A et al 2019 Open-access silicon photonics platforms in Europe IEEE J. Sel. Top. Quantum Electron. 25 8200818

[8]

Hochberg M and Baehr-Jones T 2010 Towards fabless silicon photonics Nat. Photon. 4 492–4

[9]

Lin S, Hammood M, Yun H, Luan E X, Jaeger N A F and Chrostowski L 2020 Computational lithography for silicon photonics design IEEE J. Sel. Top. Quantum Electron. 26 8201408

[10]

Chrostowski L et al 2019 Silicon photonic circuit design using rapid prototyping foundry process design kits IEEE J. Sel. Top. Quantum Electron. 25 8201326

[11]

Siew S Y et al 2021 Review of silicon photonics technology and platform development J. Lightwave Technol. 39 4374–89

[12]

Shu H W et al 2022 Microcomb-driven silicon photonic systems Nature 605 457–63

[13]

Tong Y Y, Zhou W and Tsang H K 2018 Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography Opt. Lett. 43 5709–12

[14]

Wang J W et al 2018 Multidimensional quantum entanglement with large-scale integrated optics Science 360 285–91

[15]

Wang J W, Sciarrino F, Laing A and Thompson M G 2020 Integrated photonic quantum technologies Nat. Photon. 14 273–84

[16]

Bundalo I L et al 2022 PIXAPP photonics packaging pilot line—development of a silicon photonic optical transceiver with pluggable fiber connectivity IEEE J. Sel. Top. Quantum Electron. 28 8300311

[17]

Lindenmann N, Balthasar G, Hillerkuss D, Schmogrow R, Jordan M, Leuthold J, Freude W and Koos C 2012 Photonic wire bonding: a novel concept for chip-scale interconnects Opt. Express 20 17667–77

[18]

Nezami M S et al 2023 Packaging and interconnect considerations in neuromorphic photonic accelerators IEEE J. Sel. Top. Quantum Electron. 29 6100311

[19]

Xu X Y, Ren G H, Feleppa T, Liu X M, Boes A, Mitchell A and Lowery A J 2022 Self-calibrating programmable photonic integrated circuits Nat. Photon. 16 595–602

[20]

Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S, Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extreme Manuf. 5 042010

[21]

Ashtiani F, Geers A J and Aflatouni F 2022 An on-chip photonic deep neural network for image classification Nature 606 501–6

[22]

Xu X Y et al 2021 11 TOPS photonic convolutional accelerator for optical neural networks Nature 589 44–51

[23]

Bai B W et al 2023 Microcomb-based integrated photonic processing unit Nat. Commun. 14 66

[24]

Huang C R et al 2021 A silicon photonic-electronic neural network for fibre nonlinearity compensation Nat. Electron. 4 837–44

[25]

Tait A N, de Lima T F, Nahmias M A, Miller H B, Peng H T, Shastri B J and Prucnal P R 2019 Silicon photonic modulator neuron Phys. Rev. Appl. 11 064043

[26]
Kennedy P 2020 Lightmatter mars SoC AI inference using light (available at: www.servethehome.com/lightmatter-mars-soc-ai-inference-using-light/)
[27]

Shastri B J, Tait A N, Ferreira de Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R 2021 Photonics for artificial intelligence and neuromorphic computing Nat. Photon. 15 102–14

[28]

Feldmann J et al 2021 Parallel convolutional processing using an integrated photonic tensor core Nature 589 52–58

[29]

Zhou W, Farmakidis N, Feldmann J, Li X, Tan J, He Y H, Wright C D, Pernice W H P and Bhaskaran H 2022 Phase-change materials for energy-efficient photonic memory and computing MRS Bull. 47 502–10

[30]

Wong H S P and Salahuddin S 2015 Memory leads the way to better computing Nat. Nanotechnol. 10 191–4

[31]

Sebastian A, Le Gallo M, Khaddam-Aljameh R and Eleftheriou E 2020 Memory devices and applications for in-memory computing Nat. Nanotechnol. 15 529–44

[32]

Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron. 1 22–29

[33]

Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F and Yang J J 2020 Resistive switching materials for information processing Nat. Rev. Mater. 5 173–95

[34]

Zhang Y et al 2020 Brain-inspired computing with memristors: challenges in devices, circuits, and systems Appl. Phys. Rev. 7 011308

[35]

Christensen D V et al 2022 2022 Roadmap on neuromorphic computing and engineering Neuromorph. Comput. Eng. 2 022501

[36]

Wang S C et al 2023 Echo state graph neural networks with analogue random resistive memory arrays Nat. Mach. Intell. 5 104–13

[37]

Wang S J et al 2023 An organic electrochemical transistor for multi-modal sensing, memory and processing Nat. Electron. 6 281–91

[38]

Wuttig M and Yamada N 2007 Phase-change materials for rewriteable data storage Nat. Mater. 6 824–32

[39]

Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J and Wuttig M 2008 A map for phase-change materials Nat. Mater. 7 972–7

[40]

Wuttig M, Bhaskaran H and Taubner T 2017 Phase-change materials for non-volatile photonic applications Nat. Photon. 11 465–76

[41]

Song Z T, Song S N, Zhu M, Wu L C, Ren K, Song W X and Feng S L 2018 From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage Sci. China Inf. Sci. 61 081302

[42]

Xu Y Z, Zhou Y X, Wang X D, Zhang W, Ma E, Deringer V L and Mazzarello R 2022 Unraveling crystallization mechanisms and electronic structure of phase-change materials by large-scale ab initio simulations Adv. Mater. 34 2109139

[43]

Zhou Y X, Zhang W, Ma E and Deringer V L 2023 Device-scale atomistic modelling of phase-change memory materials Nat. Electron. 6 746–54

[44]

Ahmed S, Wang X D, Zhou Y X, Sun L, Mazzarello R and Zhang W 2021 Unraveling the optical contrast in Sb2Te and AgInSbTe phase-change materials J. Phys. Photon. 3 034011

[45]

Zhang W, Mazzarello R, Wuttig M and Ma E 2019 Designing crystallization in phase-change materials for universal memory and neuro-inspired computing Nat. Rev. Mater. 4 150–68

[46]

Zhang W and Ma E 2020 Unveiling the structural origin to control resistance drift in phase-change memory materials Mater. Today 41 156–76

[47]

Xu M, Mai X, Lin J, Zhang W, Li Y, He Y H, Tong H, Hou X, Zhou P and Miao X S 2020 Recent advances on neuromorphic devices based on chalcogenide phase-change materials Adv. Funct. Mater. 30 2003419

[48]

Xu M, Xu M and Miao X S 2022 Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration InfoMat 4 e12315

[49]

Zhang Z H, Wang Z W, Shi T, Bi C, Rao F, Cai Y M, Liu Q, Wu H Q and Zhou P 2020 Memory materials and devices: from concept to application InfoMat 2 261–90

[50]

Youngblood N, Ríos Ocampo C A, Pernice W H P and Bhaskaran H 2023 Integrated optical memristors Nat. Photon. 17 561–72

[51]

Yamada N 1996 Erasable phase-change optical materials MRS Bull. 21 48–50

[52]

Wong H S P, Raoux S, Kim S, Liang J L, Reifenberg J P, Rajendran B, Asheghi M and Goodson K E 2010 Phase change memory Proc. IEEE 98 2201–27

[53]

Li X, Chen H P, Xie C C, Cai D L, Song S N, Chen Y F, Lei Y, Zhu M and Song Z T 2019 Enhancing the performance of phase change memory for embedded applications Phys. Status Solidi 13 1800558

[54]

Song Z T, Cai D L, Cheng Y, Wang L, Lv S L, Xin T J and Feng G M 2021 12-state multi-level cell storage implemented in a 128 Mb phase change memory chip Nanoscale 13 10455–61

[55]

Shportko K, Kremers S, Woda M, Lencer D, Robertson J and Wuttig M 2008 Resonant bonding in crystalline phase-change materials Nat. Mater. 7 653–8

[56]

Wuttig M, Deringer V L, Gonze X, Bichara C and Raty J Y 2018 Incipient metals: functional materials with a unique bonding mechanism Adv. Mater. 30 1803777

[57]

Kooi B J and Wuttig M 2020 Chalcogenides by design: functionality through metavalent bonding and confinement Adv. Mater. 32 1908302

[58]

Wang X D, Shen X Y, Sun S Y and Zhang W 2021 Tailoring the structural and optical properties of germanium telluride phase-change materials by indium incorporation Nanomaterials 11 3029

[59]

Zhang W et al 2023 Metavalent bonding in layered phase-change memory materials Adv. Sci. 10 2300901

[60]

Pernice W H P and Bhaskaran H 2012 Photonic non-volatile memories using phase change materials Appl. Phys. Lett. 101 171101

[61]

Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H and Pernice W H P 2015 Integrated all-photonic non-volatile multi-level memory Nat. Photon. 9 725–32

[62]

Feldmann J, Stegmaier M, Gruhler N, Ríos C, Bhaskaran H, Wright C D and Pernice W H P 2017 Calculating with light using a chip-scale all-optical abacus Nat. Commun. 8 1256

[63]

Cheng Z G, Ríos C, Pernice W H P, Wright C D and Bhaskaran H 2017 On-chip photonic synapse Sci. Adv. 3 e1700160

[64]

Cheng Z G, Ríos C, Youngblood N, Wright C D, Pernice W H P and Bhaskaran H 2018 Device-level photonic memories and logic applications using phase-change materials Adv. Mater. 30 1802435

[65]

Ríos C, Youngblood N, Cheng Z G, Le Gallo M, Pernice W H P, Wright C D, Sebastian A and Bhaskaran H 2019 In-memory computing on a photonic platform Sci. Adv. 5 eaau5759

[66]

Zheng J J et al 2020 Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater Adv. Mater. 32 2001218

[67]

Yang X, Nisar M S, Yuan W, Zheng F G, Lu L J, Chen J P and Zhou L J 2021 Phase change material enabled 2 × 2 silicon nonvolatile optical switch Opt. Lett. 46 4224–7

[68]

Sarwat S G, Moraitis T, Wright C D and Bhaskaran H 2022 Chalcogenide optomemristors for multi-factor neuromorphic computation Nat. Commun. 13 2247

[69]

Farmakidis N et al 2022 Electronically reconfigurable photonic switches incorporating plasmonic structures and phase change materials Adv. Sci. 9 2200383

[70]

Tan J Y S, Cheng Z G, Feldmann J, Li X, Youngblood N, Ali U E, Wright C D, Pernice W H P and Bhaskaran H 2022 Monadic Pavlovian associative learning in a backpropagation-free photonic network Optica 9 792–802

[71]

Zhou W, Dong B W, Farmakidis N, Li X, Youngblood N, Huang K R, He Y H, David Wright C, Pernice W H P and Bhaskaran H 2023 In-memory photonic dot-product engine with electrically programmable weight banks Nat. Commun. 14 2887

[72]

Li X, Youngblood N, Ríos C, Cheng Z G, Wright C D, Pernice W H and Bhaskaran H 2019 Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell Optica 6 1–6

[73]

Wu C M, Yu H S, Lee S, Peng R M, Takeuchi I and Li M 2021 Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network Nat. Commun. 12 96

[74]

Aggarwal S, Milne T, Farmakidis N, Feldmann J, Li X, Shu Y, Cheng Z G, Salinga M, Pernice W H and Bhaskaran H 2022 Antimony as a programmable element in integrated nanophotonics Nano Lett. 22 3532–8

[75]

Farmakidis N, Youngblood N, Li X, Tan J, Swett J L, Cheng Z G, Wright C D, Pernice W H P and Bhaskaran H 2019 Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality Sci. Adv. 5 eaaw2687

[76]

Feldmann J, Youngblood N, Wright C D, Bhaskaran H and Pernice W H P 2019 All-optical spiking neurosynaptic networks with self-learning capabilities Nature 569 208–14

[77]

Song S, Miller K D and Abbott L F 2000 Competitive Hebbian learning through spike-timing-dependent synaptic plasticity Nat. Neurosci. 3 919–26

[78]

Rios C, Hosseini P, Wright C D, Bhaskaran H and Pernice W H P 2014 On-chip photonic memory elements employing phase-change materials Adv. Mater. 26 1372–7

[79]

Sarwat S G, Youngblood N, Au Y Y, Mol J A, Wright C D and Bhaskaran H 2018 Engineering interface-dependent photoconductivity in Ge2Sb2Te5 nanoscale devices ACS Appl. Mater. Interfaces 10 44906–14

[80]

Li X, Youngblood N, Cheng Z G, Carrillo S G C, Gemo E, Pernice W H P, Wright C D and Bhaskaran H 2020 Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing Optica 7 218–25

[81]

Zhang H Y, Zhou L J, Lu L J, Xu J, Wang N N, Hu H, Rahman B M A, Zhou Z P and Chen J P 2019 Miniature multilevel optical memristive switch using phase change material ACS Photonics 6 2205–12

[82]

Ríos C et al 2022 Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials PhotoniX 3 26

[83]

Zhang C P et al 2023 Nonvolatile multilevel switching of silicon photonic devices with In2O3/GST segmented structures Adv. Opt. Mater. 11 2202748

[84]

Shalaginov M Y et al 2021 Reconfigurable all-dielectric metalens with diffraction-limited performance Nat. Commun. 12 1225

[85]

Zhang Y F et al 2021 Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material Nat. Nanotechnol. 16 661–6

[86]

Khaddam-Aljameh R et al 2022 HERMES-core—A 1.59-TOPS/mm2 PCM on 14 nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs IEEE J. Solid-State Circuits 57 1027–38

[87]

Yamada N, Ohno E, Akahira N, Nishiuchi K I, Nagata K I and Takao M 1987 High speed overwritable phase change optical disk material Jpn. J. Appl. Phys. 26 61

[88]

Chen M, Rubin K A and Barton R W 1986 Compound materials for reversible, phase-change optical data storage Appl. Phys. Lett. 49 502–4

[89]

Yamada N and Matsunaga T 2000 Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory J. Appl. Phys. 88 7020–8

[90]

Fong S W, Neumann C M and Wong H S P 2017 Phase-change memory—towards a storage-class memory IEEE Trans. Electron. Dev. 64 4374–85

[91]

Cheng H Y, Carta F, Chien W C, Lung H L and BrightSky M J 2019 3D cross-point phase-change memory for storage-class memory J. Phys. D: Appl. Phys. 52 473002

[92]
Chien W C et al 2019 Comprehensive scaling study on 3D cross-point PCM toward 1Znm node for SCM applications Symp. on VLSI Technology (IEEE) pp T60–T61
[93]

Cappelletti P, Annunziata R, Arnaud F, Disegni F, Maurelli A and Zuliani P 2020 Phase change memory for automotive grade embedded NVM applications J. Phys. D: Appl. Phys. 53 193002

[94]
Song Z T, Cai D L, Li X, Wang L, Chen Y F, Chen H P, Wang Q, Zhan Y P and Ji M H 2018 High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application IEEE Int. Electron Devices Meeting (IEEE) pp 27.5.1–4
[95]
Arnaud F et al 2018 Truly innovative 28nm FDSOI technology for automotive micro-controller applications embedding 16MB phase change memory. IEEE Int. Electron Devices Meeting (IEDM) (IEEE) pp 18.4.1–4
[96]

Wright C D, Bhaskaran H and Pernice W H P 2019 Integrated phase-change photonic devices and systems MRS Bull. 44 721–7

[97]

Zhang B et al 2016 Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material Appl. Phys. Lett. 108 191902

[98]
Jiang T-T, Wang X-D, Wang J-J, Zhang H Y, Lu L, Jia C L, Wuttig M, Mazzarello R, Zhang W and Ma E 2022 In situ characterization of vacancy ordering in Ge-Sb-Te phase-change memory alloys Fundam. Res. (https://doi.org/10.1016/j.fmre.2022.09.010)
[99]

Loke D, Lee T H, Wang W J, Shi L P, Zhao R, Yeo Y C, Chong T C and Elliott S R 2012 Breaking the speed limits of phase-change memory Science 336 1566–9

[100]

Rao F et al 2017 Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing Science 358 1423–7

[101]

Zewdie G M, Zhou Y X, Sun L, Rao F, Deringer V L, Mazzarello R and Zhang W 2019 Chemical design principles for cache-type Sc–Sb–Te phase-change memory materials Chem. Mater. 31 4008–15

[102]

Hu S W, Liu B, Li Z, Zhou J and Sun Z M 2019 Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments Comput. Mater. Sci 165 51–58

[103]

Chen B et al 2019 Kinetics features conducive to cache-type nonvolatile phase-change memory Chem. Mater. 31 8794–800

[104]

Zhou Y X, Sun L, Zewdie G M, Mazzarello R, Deringer V L, Ma E and Zhang W 2020 Bonding similarities and differences between Y-Sb-Te and Sc-Sb-Te phase-change memory materials J. Mater. Chem. C 8 3646–54

[105]

Hu S W, Xiao J K, Zhou J, Elliott S R and Sun Z M 2020 Synergy effect of co-doping Sc and Y in Sb2Te3 for phase-change memory J. Mater. Chem. C 8 6672–9

[106]

Wang X P, Li X B, Chen N K, Bang J, Nelson R, Ertural C, Dronskowski R, Sun H B and Zhang S B 2020 Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation npj Comput. Mater. 6 31

[107]

Chen X Z, Xue Y, Sun Y B, Shen J B, Song S N, Zhu M, Song Z T, Cheng Z G and Zhou P 2023 Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials Adv. Mater. 35 2203909

[108]

van Pieterson L, Lankhorst M H R, van Schijndel M, Kuiper A E T and Roosen J H J 2005 Phase-change recording materials with a growth-dominated crystallization mechanism: a materials overview J. Appl. Phys. 97 083520

[109]

Lee B S, Burr G W, Shelby R M, Raoux S, Rettner C T, Bogle S N, Darmawikarta K, Bishop S G and Abelson J R 2009 Observation of the role of subcritical nuclei in crystallization of a glassy solid Science 326 980–4

[110]

Matsunaga T, Akola J, Kohara S, Honma T, Kobayashi K, Ikenaga E, Jones R O, Yamada N, Takata M and Kojima R 2011 From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials Nat. Mater. 10 129–34

[111]

Afonso C N, Solis J, Catalina F and Kalpouzos C 1992 Ultrafast reversible phase change in GeSb films for erasable optical storage Appl. Phys. Lett. 60 3123–5

[112]

Zalden P, Bichara C, van Eijk J, Braun C, Bensch W and Wuttig M 2010 Atomic structure of amorphous and crystallized Ge15Sb85 J. Appl. Phys. 107 104312

[113]

Ronneberger I, Chen Y H, Zhang W and Mazzarello R 2019 Local structural origin of the crystallization tendency of pure and alloyed Sb Phys. Status Solidi 13 1800552

[114]

Zhou W, Farmakidis N, Li X, Tan J, Aggarwal S, Feldmann J, Brückerhoff-Plückelmann F, David Wright C, Pernice W H P and Bhaskaran H 2022 Artificial biphasic synapses based on nonvolatile phase-change photonic memory cells Phys. Status Solidi 16 2100487

[115]

Wang X D, Zhou W, Zhang H M, Ahmed S, Huang T K, Mazzarello R, Ma E and Zhang W 2023 Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications npj Comput. Mater. 9 136

[116]

Tao W et al 2022 High optical/color contrast of Sb2Te thin film and its structural origin Mater. Sci. Semicond. Process. 144 106619

[117]

Siegrist T, Jost P, Volker H, Woda M, Merkelbach P, Schlockermann C and Wuttig M 2011 Disorder-induced localization in crystalline phase-change materials Nat. Mater. 10 202–8

[118]

Luckas J, Krebs D, Grothe S, Klomfaß J, Carius R, Longeaud C and Wuttig M 2013 Defects in amorphous phase-change materials J. Mater. Res. 28 1139–47

[119]

Gotoh T 2014 Effect of annealing on carrier concentration in Ge2Sb2Te5 films Can. J. Phys. 92 681–3

[120]

Gholipour B, Zhang J F, MacDonald K F, Hewak D W and Zheludev N I 2013 An all-optical, non-volatile, bidirectional, phase-change meta-switch Adv. Mater. 25 3050–4

[121]

Zhang Y F et al 2019 Broadband transparent optical phase change materials for high-performance nonvolatile photonics Nat. Commun. 10 4279

[122]

Zhang H Y, Wang X D and Zhang W 2022 First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials Opt. Mater. Express 12 2497–506

[123]

Delaney M, Zeimpekis I, Lawson D, Hewak D W and Muskens O L 2020 A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: sb2S3 and Sb2Se3 Adv. Funct. Mater. 30 2002447

[124]

Xu M, Gu R C, Qiao C, Tong H, Cheng X M, Wang C Z, Ho K M, Wang S Y, Miao X S and Xu M 2021 Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications J. Mater. Chem. C 9 8057–65

[125]

Ding K Y, Wang J J, Zhou Y X, Tian H, Lu L, Mazzarello R, Jia C L, Zhang W, Rao F and Ma E 2019 Phase-change heterostructure enables ultralow noise and drift for memory operation Science 366 210–5

[126]

Shen J B, Lv S L, Chen X, Li T, Zhang S F, Song Z T and Zhu M 2019 Thermal barrier phase change memory ACS Appl. Mater. Interfaces 11 5336–43

[127]

Wang X D, Wu Y, Zhou Y X, Deringer V L and Zhang W 2021 Bonding nature and optical contrast of TiTe2/Sb2Te3 phase-change heterostructure Mater. Sci. Semicond. Process. 135 106080

[128]

Wang X et al 2022 Unusual phase transitions in two-dimensional telluride heterostructure Mater. Today 54 52–62

[129]

Salinga M, Kersting B, Ronneberger I, Jonnalagadda V P, Vu X T, Le Gallo M, Giannopoulos I, Cojocaru-Mirédin O, Mazzarello R and Sebastian A 2018 Monatomic phase change memory Nat. Mater. 17 681–5

[130]

Zhang W and Ma E 2018 Single-element glass to record data Nat. Mater. 17 654–5

[131]

Cheng Z G, Milne T, Salter P, Kim J S, Humphrey S, Booth M and Bhaskaran H 2021 Antimony thin films demonstrate programmable optical nonlinearity Sci. Adv. 7 eabd7097

[132]

Dragoni D, Behler J and Bernasconi M 2021 Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material Nanoscale 13 16146–55

[133]

Shen J B et al 2021 Elemental electrical switch enabling phase segregation-free operation Science 374 1390–4

[134]

Wang X D, Zhang W and Ma E 2022 Monatomic phase-change switch Sci. Bull. 67 888–90

[135]

Yang Y F et al 2021 A new opportunity for the emerging tellurium semiconductor: making resistive switching devices Nat. Commun. 12 6081

[136]

Yang Z et al 2022 Designing conductive-bridge phase-change memory to enable ultralow programming power Adv. Sci. 9 2103478

[137]

Wang J-J, Wang X Z, Cheng Y D, Tan J L, Nie C, Yang Z, Xu M, Miao X S, Zhang W and Ma E 2022 Tailoring the oxygen concentration in Ge-Sb-O alloys to enable femtojoule-level phase-change memory operations Mater. Futures 1 045302

[138]

Liu Y T, Li X B, Zheng H, Chen N K, Wang X P, Zhang X L, Sun H B and Zhang S B 2021 High-throughput screening for phase-change memory materials Adv. Funct. Mater. 31 2009803

[139]

Xu Y Z et al 2021 Materials screening for disorder-controlled chalcogenide crystals for phase-change memory applications Adv. Mater. 33 2006221

[140]

Deringer V L, Zhang W, Rausch P, Mazzarello R, Dronskowski R and Wuttig M 2015 A chemical link between Ge–Sb–Te and In–Sb–Te phase-change materials J. Mater. Chem. C 3 9519–23

[141]

Los J H, Kühne T D, Gabardi S and Bernasconi M 2013 First-principles study of the amorphous In3SbTe2 phase change compound Phys. Rev. B 88 174203

[142]

Heßler A et al 2021 In3SbTe2 as a programmable nanophotonics material platform for the infrared Nat. Commun. 12 924

[143]

Meng C et al 2023 Broadband hyperbolic thermal metasurfaces based on the plasmonic phase-change material In3SbTe2 Nanoscale 15 6306–12

[144]

Wuttig M, Schön C F, Lötfering J, Golub P, Gatti C and Raty J Y 2023 Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties Adv. Mater. 35 2208485

[145]

Soref R 2010 Mid-infrared photonics in silicon and germanium Nat. Photon. 4 495–7

[146]

Penadés J S, Alonso-Ramos C, Khokhar A Z, Nedeljkovic M, Boodhoo L A, Ortega-Moñux A, Molina-Fernández I, Cheben P and Mashanovich G Z 2014 Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared Opt. Lett. 39 5661–4

[147]

Zhou W, Cheng Z Z, Wu X R, Zhu B Q, Sun X K and Tsang H K 2017 Fully suspended slot waveguides for high refractive index sensitivity Opt. Lett. 42 1245–8

[148]

Zhou W, Cheng Z Z, Wu X R, Sun X K and Tsang H K 2018 Fully suspended slot waveguide platform J. Appl. Phys. 123 063103

[149]

Penades J S et al 2016 Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding Opt. Express 24 22908–16

[150]

Zhou W, Cheng Z Z, Chen X, Xu K, Sun X K and Tsang H 2019 Subwavelength engineering in silicon photonic devices IEEE J. Sel. Top. Quantum Electron. 25 2900113

[151]

Rytov S M 1956 Electromagnetic properties of a finely stratified medium Sov. Phys—JETP 2 466–75

[152]

Penadés J S et al 2018 Suspended silicon waveguides for long-wave infrared wavelengths Opt. Lett. 43 795–8

[153]

Armani D K, Kippenberg T J, Spillane S M and Vahala K J 2003 Ultra-high-Q toroid microcavity on a chip Nature 421 925–8

[154]

Chan J, Safavi-Naeini A H, Hill J T, Meenehan S and Painter O 2012 Optimized optomechanical crystal cavity with acoustic radiation shield Appl. Phys. Lett. 101 081115

[155]

Zhou W, Yu Z J, Ma J W, Zhu B Q, Tsang H K and Sun X K 2016 Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate Sci. Rep. 6 37134

[156]

Sun X K, Fong K Y, Xiong C, Pernice W H P and Tang H X 2011 GHz optomechanical resonators with high mechanical Q factor in air Opt. Express 19 22316–21

[157]

Sun X K, Zhang X F and Tang H X 2012 High-Q silicon optomechanical microdisk resonators at gigahertz frequencies Appl. Phys. Lett. 100 173116

[158]

Puckett M W et al 2021 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth Nat. Commun. 12 934

[159]

Lee H, Chen T, Li J, Yang K Y, Jeon S, Painter O and Vahala K J 2012 Chemically etched ultrahigh-Q wedge-resonator on a silicon chip Nat. Photon. 6 369–73

[160]

Shankar R, Bulu I, Leijssen R and Lončar M 2011 Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities Opt. Express 19 24828–37

[161]

Borselli M, Johnson T J and Painter O 2006 Measuring the role of surface chemistry in silicon microphotonics Appl. Phys. Lett. 88 131114

[162]

Froitzheim H, Lammering H and Günter H L 1983 Energy-loss-spectroscopy studies on the adsorption of hydrogen on cleaved Si(111)-(2×1) surfaces Phys. Rev. B 27 2278–84

[163]

Takahashi Y, Inui Y, Chihara M, Asano T, Terawaki R and Noda S 2013 A micrometre-scale Raman silicon laser with a microwatt threshold Nature 498 470–4

[164]

Zhou W, Cheng Z Z, Zhu B Q, Sun X K and Tsang H K 2016 Hyperuniform disordered network polarizers IEEE J. Sel. Top. Quantum Electron. 22 4901307

[165]

Zhou W, Tong Y Y, Sun X K and Tsang H K 2019 Hyperuniform disordered photonic bandgap polarizers J. Appl. Phys. 126 113106

[166]

Zhou W, Tong Y Y, Sun X K and Tsang H K 2020 Ultra-broadband hyperuniform disordered silicon photonic polarizers IEEE J. Sel. Top. Quantum Electron. 26 8201109

[167]

Zhou W, Cheng Z Z, Sun X K and Tsang H K 2018 Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler Opt. Lett. 43 2985–8

[168]

Zhou W and Tsang H K 2019 Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared Opt. Lett. 44 3621–4

[169]

Wolff C, Soref R, Poulton C G and Eggleton B J 2014 Germanium as a material for stimulated Brillouin scattering in the mid-infrared Opt. Express 22 30735–47

[170]

Gupta S, Gong X, Zhang R, Yeo Y C, Takagi S and Saraswat K C 2014 New materials for post-Si computing: Ge and GeSn devices MRS Bull. 39 678–86

[171]

Kang J, Yu X, Takenaka M and Takagi S 2016 Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding Mater. Sci. Semicond. Process. 42 259–63

[172]

Zhang R, Iwasaki T, Taoka N, Takenaka M and Takagi S 2011 Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation Appl. Phys. Lett. 98 112902

[173]

Wang X W, Chen R and Sun S H 2023 Material manufacturing from atomic layer Int. J. Extreme Manuf. 5 043001

[174]

Li J X, Chai G D and Wang X W 2023 Atomic layer deposition of thin films: from a chemistry perspective Int. J. Extreme Manuf. 5 032003

[175]

Kang J, Takenaka M and Takagi S 2016 Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits Opt. Express 24 11855–64

[176]

Kang J, Cheng Z Z, Zhou W, Xiao T H, Gopalakrisna K L, Takenaka M, Tsang H K and Goda K 2017 Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides Opt. Lett. 42 2094–7

[177]

Xiao T H, Zhao Z Q, Zhou W, Takenaka M, Tsang H K, Cheng Z Z and Goda K 2018 High-Q germanium optical nanocavity Photon. Res. 6 925–8

[178]

Kang J, Takagi S and Takenaka M 2018 Ge photodetector monolithically integrated with amorphous Si waveguide on wafer-bonded Ge-on-insulator substrate Opt. Express 26 30546–55

[179]

Xiao T H, Zhao Z Q, Zhou W, Takenaka M, Tsang H K, Cheng Z Z and Goda K 2017 Mid-infrared germanium photonic crystal cavity Opt. Lett. 42 2882–5

[180]

Xiao T H, Zhao Z Q, Zhou W, Chang C Y, Set S Y, Takenaka M, Tsang H K, Cheng Z Z and Goda K 2018 Mid-infrared high-Q germanium microring resonator Opt. Lett. 43 2885–8

[181]

Osman A, Nedeljkovic M, Penades J S, Wu Y, Qu Z, Khokhar A Z, Debnath K and Mashanovich G Z 2018 Suspended low-loss germanium waveguides for the longwave infrared Opt. Lett. 43 5997–6000

[182]

Sánchez-Postigo A et al 2021 Suspended germanium waveguides with subwavelength-grating metamaterial cladding for the mid-infrared band Opt. Express 29 16867–78

[183]

Wu C M, Yu H S, Li H, Zhang X H, Takeuchi I and Li M 2019 Low-loss integrated photonic switch using subwavelength patterned phase change material ACS Photonics 6 87–92

[184]

Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Light propagation with phase discontinuities: generalized laws of reflection and refraction Science 334 333–7

[185]

Li L Z et al 2017 Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces Nat. Nanotechnol. 12 675–83

[186]

Wu C M, Yang X X, Yu H S, Peng R M, Takeuchi I, Chen Y R and Li M 2022 Harnessing optoelectronic noises in a photonic generative network Sci. Adv. 8 eabm2956

[187]

Li W F, Cao X Y, Song S N, Wu L S, Wang R B, Jin Y, Song Z T and Wu A M S 2022 Ultracompact high-extinction-ratio nonvolatile on-chip switches based on structured phase change materials Laser Photon. Rev. 16 2100717

[188]

Cai L Y, Lu Y G and Zhu H H 2023 Performance enhancement of on-chip optical switch and memory using Ge2Sb2Te5 slot-assisted microring resonator Opt. Lasers Eng. 162 107436

[189]

Zhu H H, Lu Y G and Cai L Y 2023 Wavelength-shift-free racetrack resonator hybrided with phase change material for photonic in-memory computing Opt. Express 31 18840–50

[190]

Xiong F, Liao A D, Estrada D and Pop E 2011 Low-power switching of phase-change materials with carbon nanotube electrodes Science 332 568–70

[191]

Xiong F, Bae M H, Dai Y, Liao A D, Behnam A, Carrion E A, Hong S, Ielmini D and Pop E 2013 Self-aligned nanotube–nanowire phase change memory Nano Lett. 13 464–9

[192]

Wagner R S and Ellis W C 1964 Vapor-liquid-solid mechanism of single crystal growth Appl. Phys. Lett. 4 89–90

[193]

Law M, Goldberger J and Yang P D 2004 Semiconductor nanowires and nanotubes Annu. Rev. Mater. Res. 34 83–122

[194]

Schmidt V, Wittemann J V and Gösele U 2010 Growth, thermodynamics, and electrical properties of silicon nanowires Chem. Rev. 110 361–88

[195]

Jia C C, Lin Z Y, Huang Y and Duan X F 2019 Nanowire electronics: from nanoscale to macroscale Chem. Rev. 119 9074–135

[196]

Fan Z Y, Ho J C, Jacobson Z A, Yerushalmi R, Alley R L, Razavi H and Javey A 2008 Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing Nano Lett. 8 20–25

[197]

Yao J, Yan H and Lieber C M 2013 A nanoscale combing technique for the large-scale assembly of highly aligned nanowires Nat. Nanotechnol. 8 329–35

[198]

Moreno-Moreno M, Ares P, Moreno C, Zamora F, Gómez-Navarro C and Gómez-Herrero J 2019 AFM manipulation of gold nanowires to build electrical circuits Nano Lett. 19 5459–68

[199]

Duan X F, Huang Y, Cui Y, Wang J F and Lieber C M 2001 Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices Nature 409 66–69

[200]

Hussain S A, Dey B, Bhattacharjee D and Mehta N 2018 Unique supramolecular assembly through Langmuir–Blodgett (LB) technique Heliyon 4 e01038

[201]

Ali U E, Yang H, Khayrudinov V, Modi G, Cheng Z G, Agarwal R, Lipsanen H and Bhaskaran H 2022 A universal pick-and-place assembly for nanowires Small 18 2201968

[202]

Kendall K 1994 Adhesion: molecules and mechanics Science 263 1720–5

[203]

Zadeh I E, Elshaari A W, Jöns K D, Fognini A, Dalacu D, Poole P J, Reimer M E and Zwiller V 2016 Deterministic integration of single photon sources in silicon based photonic circuits Nano Lett. 16 2289–94

[204]

Ali U E, Modi G, Agarwal R and Bhaskaran H 2022 Real-time nanomechanical property modulation as a framework for tunable NEMS Nat. Commun. 13 1464

[205]

Lu Y G, Stegmaier M, Nukala P, Giambra M A, Ferrari S, Busacca A, Pernice W H P and Agarwal R 2017 Mixed-mode operation of hybrid phase-change nanophotonic circuits Nano Lett. 17 150–5

[206]

Li W B, Qian X F and Li J 2021 Phase transitions in 2D materials Nat. Rev. Mater. 6 829–46

[207]

Feng W, Gao F, Hu Y X, Dai M J, Liu H, Wang L F and Hu P G 2018 Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets ACS Appl. Mater. Interfaces 10 27584–8

[208]

Huang Y T, Chen N K, Li Z Z, Wang X P, Sun H B, Zhang S B and Li X B 2022 Two-dimensional In2Se3: a rising advanced material for ferroelectric data storage InfoMat 4 e12341

[209]

Wang Y et al 2017 Structural phase transition in monolayer MoTe2 driven by electrostatic doping Nature 550 487–91

[210]

Li T T et al 2022 Structural phase transitions between layered indium selenide for integrated photonic memory Adv. Mater. 34 2108261

[211]

Liu W, Kang J H, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors Nano Lett. 13 1983–90

[212]

Choi M S, Cheong B K, Ra C H, Lee S, Bae J H, Lee S, Lee G D, Yang C W, Hone J and Yoo W J 2017 Electrically driven reversible phase changes in layered In2Se3 crystalline film Adv. Mater. 29 1703568

[213]

Lee H, Kang D H and Tran L 2005 Indium selenide (In2Se3) thin film for phase-change memory Mater. Sci. Eng. 119 196–201

[214]

Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 Single-layer MoS2 phototransistors ACS Nano 6 74–80

[215]

Chen R, Fang Z R, Fröch J E, Xu P P, Zheng J J and Majumdar A 2022 Broadband nonvolatile electrically controlled programmable units in silicon photonics ACS Photonics 9 2142–50

[216]

Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages Nature 562 101–4

[217]
Zhou W, Li X, Youngblood N, Pernice W H P, Wright C D and Bhaskaran H 2022. Electrical switching of Ge2Sb2Te5 memory cells based on silicon photonic waveguide microheaters Conf. on Lasers and Electro-Optics (IEEE) pp 1–2 (available at: https://ieeexplore.ieee.org/document/9891064)
[218]

Atabaki A H et al 2018 Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip Nature 556 349–54

[219]

Bao Q L and Loh K P 2012 Graphene photonics, plasmonics, and broadband optoelectronic devices ACS Nano 6 3677–94

[220]

Yu L H, Dai D X and He S L 2014 Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices Appl. Phys. Lett. 105 251104

[221]

Zhou K et al 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extreme Manuf. 5 042006

[222]

Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J and Ding Y H 2017 Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides Nat. Commun. 8 14411

[223]

Zhao J et al 2023 Graphene microheater chips for in situ TEM Nano Lett. 23 726–34

[224]

Zheng J J, Zhu S F, Xu P P, Dunham S and Majumdar A 2020 Modeling electrical switching of nonvolatile phase-change integrated nanophotonic structures with graphene heaters ACS Appl. Mater. Interfaces 12 21827–36

[225]

Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F and Zhang X 2011 A graphene-based broadband optical modulator Nature 474 64–67

[226]

Fang Z R et al 2022 Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters Nat. Nanotechnol. 17 842–8

[227]

Liang X L et al 2011 Toward clean and crackless transfer of graphene ACS Nano 5 9144–53

[228]

Li X S et al 2010 Graphene films with large domain size by a two-step chemical vapor deposition process Nano Lett. 10 4328–34

[229]

Hong J Y, Shin Y C, Zubair A, Mao Y W, Palacios T, Dresselhaus M S, Kim S H and Kong J 2016 A rational strategy for graphene transfer on substrates with rough features Adv. Mater. 28 2382–92

[230]

Chandrashekar B N, Deng B, Smitha A S, Chen Y B, Tan C W, Zhang H X, Peng H L and Liu Z F 2015 Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator Adv. Mater. 27 5210–6

[231]

Zhuo S B, Li Y, Zhao A N, Li Y R, Yao S Y, Zhang M J, Feng T H and Li Z H 2023 Dynamic transmissive metasurface for broadband phase-only modulation based on phase-change materials Laser Photon. Rev. 17 2200403

[232]

Ríos C et al 2021 Multi-level electro-thermal switching of optical phase-change materials using graphene Adv. Photon. Res. 2 2000034

[233]
GenISys 2023 Electron- and laser-beam lithography software (available at: www.genisys-gmbh.com/beamer.html)
[234]

Fang Z R, Zheng J J, Saxena A, Whitehead J, Chen Y Y and Majumdar A 2021 Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material Adv. Opt. Mater. 9 2002049

[235]

Melikyan A et al 2014 High-speed plasmonic phase modulators Nat. Photon. 8 229–33

[236]

Alloatti L et al 2011 42.7 Gbit/s electro-optic modulator in silicon technology Opt. Express 19 11841–51

[237]

Ayata M et al 2017 High-speed plasmonic modulator in a single metal layer Science 358 630–2

[238]

Thomaschewski M, Zenin V A, Fiedler S, Wolff C and Bozhevolnyi S I 2022 Plasmonic lithium niobate Mach–Zehnder modulators Nano Lett. 22 6471–5

[239]

Heni W et al 2019 Plasmonic IQ modulators with attojoule per bit electrical energy consumption Nat. Commun. 10 1694

[240]

Elder D L et al 2017 Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores Chem. Mater. 29 6457–71

[241]

Nagpal P, Lindquist N C, Oh S H and Norris D J 2009 Ultrasmooth patterned metals for plasmonics and metamaterials Science 325 594–7

[242]

Tan Q L, Huang X G, Zhou W and Yang K 2013 A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides Sci. Rep. 3 2206

[243]

Zhu B Q, Chen M Y, Zhu Q, Zhou G D, Abdelazim N M, Zhou W, Kershaw S V, Rogach A L, Zhao N and Tsang H K 2019 Integrated plasmonic infrared photodetector based on colloidal HgTe quantum dots Adv. Mater. Technol. 4 1900354

[244]

Lu L J et al 2012 Plasmonic nanolaser using epitaxially grown silver film Science 337 450–3

[245]

Wu D, Yang X, Wang N N, Lu L J, Chen J P, Zhou L J and Rahman B M A 2022 Resonant multilevel optical switching with phase change material GST Nanophotonics 11 3437–46

[246]

Shen Y C et al 2017 Deep learning with coherent nanophotonic circuits Nat. Photon. 11 441–6

[247]

Ghazi Sarwat S, Brückerhoff-Plückelmann F, Carrillo S G C, Gemo E, Feldmann J, Bhaskaran H, Wright C D, Pernice W H P and Sebastian A 2022 An integrated photonics engine for unsupervised correlation detection Sci. Adv. 8 eabn3243

[248]
Li X, Youngblood N, Zhou W, Feldmann J, Swett J, Aggarwal S, Sebastian A, Wright C D, Pernice W and Bhaskaran H 2020. On-chip phase change optical matrix multiplication core IEEE Int. Electron Devices Meeting (IEEE) pp 7.5.1–4
[249]

Brückerhoff-Plückelmann F, Feldmann J, Gehring H, Zhou W, Wright C D, Bhaskaran H and Pernice W 2022 Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers Nanophotonics 11 4063–72

[250]

Youngblood N 2023 Coherent photonic crossbar arrays for large-scale matrix-matrix multiplication IEEE J. Sel. Top. Quantum Electron. 29 6100211

[251]

Tong Y Y, Zhou W, Wu X R and Tsang H K 2020 Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler IEEE J. Quantum Electron. 56 8400107

[252]

Wu X R, Huang C R, Xu K, Zhou W, Shu C and Tsang H K 2018 3×104 Gb/s single-λ interconnect of mode-division multiplexed network with a multicore fiber J. Lightwave Technol. 36 318–24

[253]

Lee J S, Farmakidis N, Wright C D and Bhaskaran H 2022 Polarization-selective reconfigurability in hybridized-active-dielectric nanowires Sci. Adv. 8 eabn9459

[254]

Ambrogio S et al 2018 Equivalent-accuracy accelerated neural-network training using analogue memory Nature 558 60–67

[255]

Li C et al 2018 Analogue signal and image processing with large memristor crossbars Nat. Electron. 1 52–59

[256]

Chen R, Fang Z R, Miller F, Rarick H, Fröch J E and Majumdar A 2022 Opportunities and challenges for large-scale phase-change material integrated electro-photonics ACS Photonics 9 3181–95

[257]

Delaney M, Zeimpekis I, Du H, Yan X Z, Banakar M, Thomson D J, Hewak D W and Muskens O L 2021 Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material Sci. Adv. 7 eabg3500

[258]

Wang D N, Zhao L, Yu S Y, Shen X Y, Wang J J, Hu C Q, Zhou W and Zhang W 2023 Non-volatile tunable optics by design: from chalcogenide phase-change materials to device structures Mater. Today 68 334–55

[259]

Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82

[260]

Zhou F C and Chai Y 2020 Near-sensor and in-sensor computing Nat. Electron. 3 664–71

[261]

Chen J W, Zhou Z, Kim B J, Zhou Y, Wang Z Q, Wan T Q, Yan J M, Kang J F, Ahn J H and Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 882–8

International Journal of Extreme Manufacturing
Article number: 022001
Cite this article:
Zhou W, Shen X, Yang X, et al. Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing. International Journal of Extreme Manufacturing, 2024, 6(2): 022001. https://doi.org/10.1088/2631-7990/ad1575

105

Views

1

Downloads

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 30 June 2023
Revised: 05 October 2023
Accepted: 13 December 2023
Published: 04 January 2024
© 2024 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return